
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10730–10745
November 7–11, 2021. c©2021 Association for Computational Linguistics

10730

Softmax Tree: An Accurate, Fast Classifier
When the Number of Classes Is Large

Arman Zharmagambetov Magzhan Gabidolla Miguel Á. Carreira-Perpiñán
Dept. of Computer Science and Engineering, University of California, Merced, USA

{azharmagambetov,mgabidolla,mcarreira-perpinan}@ucmerced.edu

Abstract

Classification problems having thousands or
more classes naturally occur in NLP, for ex-
ample language models or document classifi-
cation. A softmax or one-vs-all classifier natu-
rally handles many classes, but it is very slow
at inference time, because every class score
must be calculated to find the top class. We
propose the “softmax tree”, consisting of a bi-
nary tree having sparse hyperplanes at the de-
cision nodes (which make hard, not soft, de-
cisions) and small softmax classifiers at the
leaves. This is much faster at inference be-
cause the input instance follows a single path
to a leaf (whose length is logarithmic on the
number of leaves) and the softmax classifier
at each leaf operates on a small subset of the
classes. Although learning accurate tree-based
models has proven difficult in the past, we are
able to overcome this by using a variation of
a recent algorithm, tree alternating optimiza-
tion (TAO). Compared to a softmax and other
classifiers, the resulting softmax trees are both
more accurate in prediction and faster in infer-
ence, as shown in NLP problems having from
one thousand to one hundred thousand classes.

1 Introduction

Classification problems with thousands or more
classes (sometimes called extreme classification)
naturally occur in NLP and other areas. One ex-
ample are language models. There are about 171k
words in the current edition of the Oxford En-
glish Dictionary, and many more if we include all
forms of a word, names, technical acronyms, etc.
Another example is document classification. The
Open Directory Project (ODP) contains over 1M
website categories organized in a hierarchical on-
tology scheme. In this many-class setting, it is con-
siderably difficult to learn a model that is accurate
and fast at inference time. The simplest and most
widespread model is a linear (e.g. softmax) clas-
sifier, possibly as the output layer of a neural net.

One important problem with a softmax classifier
is that one must compute the score or probability
of (nearly) all classes, conditional on the input in-
stance, in order to determine the (top-n) predicted
class. This has a cost O(DK) where D is the
input dimension of the softmax and K the num-
ber of classes, which is slow when K and D are
large. This problem also occurs with other clas-
sifiers, such as soft decision trees. Indeed, com-
putational constraints on the vocabulary size are
a major challenge for neural machine translation
(Koehn, 2020), for example.

We argue that having the classifier output a pos-
itive probability (however small) for each class is
slow and unnecessary when K is large, because,
for any given instance, the majority of classes
should indeed have a negligible probability. A
much faster classifier is a traditional decision tree,
which makes hard decisions by thresholding an in-
put feature at the decision nodes and outputs a sin-
gle class at each leaf. This axis-aligned tree as-
signs zero probability to all classes except the pre-
dicted one, which is reached through a single root-
leaf path very quickly (in logK time if the tree is
balanced). However, such trees are known to be
insufficiently accurate even if grown very deep.

We propose a softmax tree (ST), a binary tree
having sparse hyperplanes at the decision nodes
(which make hard, not soft, decisions) and a small
softmax classifier outputting k < K classes at
each leaf (a class may appear in more than one
leaf). A ST is still very fast at inference: it sends
the input instance to a single leaf via a path whose
length is logarithmic on the number of leaves (for a
complete tree), and it assigns (without computing
them) probability zero to most classes (namely, all
classes not in the leaf). Trading off the depth ∆
of the tree and the number of classes k per leaf
can potentially result in fast, highly accurate clas-
sifiers. However, STs are still hard to train because
they define a nonconvex, nondifferentiable prob-
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lem. We solve this by modifying Tree Alternating

Optimization (TAO), a recent algorithm for learn-
ing oblique decision trees (having hyperplane de-
cision nodes and constant-label leaves), so that it
can handle softmax leaves, and by using a good
initialization.

Before describing the training algorithm (sec-
tion 4), we review related work (section 2) and
show (section 3) that oblique tree classifiers with
constant-label leaves are intrinsically more pow-
erful than linear classifiers, but possibly less ef-
ficient, which justifies our STs as hybrid tree-
softmax classifiers. Finally, (section 5) we con-
vincingly show that our STs have both higher ac-
curacy and much faster inference time than sev-
eral previous models on high-dimensional prob-
lems having up to 105 classes.

2 Related Work

The extreme multi-class classification problems
have been previously addressed both in the litera-
ture of machine learning and natural language pro-
cessing. The most basic method is one-versus-all
(Bishop, 2006) where an independent binary clas-
sifier is learned per class. Another classical ap-
proach, error correcting output codes (ECOC) by
Dietterich and Bakiri (1995), represents each class
with a binary code and learns a separate binary
classifier for each bit. However, these methods
become costly or even intractable (both for train-
ing and predicting) when the number of classes is
huge. Moreover, each binary classifier needs to
handle highly imbalanced dataset as all classes ex-
cept one would be instances of the negative class.

Various approaches have been proposed to
speed up the training/prediction time and reduce
the computational complexity. The most popular
of them capitalize on using tree-based structures
since it naturally leads to the logarithmic time re-
duction. Decision trees have been actively used
in this area (Bengio et al., 2010; Daumé III et al.,
2017). Nevertheless, traditional axis-aligned deci-
sion trees, such as C4.5 (Quinlan, 1993) or CART
(Breiman et al., 1984), have very low accuracy
(Choromanska and Langford, 2015). Nested di-
chotomies (Frank and Kramer, 2004) rely on a tree
structure to divide a set of classes into two disjoint
subsets and learn a binary classifier to separate
them. However, human expertise is necessary to
obtain a tree structure and class assignments. Ad-
ditionally, the total error of the model accumulates

over the depths since there is no way to refine bi-
nary classifiers once split is performed. More re-
cent works which are specifically designed to cope
with large number of classes (Beygelzimer et al.,
2009; Bengio et al., 2010) employ similar idea but
take into account class distributions to generate
a tree structure. Other tree-based approaches in-
clude global or partial optimization over parame-
ters of a tree. For instance, Daumé III et al. (2017)
propose to use a fixed structured tree where each
node has much smaller sized linear multi-class
classifier. Sun et al. (2019) extend this work by
allowing a tree structure to grow. Other works
capitalize on generating “perfectly” balanced trees
to guarantee logarithmic inference time (Jernite
et al., 2017; Choromanska and Langford, 2015).
Optimizing a tree parameters in these methods is
typically done by approximating gradient informa-
tion in a certain way (possibly in “online” fash-
ion). Other tree-based methods exist with more
focus on large scale extreme multi-label classifica-
tion and ranking (Prabhu and Varma, 2014; Bhatia
et al., 2015). Finally, there are works which em-
ploy non-tree based approaches, such as hashing-
based methods (Medini et al., 2019), subsampling
of classes and training set (Joshi et al., 2017), etc.

