
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1213–1224
November 7–11, 2021. c©2021 Association for Computational Linguistics

1213

Extend, don’t rebuild: Phrasing conditional graph modification as
autoregressive sequence labelling

Leon Weber∆,2 and Samuele Garda∆ and Jannes Münchmeyer3,∆ and Ulf Leser∆

∆ Humboldt-Universität zu Berlin, 2 Max Delbrück Center for Molecular Medicine,
3 GFZ German Research Center for Geoscience Potsdam

weberple@hu-berlin, gardasam@hu-berlin.de,
munchmej@gfz-potsdam.de, leser@informatik.hu-berlin.de

Abstract

Deriving and modifying graphs from natural
language text has become a versatile basis
technology for information extraction with ap-
plications in many subfields, such as seman-
tic parsing or knowledge graph construction.
A recent work used this technique for modi-
fying scene graphs (He et al., 2020), by first
encoding the original graph and then generat-
ing the modified one based on this encoding.
In this work, we show that we can consider-
ably increase performance on this problem by
phrasing it as graph extension instead of graph
generation. We propose the first model for
the resulting graph extension problem based
on autoregressive sequence labelling. On three
scene graph modification data sets, this formu-
lation leads to improvements in accuracy over
the state-of-the-art between 13 and 26 percent-
age points. Furthermore, we introduce a novel
data set from the biomedical domain which
has much larger linguistic variability and more
complex graphs than the scene graph modifica-
tion data sets. For this data set, the state-of-the
art fails to generalize, while our model can pro-
duce meaningful predictions.

1 Introduction

Generating or modifying graphs based on natu-
ral language texts is a versatile technique that has
applications in different subfields of Natural Lan-
guage Processing (NLP) such as dependency pars-
ing (Manning and Schütze, 2001) or semantic pars-
ing (Oepen et al., 2019, 2020). However, while
these tasks can all be viewed as instantiations of
conditional graph generation, they have been tradi-
tionally addressed as distinct tasks with different
data sets, models and evaluation settings. Con-
trary to that, we are interested in studying the
general task of generating or modifying graphs
based on textual input. Specifically, we focus on
the recently introduced task of conditional graph
modification, in which a model is given a graph

which it should modify according to natural lan-
guage instructions (He et al., 2020). Their proposed
method first embeds both the graph and the instruc-
tions with a joint encoder into an embedding h and
then rebuilds the graph using a separate generative
model for graphs (You et al., 2018b) conditioned
on h. While this approach achieves state-of-the-art
results for the Scene Graph Modification (SGM)
data sets, we identified two shortcomings of this
approach: (i) The model has to newly generate also
the parts of the input graph that actually should
be left unmodified and (ii) the model uses a sepa-
rate graph encoder in the generative decoder model,
which does not share knowledge with the encoder.

We propose an alternative formulation of this
problem in which we model the modification as a
graph extension instead of graph generation. To
this end, we introduce the two special node labels
ADD and DEL which allow us to model node in-
sertions, deletions and edge modifications in the
graph extension setting. We develop a model for
this novel graph extension problem that autoregres-
sively solves a sequence labelling task for each
node that is added to the graph. This formula-
tion addresses both shortcomings of the model of
He et al. (2020). First, it precisely extends the
graph without the need for rebuilding the unmod-
ified parts. Second, it models the graph as text
which allows to encode the input text, the origi-
nal graph and the extension with the same encoder
and enables the straightforward integration of pre-
trained language models such as BERT (Devlin
et al., 2019). Our proposed model outperforms the
state-of-the-art for the three data sets published by
He et al. (2020) by a large margin, with improve-
ments between 13 and 26 percentage points (pp).
To test the limits of our approach, we furthermore
present a new, more challenging graph modifica-
tion task in which biomedical event graphs have
to be modified based on scientific texts. To this
end, we transform data from an existing biomed-

1214

Figure 1: Rephrasing conditional graph modification as autoregressive sequence labelling. The substitution of the
‘blue’ node is replaced by the extension with the two nodes ‘DEL’ and ‘ADD’. This graph extension problem is
phrased as three autoregressive steps of sequence labelling. The original nodes have brown background while the
extension nodes are drawn in blue.

ical event extraction task (Ohta et al., 2013) to a
graph modification data set. Compared to the SGM
data sets, the resulting data set displays much larger
linguistic variation in the instruction texts and more
complex graph structures. Our experiments show
that the state-of-the-art fails to generalize on this
data set, while our model is able to produce mean-
ingful predictions. We analyze our model via a
detailed ablation study and analyze the errors with
respect to the input complexity, which allows us
to precisely explain the improvements over state-
of-the-art and suggest routes for even better future
models.

To encourage further research on the challenging
task of graph modification, we implement the mod-
els and data sets in a modular fashion and make the
code available under an open-source license1.

2 Related Work

Generating graphs from natural language texts is a
central problem in many subfields of NLP.

Many classical problems in NLP such as depen-
dency parsing (Manning and Schütze, 2001) or
relation classification (Vu et al., 2016) are text-to-
graph problems, but with highly restricted graph
structures (e.g. nodes can be only words or named
entities respectively). The methods developed for
these tasks are typically tailored to these structures
and cannot be used for other types of graphs. In
contrast, our proposed method can handle arbitrary
directed acyclic graphs (DAGs).