In the context of NLP, most of the above-
mentioned methods are applicable in the number
of practical applications, such as large-scale docu-
ment classification and language modeling. More-
over, there are methods that are specifically de-
signed for language modeling tasks where vocab-
ulary size can be very large and it demands effi-
cient computation of the softmax outputs. Hier-
archical softmax (HSM) (Goodman, 2001) is an
approximation which employs a “soft” decision
tree with linear nodes to address this issue. HSM
has been actively used in the problem of learn-
ing distributed representations of words (Bengio
et al., 2003; Mikolov et al., 2013b) where it can be
jointly trained with neural nets of various complex-
ity (Morin and Bengio, 2005). Follow up works
on this topic (Mnih and Hinton, 2009; Mikolov
et al., 2013a) propose various initializations for
the tree structure (e.g. random, Huffmann tree,
etc.). Although the training of HSM can be ef-
ficiently done using specific loss functions, but
during prediction time, input follows all children
with a certain probability which brings no speedup
compared to the plain softmax. It is still possible
to transform a soft tree back into a “hard” tree
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once training is done (by choosing a child with
the highest probability at each split). For exam-
ple, a recent work from Han et al. (2018) apply a
similar approach. However, as we will experimen-
tally show later, it increases an error due to further
approximation. Similar observations were found
in (Mikolov et al., 2013b) where various subsam-
pling techniques showed better results. Recently,
certain pruning mechanisms have been proposed
as an alternative approach to speed up the predic-
tion time (Bojanowski et al., 2017).

3 Linear Classifiers and Oblique
Classification Trees

Define a K-class linear classifier
f(x;A,b): R

D → {1, . . . ,K} with pa-
rameters A ∈ R

K×D and b ∈ R
K as

f(x;A,b) = argmax (Ax+ b). The pa-
rameters are typically learned from data (e.g. by
using the one-vs-all scheme or by optimizing a
loss such as the cross-entropy for a softmax).

Theorem 3.1. Any K-class linear classifier can

be exactly represented by an oblique classification

tree with constant-label leaves. The converse is

not true.

Proof. We give a constructive proof. Define z =
Ax + b ∈ R

K , so the linear classifier output is
f(x) = argmax(z1, . . . , zK). The latter argmax
function of K arguments can be exactly com-
puted by a complete binary tree of depth K − 1
as illustrated in fig. 1 for K = 4. Each deci-
sion node performs a comparison “zi ≥ zj” and
chooses the right child if it holds, else the left
child. Each leaf’s class label is the corresponding
argmax value. This tree represents the iterative al-
gorithm to compute argmax(z1, . . . , zK) by scan-
ning each element left to right for the maximum:
max(zK , . . .max(z3,max(z2, z1))). Specifically,
each root-leaf path tree corresponds to one possi-
ble execution path, and the nodes at depth j com-
pare with zj . Since a comparison “zi ≥ zj” is
equivalent to “(ai − aj)

Tx+ (bi − bj) ≥ 0”, each
decision node is a linear decision function and the
tree is oblique. This argument is valid for interior
points, but can be made to work for points on the
boundary between classes by appropriately break-
ing the ties (replacing “≥” with “>”) as needed.
The converse is not true because an oblique tree
can dedicate more than one leaf to a class, result-
ing in a nonconvex class region (the union of two

z1≥z2

z2≥z3 z1≥z3

z3≥z4 z2≥z4 z3≥z4 z1≥z4

4 3 4 2 4 3 4 1

Figure 1: A linear classifier f(x) =
argmax (Ax+ b) ∈ {1, . . . ,K} (with K = 4
classes in the diagram) can be exactly represented by
an oblique decision tree with constant-label leaves,
where z = Ax+ b.

polytopes). This cannot be represented by a linear
classifier, whose class regions are polytopes of the
form aix+ bi ≥ ajx+ bj ∀j 6= i.

Note that an axis-aligned decision tree (where
each decision node tests a single input feature),
however deep, cannot exactly represent a linear
classifier unless the latter is itself axis-aligned.

The above theorem shows that oblique decision
trees are strictly a more powerful family of classi-
fiers than linear classifiers1. The proof construc-
tion produces a large tree, having 2K−1 leaves (al-
though its inference time is equal to that of the lin-
ear classifier, O(DK)). In practice, the tree need
not exactly represent the linear classifier through-
out the input space but just over the instances of a
training set, and this can likely be achieved with
far smaller trees. For example, if each class is
linearly separable from the rest, the correspond-
ing tree has just K leaves and each of the K − 1
decision nodes has exactly one leaf child (except
the deepest decision node, which has two leaf chil-
dren). Still, for a given dataset, the linear classifier
may be a more efficient model in number of pa-
rameters than the tree. Which classifier (linear or
oblique tree with constant-label leaves) is better is
an empirical question. A further issue is that find-
ing the global optimum of the training problem is
easy for a linear classifier (e.g. the cross-entropy
is convex for a softmax classifier) but NP-hard for
a decision tree. This leads us to the model we
propose in this paper, the softmax tree, which is
a hybrid between a purely linear classifier and an
oblique tree with constant-label leaves.

1It also follows from theorem 3.1 that an oblique decision
tree with linear leaves is equivalent to a (somewhat) deeper
oblique decision tree with constant leaves.



10733

4 Softmax Trees: Definition and Training

Unlike soft decision trees, which can be readily
optimized via gradient-based methods, hard de-
cision trees pose a far more difficult optimiza-
tion problem, not just nonconvex but nondiffer-
entiable (and NP-hard). Traditional tree learn-
ing algorithms such as CART (Breiman et al.,
1984) or C5.0 (Quinlan, 1993) are based on greed-
ily and recursively partitioning the input space,
and pruning the resulting tree to reduce overfit-
ting. However, they are known to produce sub-
optimal trees (Hastie et al., 2009). In this work,
we build on a recent algorithm, Tree Alternat-

ing Optimization (TAO) (Carreira-Perpiñán and
Tavallali, 2018; Carreira-Perpiñán, 2021) which
is a non-greedy optimization method for tree-
based models. Originally described for oblique
trees with constant-label leaves, TAO has shown
a huge success in training a wide range of
other tree-based models: regression trees (Zhar-
magambetov and Carreira-Perpiñán, 2020), tree
ensembles (Carreira-Perpiñán and Zharmagam-
betov, 2020; Zharmagambetov et al., 2021a,b),
hybrid models (Zharmagambetov and Carreira-
Perpiñán, 2021a,b), etc. Moreover, they are shown
to have a great potential to study model inter-
pretability and explainability (Carreira-Perpiñán
and Hada, 2021; Hada et al., 2021).

TAO works very differently from CART and
much more like a regular machine-learning op-
timization algorithm, but instead of gradients
(which do not apply) it uses alternating optimiza-
tion over groups of nodes of a fixed tree structure.
This results in a monotonic decrease of the objec-
tive function over all the tree parameters and con-
vergence to a local optimum. Detailed compari-
son of TAO against traditional trees can be found
in (Zharmagambetov et al., 2021c). Next, we de-
scribe our softmax trees and training algorithm,
noting the differences with Carreira-Perpiñán and
Tavallali (2018).

Consider a K-class problem with training set
{(xn, yn)}

N
n=1 ⊂ R

D × {1, . . . ,K} of D-
dimensional instances and labels. Let T(x;Θ) be
a binary decision tree which produces a prediction
for each input x by routing x from the root to ex-
actly one leaf and applying a predictor function at
that leaf. Each node (both decision and a leaf) has
learnable parameters θi and the total set of param-
eters of a tree is Θ = {θi}i∈N , where N is the
set of nodes. Each decision node i has a decision

function fi(x;θi): R
D → {lefti, righti} ⊂ N ,

sending instance x to the corresponding child of
node i, and each leaf has a predictor function
gi(x;θi): R

D → {1, . . . ,K} that produces the
actual output. In a softmax tree (ST):

• Each decision function uses a (sparse) hyper-

plane (oblique tree): “go to the right child if
wT

i x + wi0 ≥ 0, else go to the left child”,
with parameters θi = {wi, wi0}.

• Each leaf predictor is a k-class linear soft-

max: gi(x;θi) = σ(Wix +wi), where σ(·)
is the softmax function and Wi ∈ R

k×D,
wi ∈ R

k, where k ≤ K and usually k ≪ K .
This is unlike Carreira-Perpiñán and Tavallali
(2018), which used a constant-label predictor.

TAO assumes a fixed tree structure (say, complete
of depth ∆) and initial node parameters. Hence,
the hyperparameters of a ST are ∆ and k. TAO
optimizes the following objective function:

E(Θ) =
N∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

‖θi‖1 (1)

where L(·, ·) is the cross-entropy, and the ℓ1
penalty over the weight vectors (of both decision
nodes and leaves) promotes sparsity, via a hyper-
parameter α ≥ 0.

TAO is based on two theorems. First, eq. (1)
separates over any subset of non-descendant

nodes (e.g. all the nodes at the same depth); this
follows from the fact that the tree makes hard deci-
sions. All such nodes may be optimized in parallel.
Second, optimizing over the parameters of a single
node i simplifies to a well-defined reduced prob-

lem over the instances that currently reach node i

(the reduced set Ri ⊂ {1, . . . , N}). The form of
the reduced problem depends on the type of node:

• For a decision node, it is a weighted 0/1 loss

binary classification problem, where the two
classes correspond to the left and right child,
which are the only possible outcomes for an
instance. Class lefti (righti) incurs a loss
(weight) given by the prediction of the leaf
reached from the left (right) child’s subtree.
Thus, each instance is assigned as pseudola-

bel the child with lower loss. The reduced
problem takes the form (where L and yn are
the said loss and pseudolabel, resp.):

Ei(θi) =
∑

n∈Ri

L(yn, fi(xn;θi)) + α ‖θi‖1. (2)
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This is as in Carreira-Perpiñán and Tavallali
(2018) except that in our STs the loss is the
cross-entropy of the corresponding leaf. This
problem is NP-hard but can be well approx-
imated with a convex surrogate; we use ℓ1-
regularized logistic regression where each in-
stance is weighted by the loss difference be-
tween the winner child and the other child,
and solve it using LIBLINEAR (Fan et al.,
2008).

• For a leaf node, the reduced problem consists
of optimizing the original loss but over the
leaf classifier on its reduced set:

Ei(θi) =
∑

n∈Ri

L(yn,gi(xn;θi)) + α ‖θi‖1. (3)

In our STs, gi is a k-class softmax classifier
with an ℓ1 sparsity penalty. We first estimate
the k classes (out of K possible classes) as
the k most populous classes in Ri. Then we
train the softmax, which is a convex problem.
We solve it using SAG (Schmidt et al., 2017).

The resulting algorithm visits nodes in reverse
breadt-first search order and is shown in Algo-
rithm 1. Essentially, each iteration trains all nodes
at the same depth (in parallel) from the leaves to
the root, by solving either an ℓ1-regularized soft-
max classifier at each leaf, or an ℓ1-regularized
logistic regression at each decision node. Note
that the ℓ1 penalty on the decision nodes’ weight
vectors means that some of them may become
zero, which makes the node redundant and can be
pruned at the end, reducing the size of the tree.

4.1 Dealing with zero probabilities

In our STs, each leaf operates on k classes. If k =
K , each possible class receives a positive proba-
bility, but if k ≪ K then many (K − k) classes
receive exactly zero probability. This is necessary
to achieve the fast prediction we seek, but it results
in an infinite cross-entropy value whenever an in-
stance with ground-truth class y is routed to a leaf
that does not contain y. This causes no issue in the
reduced problem over a leaf (the softmax uses only
the top-k classes in that leaf), but it does cause an
issue in the reduced problem over a decision node.
Here, we have to solve a weighted 0/1 loss binary
classification problem where the weights are ob-
tained by evaluating the prediction’s loss from the
left and right subtrees for each instance in the node,
and some of those weights can be infinity.

Algorithm 1: Softmax tree (ST) training.
Result: trained tree T(·;Θ)
input training set {(xn, yn)}

N

n=1;
initial tree T(·;Θ) of depth ∆;

repeat
for depth d = ∆ downto 0 do

for i ∈ nodes at depth d do
if i is a leaf then
Ri ← instances of the most

populous k classes inRi;
θi ← fit a linear classifier onRi

to minimize eq. (3);
else

generate pseudolabels y
n

for each
point n ∈ Ri;

θi ← fit a weighted binary
classifier to minimize eq. (2);

end
end

end
until max number of iterations;
postprocessing: remove dead or pure subtrees;

To make sure learning succeeds, we tried the
following approaches and evaluate their perfor-
mances in Table 1:

1. Remove from the reduced problem any in-
stance with loss=∞ (in either the left or right
subtree). This performs very badly.