There is also significant interest in develop-
ing methods that jointly embed graphs and text

1https://github.com/leonweber/extend

to exploit graph-based information in NLP, espe-
cially for Question Answering based on Knowl-
edge Bases (Lin et al., 2019; Yasunaga et al., 2021).
However, these usually treat the graph as a static
source of information and cannot be used for gen-
erating or extending graphs.

A task closer to our work in this regard is
Cross-Framework Meaning Representation Pars-
ing (Oepen et al., 2019, 2020) (MRP). In this task,
systems are required to parse text into a general
graph-based format in which nodes are not neces-
sarily anchored in the text. The major difference
between MRP and our graph modification setting
is that in MRP the models always generate the full
graph from scratch, while our method modifies an
already provided graph. There is strong interest
in graph generation also outside the NLP commu-
nity, e.g. for modelling arbitrary distributions of
graphs (You et al., 2018b; Liao et al., 2019) or for
generating novel protein structures (Jin et al., 2018;
You et al., 2018a). However, these methods neither
do graph generation conditioned on textual input
nor support the modification of partial graphs.

To the best of our knowledge, the only model
that was explicitly developed for modifying arbi-
trary graphs based on natural language instructions
is the model by He et al. (2020). It uses a trans-
former (Vaswani et al., 2017) to jointly embed text
and graph, modelling the graph structure by re-
stricting attention only to neighbouring nodes and
by adding edge label embeddings onto the node
embeddings. Based on this joint embedding, the
modified graph is generated by a separate decoder
based on the GraphRNN architecture (You et al.,

https://github.com/leonweber/extend

1215

2018b). While this architecture allows to model
graph modification as graph generation, it also re-
quires the model to generate the unmodified parts
of the graph again which leaves more room for
errors, whereas we only extend the graph leaving
the unmodified parts untouched. Furthermore, this
formulation uses two separate graph encoders; the
transformer for encoding the original graph and the
GraphRNN for encoding the partially generated
graph. In contrast, our proposed method uses the
same encoder for encoding the given graph and its
extensions, allowing for more parameter sharing
and thus for potentially better graph representations.
Our simpler architecture makes the integration of
BERT-style pretrained language models (Devlin
et al., 2019; Gu et al., 2020) straightforward, how-
ever this only partly explains the observed gains
over He et al. (2020) (see Section 5.3).

3 Methods

The task of graph modification is to modify a graph
G into a graph G′ according to natural language in-
structions t. To this end, let G = (N , E) be a DAG
consisting of nodes N and edges E ⊆ N × N ,
along with node labels ln ∈ Ln∪{NONE} and edge
labels le ∈ Le ∪ {NONE}. Let G′ be defined analo-
gously. We develop a model to estimate p(G′ | t,G).
Here, we first present our approach for the prob-
lem of graph extension, i.e., the case N ⊆ N ′ and
E ⊆ E ′.

Then, we show how general graph modification
can be reduced to this case. To this end, we iden-
tify three ways in which a graph can be modified:
a node can be added, a node can be removed or
the edges of an existing node can be modified. We
show how we can model all three cases by introduc-
ing the two special node labels ADD and DELwhich
can be used to model node insertions and dele-
tions in a graph extension setting. Both, ADD and
DEL identify the argument that should be added or
deleted via a special theme edge.

3.1 Explanation by Example

A visual explanation of our method can be found
in Figure 1 and we will use it as a running example
in the text. In this graph, we have the three nodes
boy, shirt and blue and the edges (shirt,
on, boy) and (blue, color-of, shirt).
We want to change the color of the shirt from blue
to red. For this, we extend G by a DEL node with
its edge (DEL, theme, blue) and a red node

with its edge (red, color-of, shirt). In
our autoregressive sequence labelling framework,
this extension of the original graph by two nodes
is modelled as three successive calls to a sequence
labelling model that receives as input the input
text and a linearized form of the current graph.
In the first call to the sequence labelling model,
the input consists of the text and a linearization
of the original graph. As output, the model pro-
duces the first extension node with label DEL and
one edge to the node with the label blue (DEL,
theme, blue). This is achieved by labelling the
CLS token as DEL and the linearized representa-
tion of the blue node with theme. In the next
step, the model receives as input the text and a lin-
earized form of the now partially extended graph
and predicts the next extension by labelling CLS
with ADD to predict the node label. Additionally,
the model predicts the two edges (ADD, theme,
red) and (red, color-of, shirt). The
predicted edge (ADD, theme, red) reflects
the addition of a new node with the label red and
is modelled by labeling the word red in the text
with self. Note that this also produces an an-
choring of the red node to the labeled span in the
text. The edge (red, color-of, shirt) is
produced by labeling the linearized form of the
shirt node with color-of. After receiving the
text and the further extended graph as input, the
model signals the end of the extension process by
labeling CLS with NONE.

3.2 Graph Extension as Autoregressive
Sequence Labelling

We formulate the graph extension problem autore-
gressively. That is, we extend the provided graph
one node at a time, together with the corresponding
edges starting at the node. Let N+ = N ′ \ N
be the extension nodes in our graph, and π =
(n+

1 , n
+
2 , ..., n

+
N) an ordering thereon. Note that

the size N = |N+| of the extended graph is known
during training, while at test time we abort the
generative process after a fixed number of steps
which we treat as a hyperparameter or when the
model predicts a node with label NONE. We write
G′i = G′[N ∪ {n

+
j≤i}] for the subgraph induced by

the union of all nodes N from the original graph
with the additional nodes up to n+

i in π. Let

p(G′, π | t,G) =
N∏
i=1

p(n+
i , {eij}j | t,G

′
i−1), (1)

1216

be the joint probability of G′ and the ordering π,
where {eij}j are all edges from n+

i to all available
nodes nj . As multiple orderings can lead to the
same graph, the total probability of a graph G′ is

p(G′ | t,G) =
∑
π

p(G′, π | t,G) (2)

where the sum is over all possible orderings.
In practice, marginalising over all possible or-

derings is infeasible. Therefore, we impose two
conditions on the ordering to reduce their num-
ber, often even making it unique. First, π must
be a topological ordering, which exists as G′ is a
DAG. Second, among the topologically sorted or-
derings, we impose an additional order of node
labels. In our running example, there are two pos-
sible topological orderings of the extended graph,
because both extensions nodes could be added first.
However, we impose that DEL nodes always come
before ADD nodes, making π unique in this case.

We estimate p(n+
i , {eij}j | t,G′i−1) by formu-

lating it as a sequence labelling task over a com-
bination of the provided text t and a textual rep-
resentation of G′i−1. We solve the resulting se-
quence labelling task with BERT. For this, we
first linearize G′i into a textual representation tG′i .
We treat the exact form of the linearization as
a hyperparameter, with the only constraint that
every node n ∈ G′i is represented by a unique
span denoted span(n). A possible linearization
for the original graph in our running example
would be boy | shirt | blue | shirt
on boy | blue color-of-shirt. We
use the linearization to jointly predict the label
of the added node n+

i and its edges {eij}j . To
generate the prediction, we concatenate the instruc-
tion text t and the linearized graph tG′i in the form
"[CLS] t [SEP] tG′i". The model predicts the label
of n+

i using the embedding of BERT’s [CLS] token
h[CLS]. Then, the model predicts the labels of the
outgoing edges of n+

i to all possible target nodes
j. This is achieved by marking j’s span in tG′i with
the corresponding edge label (including NONE) in
an IOB-tagging scheme.

That is, for producing a sequence labelling that
represents the addition of the DEL node with its
edge (DEL, theme, blue), we would mark
the [CLS] token as DEL and the token blue as
B-theme, with all other tokens being labelled as
O.

We then estimate the joint probability of n+
i ’s

label and the labels of the edges eij from n+
i to all

possible target nodes j, by conditioning the edge
probabilities on the node label. To this end, we first
predict the node label from the embedding of the
[CLS] token :

p(n+
i | t,G

′
i−1) = softmax(WN · h[CLS]) (3)

We then predict the single edge probabilities condi-
tioned on the node label:

p(eij |n+
i , t,G

′
i−1) =∏

k∈span(j)

softmax(W
(n+

i)
E · hk),

(4)

where hk are the token embeddings of j’s span
with k ranging over each token. For modelling the
joint probability, we assume independence between
the edges:

p(n+
i , {eij}j | t,G

′
i−1) =

p(n+
i | t,G

′
i−1) ·

∏
j

p(eij |n+
i , t,G

′
i−1),

(5)

where WN is the node-classification layer and

W
(n+

i)
E the edge classification layers for each node

label.
For training, we use the negative-log likelihood
− log p(n+

i , {eij}j | t,G′i−1) as loss, together with
teacher forcing (Williams and Zipser, 1989). For
prediction, we employ greedy search, choosing
argmax p(n+

i , {eij}j | t,G′i−1) at each step.
In some applications, such as semantic parsing,

it can be necessary to anchor some nodes to the text,
i.e. assign a specific span in t to a node (Oepen
et al., 2020). For instance, this can be used to
encode that a certain semantic concept represented
by a node is expressed in a specific span in the text.
Our proposed autoregressive sequence labelling
framework provides natural support for such a node
anchoring, by including edges to spans in t. This is
modelled by labelling the anchor spans in twith the
desired edge type. Refer to Figure 1 for an example
in which the ADD node, added in the second pane,
has an edge to the span red in t. This edge triggers
the creation of one additional node with label red
which encodes the anchoring information.

3.3 Modelling Graph Modification as Graph
Extension

We now formulate the graph modification problem
as described in He et al. (2020) as a graph extension

1217

task. In contrast to the formulation as graph gener-
ation, this framework does not require the model
to reproduce the unmodified parts of the graph. We
produce an extended graph G′ from the original
graph G, which contains information on the modifi-
cations to apply. From this graph, an application-
independent postprocessing can trivially calculate
the modified graph Gm.

We distinguish three different ways in which G
can be modified: (1) an existing node n is deleted,
(2) a node n is added and (3) the edges of an exist-
ing node n are changed.

For case (1), we add a DEL node with a single
theme edge to n. In the post processing, we re-
move all nodes (and connected edges) that have
edges from DEL nodes.