2. Replace loss=∞ by loss=β, where β is typi-
cally a large value (e.g. 100, 107). This is the
option that works best in a number of datasets
we have tried (see Table 1), but it requires an
extra hyperparameter β. This is essentially
the same as using a leaf model which predicts
class probabilities with a softmax for its k

classes and a constant, small value exp(−β)
for all other K − k classes.

3. Use the 0/1 loss instead of the cross-entropy
in the overall objective function of eq. (1).
This avoids the infinity issue altogether, since
the pseudolabels’ weight is either 0 or 1 (as in
Carreira-Perpiñán and Tavallali, 2018). How-
ever, the reduced problem over a leaf must
now optimize the 0/1 loss (which is NP-hard)
rather than the cross-entropy; we approxi-
mate this by using the cross-entropy as sur-
rogate loss, so we still learn a softmax as
usual. This requires no additional hyperpa-
rameter and does quite well. It is our default
option (unless otherwise specified in sec. 5).
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Method top-1train (%) top-1test (%)

remove loss=∞ 97.37 97.80
0/1 loss 4.70 12.51

A
L

O
I

∞–to–107 4.27 11.49
∞–to–100 4.15 11.22

remove loss=∞ 95.51 96.05
0/1 loss 66.95 76.33

W
IK

I-
S

m
al

l

∞–to–107 64.47 76.24
∞–to–100 64.47 76.07

Table 1: Top-1 errors for STs with different ways of
handling the loss=∞ during the decision node opti-
mization. “0/1 loss” refers to using the 0/1 loss instead
of the cross-entropy, “remove loss=∞” refers to remov-
ing the instances with loss= ∞, and “∞-to-β” refers
to approximating the infinity loss as β (e.g. β = 100).

4.2 Obtaining an initial tree

While TAO monotonically decreases the objective
function, it still converges to a local optimum. For
the constant-label leaf oblique trees of Carreira-
Perpiñán and Tavallali (2018), which were applied
to problems with few classes, using as initial tree
a complete tree of depth ∆ with random parame-
ters worked well (we call this “random initializa-
tion”). However, with many classes we have ob-
served that the following greedy hierarchical clus-

tering initialization works quite better. Assume a
complete tree of depth ∆ having L = 2∆ leaves
(although the idea carries over to any binary tree
structure). The following simple algorithm is guar-
anteed to assign classes to leaves in a way that re-
spects the ST structure and keeps similar classes
near each other in the tree (pseudocode can be
found in Appendix A).

First, we cluster the training instances into L

clusters using k-means. The L clusters will be as-
signed one-to-one to the L leaves by a greedy hier-
archical clustering, as follows. We greedily merge
pairs of clusters to achieve L

2
“superclusters”. That

is, we first merge the two closest clusters into one
supercluster (which becomes their parent node).
Then, we merge the two closest clusters of the re-
maining clusters, etc. Note that, unlike in regular
hierarchical agglomerative clustering, the result-
ing supercluster is not considered for merging im-
mediately, but rather each level is considered sepa-
rately, so that we obtain a tree with a desired struc-
ture (balanced). We define the distance between
two (super)clusters as the Euclidean distance be-
tween their means. We repeat the greedy merging
into L

4
, L

8
, etc. superclusters until we reach a sin-

gle supercluster containing all training instances

(the root of the tree). This gives the assignment
of clusters to leaves of our tree. (A faster version
of this is obtained by first replacing all the train-
ing instances within each class with a “class pro-
totype”, weighted by the number of instances, and
then proceeding as above to find a greedy hierar-
chical clustering of these K prototypes.) Now that
each instance is assigned to one leaf, the first TAO
iteration can start, in reverse BFS order.

The idea is that the tree leaves induce a hierar-
chical partition of the input space into polytopes,
hence 1) the training instances within one leaf’s
polytope should generally be closer to each other
than to instances in other polytopes, and 2) this re-
mains true as clusters are merged according to the
tree (i.e., the polytopes of two sibling leaves will
be near each other, etc.).

4.3 Computational complexity

Training Assuming training each node (logistic
regression or softmax) is linear on the sample size,
training all the decision nodes at the same depth is
approximately constant and equal to training one
logistic regression on the whole training set; like-
wise, training all the leaves is approximately equal
to training one k-class softmax classifier on the
whole training set. Thus, the total sequential cost
of one iteration is approximately equal to that of
one k-class softmax and ∆ logistic regressions on
the whole dataset. As noted above, all the nodes at
the same depth can be trained in parallel.

Inference Assuming the final tree is complete,
an input instance spends O(∆D) to reach a leaf
and O(kD) at its softmax (which typically dom-
inates the path cost). This is a speedup of
O( K

∆+k
) ≈ O(K

k
) compared to a single softmax

over all classes, a remarkable speedup in practice.
The inference time is actually smaller because 1)
the final tree may be smaller because some nodes
were pruned, and 2) the weight vectors at deci-
sion node hyperplanes and leaf softmaxes are typ-
ically sparse (this is particularly important with
high-dimensional features such as bag-of-words).

5 Experiments

We demonstrate the performance of our method
on two popular NLP tasks: (a) large scale text
classification, and (b) language modeling. Experi-
ments suggest that our resulting softmax trees out-

perform simple and advanced baselines either in

accuracy (and yet very fast) or in prediction time
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(and yet showing competitive accuracy); or quite

often in both of these indicators. Moreover, the
resulting models are compact in terms of memory
requirements.

5.1 Setup

We initialize our softmax trees (ST) using a
“clustering-based” method described in section 4.2
(unless otherwise specified). The sparsity penalty
(α) set according to the cross-validation (10% of
the training data). Increasing the number of TAO
iterations results to a better performance but at a
cost of having slower training time. Maximum
number of classes (k) at each leaf is another tun-
able hyperparameter and we report it for each per-
formed experiment (e.g. ST(k=50)). Details and
exact values for all other hyperparameters can be
found in Appendix C.

As for the baselines, we use scikit-learn’s (Pe-
dregosa et al., 2011) implementation of the one-
versus-all and softmax linear classifiers. Addi-
tionally, we compare our results with more re-
cent baselines which show state-of-the-art perfor-
mance on various extreme classification problems:
LOMTree (Choromanska and Langford, 2015),
RecallTree (Daumé III et al., 2017), (π, κ)-DS
(Joshi et al., 2017) and MACH (Medini et al.,
2019). Where applicable, we use the available im-
plementations of the mentioned methods. Finally,
we have implemented hierarchical softmax as a
tree-based baseline for language modeling tasks.
Further details can be found in Appendix C.