For case (2), we introduce an ADD node that
adds n and all its outgoing edges. To determine the
label of the added node, we extend G by another
node representing the label of n. Modelling the la-
bel of added nodes in this way instead of predicting
it directly, allows us to optionally use anchor nodes
to determine the labels of added nodes. This can
drastically reduce the size of the output space if the
number of node labels is very large. For instance,
in our running example, we want to add a node with
the label red. The proposed model can achieve this
in two ways: The first option is depicted in Fig-
ure 1, where it predicts the ADD node and marks
the span "red" in t as the special theme edge. This
is then interpreted as a prediction of the ADD node
and that of an anchor node with label red. The
second option is to first generate a node with label
red and in a later generation step the ADD node
with a theme edge to the red node. Both lead
to the same graph (third pane in Figure 1), with
the exception of the anchor edge, which would
only be present under the first option. In the post
processing, we change the label of n from ADD
to the label of the additional label node and then
remove the label node.

For case (3), we model modified edges of n as
a sequence of deletions and additions by deleting
n and then adding it back with the modified edges
using the operations described in cases (1) and (2).

4 Experimental Setup

We evaluate our model on three data sets for SGM
and a novel Biomedical Event Graph Completion
data set.

4.1 Scene Graph Modification

SGM is a task defined by He et al. (2020). The
model is given a scene graph and modification in-
structions in natural language and has to produce a
new version of the graph that was modified accord-
ing to the instructions. He et al. (2020) published
three data sets: MSCoco, GCC and CrowdSourced.
The first two were created synthetically from pub-
licly available data sets (Lin et al., 2014; Sharma
et al., 2018), while the instructions of the third were
generated via crowd sourcing. Data set statistics
can be found in Table 1.

MSCoco GCC Crowd PC13
Size 196k/2k/2k 400k/7k/7k 30k/1k/1k 4k/0.5k/1.5k
Avg. |N | 3±0.9 4±1.9 2.0±0.8 5.9 ±4.4
Avg. |Nm| 3±1.4 4±2.0 2.0±0.8 6.8 ±4.6
Avg. |E| 2±1.0 3±2.0 1.0±0.8 3.5 ±4.6
Avg. |Em| 2±1.4 3±2.0 1.0±0.8 4.8 ±5.0
OOV t (%) -/3/4 -/2/2 -/8/8 -/35/48
OOV N (%) -/4/4 -/3/3 -/11/10 -/64/67

Table 1: Data set statistics before transformation to
graph extension. We report mean and standard devia-
tion for the graph statistics. OOV t and OOVN denote
the percentage of text tokens and node labels from the
development/test set that do not appear in the training
set.

We rephrase the graph modification task as
a graph extension problem as described in Sec-
tion 3.3. We found that in these data sets the labels
of almost all extension nodes appear in the modi-
fication prompts verbatim. Accordingly, we intro-
duce additional anchoring nodes by exact string
matching of the node label with the textual instruc-
tions. While this means that our model now has to
add twice as many nodes (one anchor and one ADD
node per additional node) it allows us to reduce
the output space for the node label from 14,873
/ 26,827 / 5,747 to two (ADD and DEL) for the
training sets of MSCoco, GCC and CrowdSourced
respectively.

The edges in all three SGM data sets are undi-
rected but for our proposed framework we require
the graph to be directed. Thus, we transform the
undirected graphs to DAGs by defining the direc-
tions of edges between extension nodes and orig-
inal nodes {n+, n} with n+ ∈ N+, n ∈ N to go
from n+ to n. The rest of the directions is assigned
arbitrarily.

For SGM, we linearize the graphs by writing out
all nodes as each comes with a unique natural lan-
guage label such as ‘shirt’ or ‘blue’. Additionally,
we write out all (directed) edges (u, v) in the form

1218

Figure 2: Creation of the PC13 data set. The event an-
notations are transformed into the TEG and some nodes
are randomly chosen as extension nodes (here in blue).

<u> <edge-label> <v>. See Figure 1 for a
detailed example.

4.2 Biomedical Event Graph Completion

Biomedical Event Extraction is an information ex-
traction task in which events that model biomedical
processes have to be extracted from text (Ohta et al.,
2013). These events are defined by their trigger (a
typed span in the text) and their arguments, which
can be other events or named entities and have a
type called role. Together, all events and named
entities in a given text form a directed graph which
we call Text Event Graph (TEG). The nodes of
the TEG are comprised of all named entities and
all events in the text with their provided labels.
The edges in the TEG always originate from event
nodes and can have other event nodes or entity
nodes as targets. An example TEG can be found in
Figure 2.

We transform a Biomedical Event Extraction
data set to a graph modification data set by ran-
domly deleting event nodes and asking the model
to recover them. Specifically, we use the BioNLP
2013 Pathway Curation (PC13) dataset (Ohta et al.,
2013), split it into sentences and then randomly
delete between zero and three event nodes, with the
constraint that no more than 75% of the events can
be deleted. We treat event hedging (negation and
speculation) as special event nodes with one edge
to the modified events. Furthermore, we delete
all triggers (which correspond to anchor nodes),
so that we can also evaluate the method of (He
et al., 2020) which does not have support for an-
chor nodes. Statistics of the resulting data set can
be found in Table 1. Notably, the PC13 data set

differs considerably from the three SGM data sets
in important respects. First, the task presented by
the data set is a pure graph extension task as it is
only necessary to add nodes. Second, both original
and modified graphs are much larger than the scene
graphs both in terms of nodes and of edges. Third,
the PC13 data set is much smaller in terms of exam-
ples. Fourth, the PC13 data set possesses a much
larger linguistic variability which is reflected in a
larger variability in node labels, because all named
entities of the text appear as nodes in the graph.
This leads to a very high number of node labels and
words in the text which appear in the dev/test set
but not in the training set (35-67% vs 8-11% in the
CrowdSourced data set). Overall, we consider this
data set as considerably more challenging than the
SGM data, which is reflected in much lower perfor-
mance (see Section 5) in our experiments. Impor-
tantly, to correctly modify the graph, the models
frequently have to generate more than one node
with multiple edges, making it harder to achieve
a prediction that is correct on the graph level than
for the SGM data sets, where the modifications are
limited to a change of exactly one node.

For graph linearization, we first write out all en-
tity nodes using their associated text attributes. We
append a linearization of each event e that consists
of its label together with all edges e, n in the form
<edge-label> (<n>). If n is an event it-
self, we use its linearization, which is possible be-
cause the graph is free of cycles. An example lin-
earization can be found in Appendix B.

4.3 Evaluation Metrics & Baselines

We follow He et al. (2020) and report the metrics
graph accuracy, node F1 and edge F1. For graph
accuracy, we define a predicted graph to be correct
if it is isomorphic to the ground truth under the
constraint that the labels of nodes and edges match.
In the SGM data sets, the labels of the nodes are
typically unique in a given graph and thus can be
used to define precision and recall for nodes and
edges in their standard formulation.

For PC13, there are usually multiple nodes with
the same label, which makes it necessary to use
an alternative definition for whether an extension
node n+ is present in some reference graph Gr. We
define that n+ ∈ Gr if the subgraph induced by
n+ and its descendants is isomorphic to a subgraph
in Gr. Because each n+ corresponds to an event
and the event is fully specified by this descendant

1219

subgraph, this formulation corresponds to the stan-
dard evaluation protocol in the BioNLP shared task
series (Ohta et al., 2013) with the exception of an-
chor nodes which we disregard to allow for a fair
comparison to He et al. (2020).

We compare our model on all data sets with the
best configuration reported by He et al. (2020),
which is their cross-attention model that jointly
embeds text and graph with a transformer. As an
additional baseline, we use the CopySource base-
line which simply predicts the unmodified source
graph.

4.4 Training Details

For the SGM data sets, we use the bert-base-
uncased (Devlin et al., 2019) model of Hugging-
Face transformers (Wolf et al., 2019) as our pre-
trained transformer. We optimize our models with
Adam (Kingma and Ba, 2015) using a batch size
of 16 and a learning rate of 3e-5 for 100 epochs on
CrowdSourced and for 20 epochs on the two other
data sets.

For PC13, we use the HuggingFace transform-
ers’ version of BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext (Gu et al., 2020), a ver-
sion of BERT trained on biomedical texts, as the
transformer and train for 100 epochs, using a batch
size of 16 and a learning rate of 3e-5.

For all datasets, we abort the graph extension
process after 10 generated nodes.

5 Results

5.1 Comparison with State of the Art for
Scene Graph Modification

Results for the SGM data sets can be found in Ta-
ble 2. On all four data sets, our proposed method
outperforms the model of He et al. (2020) by 13
to 26 pp accuracy. The improvement is especially
pronounced on the CrowdSourced data set. We
attribute this stronger improvement to two charac-
teristics of the data set that make it benefit from
using pretrained language models. First, compared
to the two other data sets, CrowdSourced is the only
non-synthetic one which leads to a larger linguistic
variability. Second, it is much smaller. For both
characteristics, a pretrained language model such
as BERT is an ideal solution, as it alleviates the
need for large training data and was exposed to a lot
of linguistic variation during pretraining. We veri-
fied this hypothesis by enriching the graph and text
embeddings of the model of He et al. (2020) with

fine-tuned BERT embeddings (see Appendix A for
details) which led to an improvement of 10pp on
CrowdSourced but led to diminished results on the
two other SGM data sets.

To quantify the advantage that a graph exten-
sion formulation has over graph generation, we
analyzed how many errors the model of He et al.
(2020) made because it incorrectly reconstructed
the subgraph that should be left unmodified. As the
weights of the models reported in He et al. (2020)
are not publicly available, we retrained a model
using the authors’ implementation and the reported
choice of hyperparameters on the CrowdSourced
data set. For the 1000 development examples, the
resulting model produced 403 incorrect graphs. Al-
most 50% of these errors (181) were due to incor-
rect reconstructions of the original graph, whereas
the proportion is only 16% for our model. This
confirms our hypothesis that reformulating graph
modification as graph extension instead of graph
generation helps to avoid a large proportion of er-
rors in reconstructing the parts of the graph that
should be left unmodified.