We report the top-1 and top-5 errors, maximum
depth (∆), mean inference time per test sample
(in ms) and uncompressed model sizes (in GB).
We average the errors over 3 independent runs for
softmax trees, whereas the best performance is re-
ported for other baselines. The inference time is
calculated in a single CPU without parallel pro-
cessing using the following methodology: we se-
quentially pass each test sample to the trained
model and measure its prediction time. Then we
average the results over all test set. Also, we report
the storage requirement for each model (uncom-
pressed and stored in sparse format if applicable).
Appendix D has additional metrics (e.g. number
of leaves, number of classes per leaf, etc.). Our
hardware setup is Intel Xeon CPU E5-2699 v3 @
2.30GHz with 256 GB RAM.

Method top-1 ∆ inf.(ms) size(GB)

RecallTree 92.64 15 0.97 0.8
one-vs-all 85.71 0 10.70 53.5
MACH 84.80 – 252.64 1.3
(π, κ)-DS 78.02 – 10.33 0.01

W
IK

I–
S

m
al

l

ST(k = 100) 77.26 7 0.33 0.03
ST(k = 300) 76.86 7 0.49 0.04
ST(k = 150) 76.33 8 0.57 0.05
ST+(k = 150) 75.65 8 0.52 0.05

RecallTree 94.64 6 8.42 3.4
LOMTree (93.46) (17) (0.26) –
one-vs-all 89.22 0 1317.58 155.7
(π, κ)-DS 86.31 – 36.41 1.0

O
D

P

MACH 84.55 – 684.04 1.2
ST(k = 300) 83.78 9 9.59 0.1
ST+(k = 300) 81.84 9 9.87 0.1

Table 2: Results on text classification datasets. We re-
port the top-1 test error (see App. D for top-5), maxi-
mum depth (∆), avg. inference time per test sample (in
ms) and uncompressed model sizes (in GB). ST(k = x)
indicates our method which uses at most k classes at
each leaf. The results in brackets are taken from the
corresponding papers. “+” shows the results of using
cross-entropy loss with β = 100 (see section 4.1).

5.2 Results: text classification

We perform the first set of experiments on two doc-
ument categorization benchmarks with large num-
ber of classes: ODP–website categorization prob-
lem which has over 105k classes and WIKI–Small
(with > 36k classes). Input feature vector for each
document is normalized bag-of-words representa-
tion containing around 400k dimensions. See Ap-
pendix B for details and additional benchmarks.

Table 2 shows that the STs consistently outper-
form other baselines and by a considerable mar-
gin, showing outstanding performance on these
benchmarks. Moreover, they achieve faster infer-
ence time compared to most of the baselines (e.g.
one-vs-all, MACH) and shows a similar speed as
of RecallTree and LOMTree (i.e., other tree-based
methods). It worth to mention that our obtained in-
ference times for some baselines (e.g. RecallTree,
MACH) diverge from the reported results in other
papers. We believe this is because: 1) different
computing setup is used; 2) measuring methodol-
ogy is somewhat different (see setup).

Additionally, fig. 2 shows a tradeoff between
error-vs-depth and inference time-vs-depth. It also
examines different values for k. In general, in-
creasing k results to better models in terms of er-
ror. On the other hand, it increases the inference
time (right figure), although the difference is typ-
ically negligible. Finally, the results suggest that
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Figure 2: Top-1 errors and avg. inf. time tradeoff of the ST for various settings of ∆ and k on the ODP dataset.

Method top-1/top-5 PPL(% covered) ∆ inf.(ms)

HSM-approx 92.2 / 86.5 575 (100%) 18 0.184
HSM 91.1 / 81.1 575 (100%) 18 0.421
one-vs-all 87.5 / 80.2 220 (100%) 0 0.402
softmax 86.9 / 79.6 217 (100%) 0 0.467
ST(k=50) 86.5 / 72.5 17 (44%) 8 0.058
ST(k=100) 86.5 / 71.5 27 (51%) 7 0.058
ST(k=200) 86.4 / 70.6 45 (58%) 6 0.053
ST(k=400) 86.4 / 69.7 71 (67%) 5 0.064
ST(k=800) 86.4 / 68.4 117 (77%) 4 0.066
ST*(k=800) 86.4 / 68.4 427 (100%) 4 0.066

Table 3: Like Table 2 but on PTB–language modeling
task. We also report the test Perplexity (with percent-
age of the covered points) and top-5 error. “*” indicates
that smoothing was applied to replace 0 probabilities
with some small epsilon and renormalize the output.

the Depth (∆) should be sufficiently large but over-
fitting may occur passing a certain point (e.g. mid-
dle plot). Note that for these set of experiments,
we use a random initialization for STs.

Model sizes Table 2 reports another critical as-
pect – compactness of our models. Just as our STs
are very fast, they also generate extremely com-
pact models compared to baselines (at least 10x
gain). This is due to the L1 penalty applied at
each node, which leads to sparse weights. More-
over, we observe that the best performance for STs
is typically achieved with shallow trees (see ∆)
which also helps to reduce the model size.

5.3 Results: language modeling

We conduct experiments on PTB dataset which
has been extensively used to study language mod-
eling problems. Dataset description as well as
our preprocessing steps can found in Appendix B.
As for the baselines, we use the same one-vs-all
classifier described earlier and Hierarchical Soft-
max (HSM) model (we closely follow the setup
from (Mikolov et al., 2013a)). Also, we have im-
plemented “HSM-approx” which chooses a child
with the highest probability at each split (i.e., it
achieves a faster prediction time). Setup for one-

Method top-1/top-5 PPL(% covered) ∆ inf.(ms)

HSM-appox 78.3 / 64.1 184 (100%) 18 0.097
HSM 77.7 / 63.1 184 (100%) 18 0.372
softmax 74.3 / 54.8 96 (100%) 0 0.346
ST(k=50) 75.2 / 57.3 9 (59%) 8 0.046
ST(k=100) 75.0 / 56.8 13 (64%) 7 0.045
ST(k=200) 74.9 / 56.2 18 (70%) 6 0.067
ST(k=400) 74.7 / 55.9 24 (76%) 5 0.066
ST(k=800) 74.5 / 55.5 33 (81%) 4 0.069
ST*(k=800) 74.5 / 55.5 145 (100%) 4 0.069

Table 4: Like Table 3, but models were trained on the
output of the recurrent neural net (LSTM).

vs-all and ST is the same as in section 5.1, except
we use the random initialization for ST. As for the
HSM, we use our own implementation in Pytorch
(see details in Appendix C).