5.2 Performance in BioNLP Event Graph
Completion

Results for the PC13 data set can be found in Ta-
ble 3. Our proposed method achieves a graph accu-
racy of 47.12% and improves upon the CopySource
baseline by over 2pp. However, both in terms of
Node F1 and Edge F1, CopySource performs better
than our method, which indicates that when our
model wrongly extends a graph it does this fre-
quently by introducing more than one wrong node
or edge. The model of He et al. (2020) fails to pro-
duce meaningful predictions, achieving only 1.09%
accuracy. We attribute this to the high rates of to-
kens and node labels that appear in the test set but
not in the training set (48% of the tokens and 67%
of the node labels). Because this model attempts
to reproduce the whole graph and because it treats
each node label as a class, it has no appropriate
mechanism for predicting modifications of graphs
that have a large number of unknown node labels.
Additionally, we expect the model to struggle with
a large number of unknown tokens in the instruc-
tion, because it does not use pretrained embeddings.
This hypothesis is supported by the fact that the
model achieves 71.67% accuracy on the PC13 train
set as opposed to the 1.09% on the test set. Note,
that this failure to generalize cannot be explained

1220

Crowd Sourced MSCoco GCC
Node F1 Edge F1 Graph Acc Node F1 Edge F1 Graph Acc Node F1 Edge F1 Graph Acc

Copy Source 66.17 31.42 - 78.41 64.62 - 79.46* 66.32* -
Text2Text 78.59 52.68 52.15 91.47 72.74 64.42 - - -
Mod. GraphRNN 80.68 57.17 56.75 80.64 55.76 50.72 - - -
Graph Transformer 81.47 59.43 58.23 91.21 75.68 71.38 - - -
DCGCN 79.05 54.23 52.67 89.08 72.47 68.89 - - -

He et al. (2020) 83.69 62.1 60.9 95.4 86.52 82.97 93.84 57.68 52.5

Ours 97.62 88.26 87.6 99.52 98.4 96.15 98.62 91.64 75.01
- BERT 95.44 82.13 82.7 99.36 98.2 95.45 98.52 91.55 73.66

Table 2: Comparison with state-of-the-art on the scene graph modification test sets. Baseline results are taken from
He et al. (2020) including missing values for CopySource and results for Modified Graph RNN (You et al., 2018b),
Graph Transformer (Cai and Lam, 2020) and DCGCN (Guo et al., 2019). Results marked with a ‘*’ denote results
obtained by us.

Node F1 Edge F1 Graph Acc

CopySource 93.59 84.67 44.88
He et al. (2020) 45.08 3.41 1.09
Ours 91.38 80.54 47.12

Table 3: Results for the PC13 BioNLP-completion test
set. Best results are in bold.

CrowdSourced PC13
CopySource - 42.15
He et al. (2020) 61.2 2.07
Ours 87.60 48.35

- BERT 82.7 41.53
- anchors 83.7 -
- conditional loss 88.1 44.83
- edges in linearization 61.5 -
+ linearization in natural language - 46.28

Table 4: Accuracy scores for ablations on the Crowd-
Sourced and PC13 dev sets. Best results are in bold.
‘+’ / ‘-’ denote independent extensions / ablations of
model components.

purely by the absence of a pretrained model com-
ponent, because our proposed model still performs
much better when the pretrained component is ab-
lated (see Section 5.3).

5.3 Explaining the Performance Gains via
Ablations

We performed an ablation study on the develop-
ment sets of CrowdSourced and PC13 to identify
the source of performance gains achieved by our
model compared to He et al. (2020). Results can
be found in Table 4. The ablation of the pretrained
language model BERT, in which we used the same
architecture as in our original model but initialized
all parameters from scratch, led to a decrease in
accuracy of 4.9pp on CrowdSourced and 6.8pp on
PC13.

Note, that for PC13 the results without BERT
are worse than the results of the CopySource base-

line, which confirms our hypothesis that for this
data set a pretrained language model is required to
generalize well.

We also investigated how important the type
of graph linearization is. To this end, we tested a
variation of the linearization for each of the two
data sets: For PC13, we changed the proposed
linearization that contains all information about
the event graph to text that is formulated closer
to natural language, which has the downside
that argument edges to other events may not
be uniquely represented but might be easier to
analyze by the language model. For instance, we
would change regulation cause (stat1
) theme (pathway participant (
ifn - gamma)) to regulation of
pathway containing ifn-gamma by
stat1. This led to a decrease in accuracy of
roughly 2pp, indicating that uniqueness and full
information in the graph linearization might be
more important than natural sounding language.
For CrowdSource, the linearization is already
natural sounding and unique. We evaluated a
linearization without any edge representations,
retaining only a list of the contained nodes, to
test whether our proposed model makes use of
information relating to the graph topology. This
led to a pronounced drop in accuracy of roughly
26pp, which verifies that our proposed model
makes use of the edge information and that a full
representation of the graph is required for strong
performance on this data set.

Furthermore, we checked whether the condition-
ing of the edges on the node label is beneficial,
as it comes at the price of increasing the number
of parameters in the output layer by a factor of
|Ln|. For this, we evaluate a variant of our model

1221

in which we treat the prediction of node label and
edge labels as independent. For PC13, this leads
to a decrease of over 3pp in accuracy, which we
expected, because the allowed edge labels differ
strongly depending on the node label. On Crowd-
Sourced, the ablation of this dependency actually
improved accuracy by roughly 0.5pp. We hypoth-
esize that this is because there are only two node
labels which can be predicted in this data set (ADD
and DEL) and thus there is no strong dependency
relations between node and edge labels. This leads
to redundant parameters in the output layer which
have to be learned from the same amount of train-
ing data.

Finally, we suspected that a large factor of the
improvements over the He et al. (2020) model is
the introduction of anchors, which essentially trans-
forms the generative task of predicting the node
label to a discriminative sequence labeling task. To
test this, we perform an ablation in which we re-
move all anchors and instead extend the graph with
a node that has the appropriate label. As this dras-
tically increases the number of node labels, condi-
tioning the edge labels on the node labels leads to
out-of-memory exceptions on a single Nvidia RTX
3090 with 24 GB of RAM. Thus, we use the un-
conditional probabilities mentioned in the ablation
of the conditional probability. We found the the
ablation of anchors indeed led to a notable drop of
almost 4pp in accuracy but that other factors such
as the pretrained language model and the graph
linearization had a much larger effect.

5.4 Error analysis

We analyzed the performance for predicting miss-
ing nodes on the PC13 development set with re-
spect to various characteristics of the input data.
Note, that here, precision, recall and F1 are calcu-
lated with respect only to extension nodes, while
node F1 is calculated with respect to all nodes.

First, we investigated the effect of error accumu-
lation. To test this, we analyzed how the precision
of a node behaves as a function of the step at which
it was predicted (the index in π, see 3.2). Surpris-
ingly, we did not find a clear trend with precision
being roughly 51%, 33% and 50%, for the first,
second and third step, respectively. However, there
was a strong trend for decreasing recall with the
number of missing event nodes in the graph with
54%, 34% and 17% for one, two and three missing
nodes. This might be because of the small amount

of training examples with multiple missing nodes
(see Table 1) or due to error accumulation.

Additionally, we found a moderate negative cor-
relation between the number of nodes in the input
graph G and precision (Pearson’s r = −0.47) and
a stronger negative correlation between the number
of nodes and recall (Pearson’s r = −0.71). This
indicates that one route to further improve our pro-
posed model might be to strengthen its ability to
reason about complex graphs.

We conjectured that ADD nodes would be much
harder to predict than DEL nodes, because DEL
nodes have exactly one edge with only one possible
edge label (theme), whereas ADD nodes can have
arbitrarily many edges. Indeed, we found that our
proposed model achieved an F1 score of over 97%
for DEL nodes, as opposed to 76% for ADD nodes
on the development portion of the CrowdSourced
data set, confirming our hypothesis.

6 Conclusion

We have developed a novel formulation of the con-
ditional graph modification problem as conditional
graph extension. This allows us to only generate
the modified parts of the graph as opposed to re-
building the full graph. Additionally, our model
uses only one encoder for both graph and text al-
lowing for maximum parameter sharing and can
make use of pretrained language models such as
BERT. On three SGM data sets and on a newly
introduced biomedical event graph completion data
the proposed model outperforms the state-of-the-
art. Our error analysis highlights that performance
degrades for larger input graphs. Thus, we plan
to evaluate whether usage of more sophisticated
Graph Neural Networks (Li et al., 2019) would im-
prove results for these cases. We are also interested
to apply our conditional graph modification frame-
work to other tasks such as graph-based semantic
parsing and knowledge graph completion, as this
might yield a unified framework for many standard
NLP tasks.

Acknowledgements

Leon Weber and Jannes Münchmeyer acknowl-
edge the support of the Helmholtz Einstein Inter-
national Berlin Research School in Data Science
(HEIBRiDS). Samuele Garda is supported by the
Deutsche Forschungsgemeinschaft as part of the
research unit "Beyond the Exome".

1222

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Deng Cai and Wai Lam. 2020. Graph transformer for
graph-to-sequence learning. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 7464–7471. AAAI
Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lu-
cas, Naoto Usuyama, Xiaodong Liu, Tristan Nau-
mann, Jianfeng Gao, and Hoifung Poon. 2020.
Domain-specific language model pretraining for
biomedical natural language processing. CoRR,
abs/2007.15779.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei Lu.
2019. Densely connected graph convolutional net-
works for graph-to-sequence learning. Trans. Assoc.
Comput. Linguistics, 7:297–312.

Xuanli He, Quan Hung Tran, Gholamreza Haffari, Wal-
ter Chang, Zhe Lin, Trung Bui, Franck Dernon-
court, and Nhan Dam. 2020. Scene graph modi-
fication based on natural language commands. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
EMNLP 2020, Online Event, 16-20 November 2020,
pages 972–990. Association for Computational Lin-
guistics.

Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola.
2018. Junction tree variational autoencoder for
molecular graph generation. In Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2328–2337. PMLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Guohao Li, Matthias Müller, Ali K. Thabet, and
Bernard Ghanem. 2019. Deepgcns: Can gcns go
as deep as cnns? In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019,
pages 9266–9275. IEEE.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang,
William L. Hamilton, David Duvenaud, Raquel Ur-
tasun, and Richard S. Zemel. 2019. Efficient graph
generation with graph recurrent attention networks.
In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 4257–
4267.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi-
ang Ren. 2019. Kagnet: Knowledge-aware graph
networks for commonsense reasoning. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 2829–2839. Association
for Computational Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft COCO:
common objects in context. In Computer Vision
- ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V, volume 8693 of Lecture Notes in Computer
Science, pages 740–755. Springer.