We report the train/test Perplexities (PPL),
which is commonly done for such tasks: PPL =
exp(− 1

N

∑N
i=1 logPr(yi|xi)), where N is the

sample size (train or test), yi and xi are ground
truth label and input feature vector of the instance
i, respectively. Most of the baselines described in
the previous section (especially tree-based meth-
ods) do not produce class probabilities and they
can not be directly applied to solve the language
modeling problem, so we omit their comparison.
For ST, we calculate Pr(yi|xi) by routing an in-
stance xi to the corresponding leaf of a tree and
taking softmax on the output produced by that leaf.
If yi (correct class) is not presented in that leaf (it
may happen since a leaf stores k < K classes)
then we do not include it to the calculation. There-
fore, we provide the total number of points with
non-zero probability predictions. Note that the
fact that our STs output exactly zero probability
for many classes is by design and results in its
inference speed. Also note that a softmax classi-
fier will happily assign a positive probability to a
class whose region is actually empty (i.e., no in-
put x ∈ R

D ever results in that class winning).
That said, we also provide the results of applying
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a smoothing technique (Eisenstein, 2019, section
6.2) to ensure positive probabilities for all classes,
without any increase in inference time (denoted by
“*” in tables and more results can be found in Ap-
pendix D). Specifically, we assign some small ǫ to
all instances with zero probability and renormal-
ize the output probabilities. This requires addi-
tional hyperparameter ǫ which we tune using cross-
validation.

Table 3 summarizes our results. First of all,
one can notice that both versions of HSM perform
worse compared to one-vs-all (both error and PPL)
which coincides with previous findings (Mikolov
et al., 2013b). As for the ST, it shows a decent test
error (both top-1/top-5) and the fastest inference
time than the other baselines. Regarding the per-
plexity score, our method produces exactly zero
probability for some instances which makes over-
all PPL unbounded (i.e., infinity). However, if we
discard such cases and focus on a subset of data
for which probability estimate is non-zero (see “%
covered” in the table), then it achieves a signifi-
cantly low PPL. Moreover, it is clear from the Ta-
ble 3 that ST covers majority of the points and
such coverage increases as we increase k. As
for the results using smoothing (denoted by “*”),
the PPL score is still much lower compared to
HSM but higher than one-vs-all. This logically
makes sense since instances with zero probability
increase PPL score substantially.

5.3.1 Neural language modeling

Modern neural nets are well known to achieve the
state-of-the-art performance in language modeling
problems. As a comparison, simple RNNs can
easily reach PPL = 101 on the same problem
(Mikolov et al., 2011) from the previous section.
Therefore, we combine our softmax trees with the
output of LSTM and show that it achieves a com-
parable performance with faster inference time.
Specifically, we use our Pytorch implementation
(see details in Appendix C) of the RNN model
for the word-level language modeling on the same
PTB dataset with all 10k unique words as the vo-
cabulary. Table 4 summarizes our findings. The
neural net model achieves 96.33 perplexity score
on a test set using softmax classifier as the last
layer. Once training is done, we extract the last
output of the LSTM layer and use it as input to
the ST (i.e., input is a vector ∈ R

150). In other
words, ST is not trained in end-to-end fashion but
sequentially. Despite this, our method shows a

Method WIKI–Small ODP

one-vs-all >7d >7d
LOMTree – (36m)
RecallTree 53m 113m
MACH 1445m 2301m
ST 1033m 2880m

Table 5: Training times in minutes (m) or days (d) for
the datasets in Table 2. For ST, we report the training
times for the best performing architecture (in terms of
test error). For LOMTree, we report the results from
(Daumé III et al., 2017) when applicable.

similar performance compared to the plain soft-
max in terms of train/test errors and consistently
faster during inference time (about 5.7 times). Re-
garding the perplexity score, as in the above case,
we cover majority of the data points for which the
PPL is significantly low compared to the baseline.

5.4 Training time

Table 5 gives representative runtimes for several
datasets. We train all methods using at most 16
parallel threads. In general, all tree-based and
hashing-based methods are faster to train com-
pared to one-vs-all. For smaller datasets (see Ap-
pendix D), training softmax trees as expensive
as RecallTree, but faster than MACH. For larger
datasets, ST requires more time to find a good so-
lution. Even in that case, it shows a comparable
runtime against MACH. Overall, the runtime of
ST is reasonable and more than justified by the fast
inference time and low test error it achieves.

6 Conclusion

Softmax trees strike a balance between having a
single softmax classifier, which is easy to opti-
mize but slow at inference, and a decision tree with
contant-label leaves, which is hard to optimize but
fast at inference. Tuning the depth of the tree and
the number of classes per leaf softmax results in
classifiers that are both more accurate and much
faster than a regular softmax or other hierarchical
softmax approaches in many-class problems. Find-
ing good local optima for softmax trees is possi-
ble with a modification of the tree alternating opti-
mization (TAO) algorithm combined with a good
initialization. We are now working on forests of
softmax trees and on growing the tree structure
adaptively.

Acknowledgments. Work supported by NSF
award IIS–2007147.
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Broader Impact

Our work is on optimization and efficiently train-
ing of machine learning models for classification
task. We anticipate no impact beyond that of the
models themselves.
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A Pseudocode for Obtaining an Initial
Tree Structure

Algorithm 2: Generating an initial tree
Result: inital reduced setsR
input training set {(xn, yn)}

N

n=1, depth ∆ ;
for i ∈ {1, . . . ,K} do

µi ← average feature vector for class i
end

C
∆ := {C∆

i }
2∆

i=1 ←K-means clusters2on {µi}
K

i=1 ;
for depth d = ∆ up to 1 do

for i ∈ {1, . . . , 2d−1} do
Find and remove the closest two clusters

(Cd

m, Cd

n) ∈ C
d based on the mean ;

Merge (Cd

m, Cd

n) to a parent cluster Cd−1
i

;
end

end
Map clusters C to the corresponding reduced setsR

B Datasets

Dataset Ntrain Ntest D K

ALOI 97 200 10 800 128 1 000
PTB 400 097 34 633 150 5 970
WIKI–Small 796 617 199 155 380 078 36 504
ODP 1 084 404 493 014 422 712 105 033

Table 6: Datasets used in our experiments: number of
points for training and test (Ntrain, Ntest), number of fea-
tures D and number of classes K .

Table 6 summarizes the characteristics of the
datasets used in our experiments. Below we pro-
vide a description for each of them.

• ALOI (Amsterdam Library of Object Images) is
a color image collection of one-thousand small
objects, recorded for scientific purposes. Im-
ages for each object category are created by sys-
tematically changing viewing angle, illumina-
tion angle, and illumination color (see details at
https://aloi.science.uva.nl/). We
obtained the preprocessed form of the dataset
from the LIBSVM multiclass data collection,
where the extended color histogram with 128 di-
mensions is used to extract image features. We
follow the same random partition of the data
(90% train and 10% test) as in (Choromanska
and Langford, 2015). As a preprocessing step,
we subtract the mean.