Christopher D. Manning and Hinrich Schütze. 2001.
Foundations of statistical natural language process-
ing. MIT Press.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajic, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The second shared task on
cross-framework and cross-lingual meaning repre-
sentation parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, CoNLL Shared Task 2020, On-
line, November 19-20, 2020, pages 1–22. Associa-
tion for Computational Linguistics.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdenka
Uresová. 2019. MRP 2019: Cross-framework mean-
ing representation parsing. In Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natu-
ral Language Learning, CoNLL 2019, Hong Kong,
Novemer 3, 2019, pages 1–27. Association for Com-
putational Linguistics.

Tomoko Ohta, Sampo Pyysalo, Rafal Rak, Andrew
Rowley, Hong-Woo Chun, Sung-Jae Jung, Sung-
Pil Choi, Sophia Ananiadou, and Jun’ichi Tsujii.

https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
https://aaai.org/ojs/index.php/AAAI/article/view/6243
https://aaai.org/ojs/index.php/AAAI/article/view/6243
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2007.15779
http://arxiv.org/abs/2007.15779
https://transacl.org/ojs/index.php/tacl/article/view/1616
https://transacl.org/ojs/index.php/tacl/article/view/1616
https://doi.org/10.18653/v1/2020.findings-emnlp.87
https://doi.org/10.18653/v1/2020.findings-emnlp.87
http://proceedings.mlr.press/v80/jin18a.html
http://proceedings.mlr.press/v80/jin18a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICCV.2019.00936
https://doi.org/10.1109/ICCV.2019.00936
https://proceedings.neurips.cc/paper/2019/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/K19-2001
https://doi.org/10.18653/v1/K19-2001

1223

2013. Overview of the pathway curation (PC) task
of BioNLP shared task 2013. In Proceedings of the
BioNLP Shared Task 2013 Workshop, pages 67–75,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for au-
tomatic image captioning. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Aus-
tralia, July 15-20, 2018, Volume 1: Long Papers,
pages 2556–2565. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Ngoc Thang Vu, Heike Adel, Pankaj Gupta, and Hin-
rich Schütze. 2016. Combining recurrent and con-
volutional neural networks for relation classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 534–539, San Diego, California. Association
for Computational Linguistics.

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Comput., 1(2):270–280.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-
lut, Percy Liang, and Jure Leskovec. 2021. QA-
GNN: reasoning with language models and knowl-
edge graphs for question answering. CoRR,
abs/2104.06378.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande,
and Jure Leskovec. 2018a. Graph convolutional pol-
icy network for goal-directed molecular graph gen-
eration. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada, pages 6412–
6422.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamil-
ton, and Jure Leskovec. 2018b. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive mod-
els. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018,

volume 80 of Proceedings of Machine Learning Re-
search, pages 5694–5703. PMLR.

https://www.aclweb.org/anthology/W13-2009
https://www.aclweb.org/anthology/W13-2009
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/N16-1065
https://doi.org/10.18653/v1/N16-1065
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
http://arxiv.org/abs/2104.06378
http://arxiv.org/abs/2104.06378
http://arxiv.org/abs/2104.06378
https://proceedings.neurips.cc/paper/2018/hash/d60678e8f2ba9c540798ebbde31177e8-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d60678e8f2ba9c540798ebbde31177e8-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d60678e8f2ba9c540798ebbde31177e8-Abstract.html
http://proceedings.mlr.press/v80/you18a.html
http://proceedings.mlr.press/v80/you18a.html
http://proceedings.mlr.press/v80/you18a.html

1224

A Integrating BERT into He et al. (2020)

We evaluate a modified version of the model of
He et al. (2020) in which we integrate a finetuned
BERT component. To explain this modification,
we use the notation of He et al. (2020) in which y
ranges over the text tokens and x over the nodes of
the unmodified graph. For this, we use Flair (Akbik
et al., 2019) together with the bert-base-uncased
model to calculate embeddings for tokens hy and
nodes hx. To represent nodes, we use the node
label as input to BERT and if there are multiple
subword tokens per token or node label, we use the
embedding of the first. Then, we fuse the original
token embeddings my ∈ Rd and node embeddings
mx ∈ Rd with two newly introduced single layer
Multilayer Perceptrons:

m′y = W(2)
y · (ReLU(W(1)

y · [my,hy])) (6)

m′x = W(2)
x · (ReLU(W(1)

x · [mx,hx])), (7)

where W
(1)
x ∈ Rd+768×d,W

(2)
x ∈ Rd×d,W(1)

y ∈
Rd+768×d,W

(2)
y ∈ Rd×d and BERT are the addi-

tional trainable parameters and [·] denotes concate-
nation. The resulting modified token embeddings
m′y and node embeddings m′x are then used in
place of the original ones leaving the rest of the
implementation unchanged.

B Example of BioNLP TEG

Figure 3: Illustration of a small BioNLP Text Event
Graph, together with the associated text and the result-
ing graph linearization. Red squares are entities and
orange boxes are events or event modifications.