• ODP (Open Directory Project) is the compre-
hensive human-edited directory of the website

2Alternatively, to obtain the leaf clusters, we can run
K-means on the whole dataset.

categories. As of April 2013 there were over
1M categories organized in a hierarchical ontol-
ogy scheme. We use the preprocessed version
of it3 which uses 105k categories, as in (Daumé
III et al., 2017; Medini et al., 2019). For each
document, input feature vector is bag-of-words
(normalized) and the class label is the category
associated with the document.

• WIKI–Small is another text categorization
dataset obtained from Joshi et al. (2017). It is a
subset of Large Scale Hierarchical Text Classifi-
cation challenge (LSHTC) (Partalas et al., 2015).
For each document, a feature vector is bag-of-
words and the class label is the category associ-
ated with the document obtained from DMOZ
and DBpedia hierarchical ontology of the WEB.

• PTB (Penn Treebank) is a standard dataset used
to evaluate performances of language models.
We use the preprocessed version from Mikolov
et al. (2010) which is publicly available online.
The dataset consists of the plain text sentences
in English with approximately 1M tokens and
10k unique words (i.e. vocabulary size). For
the neural language modeling experiments, we
proceed with this dataset as is without further
modification (i.e. section 5.3.1). But for the
section 5.3, we construct the dataset as follows.
We filter out words that appeared less than 10
times which leaves us with 5 970 unique words
(=number of classes). We construct a multiclass
classification task as predicting the next word
given previous 3 words. As for the input fea-
tures, we use a pretrained version of GloVe (Pen-
nington et al., 2014)4 to obtain a word repre-
sentation in vector space. We downloaded pre-
trained word vectors (∈ R

50) which were trained
on Wikipedia 2014 and Gigaword 5. We obtain
a word vector for each context word and sim-
ply concatenate them. For example, consider the
following sequence “black lives matter protest”.
First, we extract 50 dimensional GloVe vectors
for “black”, “lives”, “matter” and then concate-
nate them which results into 150 dimensional
vector (i.e. this would be the total number of
input features). The ground truth label would be
a single integer: 4011 (assuming the index of the
word “protest” is 4011 in our vocabulary).

3
http://hunch.net/~vw/odp_train.vw.gz,

http://hunch.net/~vw/odp_test.vw.gz
4
https://nlp.stanford.edu/software/

https://aloi.science.uva.nl/
www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://hunch.net/~vw/odp_train.vw.gz
http://hunch.net/~vw/odp_test.vw.gz
https://nlp.stanford.edu/software/
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C Hyperparameter Tuning for ST and
Baselines

• ST We have implemented our softmax trees in
Python 3.8.3 with parallel processing at each
level (using Ray (Moritz et al., 2018)). The
sparsity penalty (α) set according to the cross-
validation (usually 10% of the training data). Ex-
perimentally, we have found that α = 0.1 (for
ODP, ALOI) and α = 1.0 (for PTB, WIKI–
Small) leads to the best performance. We re-
port the mean error (training and test) and stan-
dard deviation over 3 independent runs (in most
cases) or result of a single run. A number of
TAO iterations is set to 20 for PTB and ODP; 30
for ALOI; and 40 for WIKI–Small. A decision
node optimization involves an ℓ1-regularized lo-
gistic regression which is solved using LIBLIN-
EAR (Fan et al., 2008). Similarly, optimizing
a single leaf involves ℓ1-regularized k-class lin-
ear classification which is solved using SAGA
(Defazio et al., 2014). Both SAGA and LIB-
LINEAR are available through scikit-learn inter-
face (Pedregosa et al., 2011). For SAGA, we
set the maximum number of iterations to 20.
For the K-means clustering algorithm, we use a
Python implementation available in scikit-learn.
We use default parameters, except for the num-
ber different runs n_init for the ODP dataset
to make the runtime faster. Finally, we experi-
ment with several types of losses as explained in
section 4.1. In most of our experiments, we use
0/1 loss to approximate loss=∞ and this is our
default option. However, we found that carefully
tuned β (e.g. 100) for cross-entropy loss shows
the best results for text classification tasks and
we use it to report our final results.

• One-vs-all and linear softmax We use scikit-
learn’s implementation for these baselines (with
l2 penalty and “SAG” (Schmidt et al., 2017)
solver since it is scalable to larger datasets). We
set n_jobs parameter to 32 and C to 10 in all of
our experiments. Since running one-versus-all
takes extremely large runtime, we limit the max-
imum number of iterations (10 for ODP, 100 for
ALOI, 20 for WIKI–Small and PTB). We do not
report results of the linear softmax for text clas-
sification since: 1) it shows similar performance
as one-vs-all; 2) and it requires a huge resources
to run for ODP and Wiki-Small (simply infeasi-
ble for our hardware setup).

• MACH (Medini et al., 2019) We use their
available implementation online5 and tune its
most important hyperparameters (B,R) for each
dataset. See Table 2 for the specific values for
each problem.

• (π, κ)-DS (Joshi et al., 2017) We use their avail-
able implementation online with the set of hyper-
parameters suggested by authors.

• RecallTree (Daumé III et al., 2017) We use
a version implemented inside Vowpal Wabbit6.
For ODP and ALOI, we use the suggested hy-
perparameters from the official web page. How-
ever, we tune its most important hyperparam-
eters for WIKI–Small: max_candidates,

max_depth, passes.

• Hierarchical Softmax (HSM) We use our own
implementation in Pytorch. We closely follow
the setup from (Mikolov et al., 2013a): the struc-
ture of a tree is obtained from Huffman’s al-
gorithm (frequency of each word is calculated
from the raw training data), each decision node
applies a linear transformation followed by sig-
moid non-linearity and the objective function to
minimize is negative log-likelihood. Training
is done using SGD with small learning rate of
0.005 multiplied by 0.995 after each step and
fixed momentum of 0.9. HSM, in its pure imple-
mentation, does not support mini-batch updates
(i.e. > 1, although various methods exist to ag-
glomerate gradients for each node) and thus, we
set it to 1.

• Training LSTM for language modeling. Our im-
plementation is similar to the one that can be
found in the official Pytorch examples web page.
We choose LSTM model with two layers, with
embedding size of 256 and 150 hidden states.
The sequence length is fixed as 20 and an initial
learning rate for SGD is set to 20 which is di-
vided by 4 if no improvement on the validation
loss. We train this model for 40 epochs using
negative log-likelihood as a criterion.

D Extended Results and Additional
Experiments

This section presents extended tables/figures and
results on additional datasets. For all experiments

5
https://github.com/RUSH-LAB/MACH

6
https://vowpalwabbit.org/

https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/RUSH-LAB/MACH
https://vowpalwabbit.org/
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Method top-1 top-5
(%) (%)

ALOI ST(k = 30,∆ = 7) 10.47 4.81
ST(k = 1000,∆ = 3) 8.45 2.09

Wiki Small ST(k = 100,∆ = 8) 77.26 59.89
ST(k = 150,∆ = 8) 77.07 57.91

ODP ST(k = 300,∆ = 9) 83.78 76.04

Table 7: Top-1 (%) and top-5 (%) errors for selected
models on text classification benchmarks.

Method ALOI WIKI–Small ODP

one-vs-all 111m >7d >7d
LOMTree 2m – 36m
RecallTree 83m 53m 113m
MACH 43m 1445m 2301m
ST 37m 495m 3072m
ST† 127m 1033m 2880m

Table 8: Training times: similar to Table 5 but extended
with the results on ALOI.

below, we denote by “ST†” our special initializa-
tion (Algorithm 2) and by “ST” a default random
initialization (i.e., from a complete binary tree of
depth ∆ and random node parameters with Gaus-
sian (0,1) and normalized to unit length). Ad-
ditionally, ST+ shows the results of using cross-
entropy loss with β = 100 (see section 4.2).

top-1train (%) top-1test (%)
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Figure 3: Comparison of different initialization meth-
ods in ST. “random” refers to the initialization with a
complete binary tree of depth ∆ and random node pa-
rameters. “class prototypes” refers to the initialization
based on hierarchical clustering described in the Algo-
rithm 2. “whole data” is a slight variation of it, where
instead performing K-means on the class prototypes, it
does that on the whole dataset to obtain initial leaf clus-
ters. Results show that clustering-based initializations
can considerably boost the performance.
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Figure 4: Error and inference time tradeoff: similar to
fig. 2 but for ALOI. Here, “k = full” means we use
the set of all available classes at each leaf (i.e. do not
choose top-k classes).



10745

Method top-1train (%) top-1test (%) ∆ # leaves # classes Inference Time
per leaf per example (ms)

MACH (B = 512,R = 50) 22.22 24.63 – – – 3.13
LOMTree – 16.50±0.70 10 – (10) (0.06)
ST(k = 30) 3.78±0.27 12.51±0.24 8 256 26 0.09
ST(k = 50) 3.57± 12.01± 7 128 41 0.09
one-vs-all 9.17±0.08 11.91±0.24 0 1 1000 0.14

A
L

O
I

ST+(k = 30) 4.15±0.06 11.22±0.09 8 229 24.5 0.02
ST(k = full) 1.65±0.05 10.78±0.31 7 106 56 0.08
ST†(k = 30) 4.10±0.00 10.47±0.00 8 246 20 0.01
RecallTree 4.37 9.90 12 – 58 0.19
ST†(k = 100) 2.54±0.03 9.33±0.20 7 8 43.6 0.02
ST(k = full) 2.37±0.08 8.54±0.27 3 8 436 0.06

RecallTree 87.34 92.64 15 – 60 0.97
one-vs-all 49.62 85.71 0 1 36k 10.70
MACH (B = 32,R = 25) 53.98 84.80 – – – 252.64
ST(k = 200) 65.00 84.74 8 256.00 165.5 0.62
ST(k = 50) 65.76 81.02 8 256.00 50.00 0.51

W
IK

I–
S

m
al

l

ST(k = 80) 66.66 80.80 7 128.00 80.00 0.34
ST(k = 100) 71.86±0.16 79.68±0.24 7 71.67 87.82 0.36
(π, κ)-DS – 78.02 – – – 10.33
ST†(k = 100) 68.42 77.26 7 117.00 95.00 0.33
ST†(k = 300) 67.58 76.86 7 114 253 0.49
ST†(k = 150) 66.95 76.33 8 215 126 0.57
ST+†(k = 150) 65.04±0.09 75.62±0.04 8 143 140 0.52

RecallTree 93.12 94.64 6 – 400 8.42
LOMTree – 93.46±0.12 17 – (17) (0.26)
one-vs-all 64.24 89.22 0 1 105k 1317.58
ST(k = 50) 71.98± 0.28 88.44±0.33 11 2432.00 39.70 10.92

O
D

P

ST(k = 100) 70.52± 0.23 88.29±0.30 11 1043.33 70.92 11.54
ST(k = 1000) 63.67± 0.25 86.54±0.29 8 209.00 684.12 10.23
MACH (B = 32,R = 25) 46.38 84.55 – – – 684.04
ST†(k = 300) 62.86 83.78 9 512.00 129.87 9.59
ST+†(k = 300) 51.37 81.84 9 380.00 196.20 9.87

Table 9: Results on text classification datasets (sorted by decreasing test error): similar to Table 2 but with addi-
tional results on ALOI. Moreover, we report the train error, std over 3 independent runs (when applicable), average
number of leaves of a tree and average number of classes per leaf. “†” denotes a ST version with clustering-based
initialization (Algorithm 2) and “+” shows the results of using cross-entropy loss with β = 100 (see section 4.2).

Method Etrain (%) PPLtrain PPLtest #leaf #class
top-1/top-5 (% covered) smooth /leaf

HSM-apprx 91.96/85.17 557 (100%) – 6k 1
HSM 90.92/80.21 557 (100%) – 6k 1
one-vs-all 86.26/80.18 125 (100%) – 1 6k
ST(k = 50) 85.02/68.05 11 (45.2%) 869 256 26
ST(k = 100) 85.50/66.92 17 (52.1%) 761 128 31
ST(k = 200) 85.17/65.64 25 (59.6%) 657 64 86
ST(k = 400) 85.58/66.63 42 (67.0%) 566 32 136
ST(k = 800) 85.37/65.22 59 (76.5%) 427 16 357

Table 10: Results on PennTreebank (PTB)–extension
of Table 3 where we additionally report the train Per-
plexity, train errors, total number of leaves and aver-
age number of classes per leaf. Moreover, for our ST,
we additionally report the PPL score where smoothing
is applied to handle zero probabilities, i.e., we assign
some small epsilon to all instances with zero probabil-
ity and renormalize the output distribution (see PPLtest

smooth).

Method Etrain (%) PPLtrain PPLtest

top-1/top-5 (% covered) smooth

softmax 69.07 / 48.24 44.34 (100%) –
ST(k = 50) 69.20 / 51.93 6.07 (59.8%) 287
ST(k = 100) 68.92 / 50.72 8.06 (65.2%) 256
ST(k = 200) 68.71 / 49.83 10.74 (70.7%) 201
ST(k = 400) 68.79 / 49.20 14.39 (76.2%) 178
ST(k = 800) 68.70 / 48.57 19.08 (81.6%) 145

Table 11: Results on PennTreebank (but trained on out-
put of the LSTM)–extension of Table 4 but the train er-
rors/scores are additionally reported. Also, we provide
PPL scores with smoothing (as in Table 3).


