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Abstract

A recent variation of Transformer, Performer,
scales Transformer to longer sequences with
a linear attention mechanism. However, it is
not compatible with relative position encoding,
which has advantages over absolute position
encoding. In this paper, we discuss possible
ways to add relative position encoding to Per-
former. Based on the analysis, we propose Per-
muteFormer, a Performer-based model with
relative position encoding that scales linearly
on long sequences. PermuteFormer applies
position-dependent transformation on queries
and keys to encode positional information into
the attention module. This transformation is
carefully crafted so that the final output of self-
attention is not affected by absolute positions
of tokens. PermuteFormer introduces negligi-
ble computational overhead by design that it
runs as fast as Performer. We evaluate Per-
muteFormer on Long-Range Arena, a dataset
for long sequences, as well as WikiText-103,
a language modeling dataset. The experi-
ments show that PermuteFormer uniformly im-
proves the performance of Performer with al-
most no computational overhead and outper-
forms vanilla Transformer on most of the tasks.
1

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has achieved state-of-the-art on various fields of
research, including natural language processing
(Devlin et al., 2019; Raffel et al., 2020), speech
processing (Baevski et al., 2020) and image pro-
cessing (Dosovitskiy et al., 2020; Tan and Bansal,
2019). But Transformer does not scale well to long
sequences, because the time complexity and mem-
ory complexity of the attention module in Trans-
former are both quadratic to the sequence length.
Recently, several efficient Transformers (Kitaev

1Code is available at https://github.com/
cpcp1998/PermuteFormer.

et al., 2020; Wang et al., 2020; Zaheer et al., 2020;
Xiong et al., 2021) have been proposed to speed
up the model from quadratic complexity to linear
complexity without significant performance loss.
Generally, they utilize efficient algorithms to ap-
proximate attention. §2 briefly introduces these
efficient Transformers and a more thorough review
can be found in Tay et al. (2020c).

Among these efficient Transformers, it is sug-
gested that Performer (Choromanski et al., 2020) is
the fastest one (Tay et al., 2020b). In this paper, we
denote as Performer the family of efficient Trans-
formers similar to Choromanski et al. (2020), e.g.,
Katharopoulos et al. (2020); Peng et al. (2021); Ka-
sai et al. (2021); Likhosherstov et al. (2020), not
only Choromanski et al. (2020) itself. Performer
utilizes kernel method to avoid explicit calculation
of attention weights. It applies a non-linear fea-
ture map to queries and keys to get query features
and key features respectively and then multiplies
query features, key features, and values together
directly, without applying softmax. With the ap-
propriate ordering of matrix multiplications, Per-
former achieves complexity linear of the sequence
length. Moreover, some implementation of uni-
directional Performer (Likhosherstov et al., 2020)
even reduces memory footprint to constant at both
training time and inference time.

Although Performer accelerates attention to lin-
ear complexity, the existing relative position en-
coding (Shaw et al., 2018; Dai et al., 2019; Raffel
et al., 2020) still has quadratic complexity with
respect to the sequence length. So Performer can-
not benefit from relative position encoding, which
has already been a common practice for a bunch
of state-of-the-art Transformers (Yang et al., 2019;
Raffel et al., 2020; He et al., 2020). Relative posi-
tion encoding has several advantages over absolute
position encoding. (1) Relative position encoding
may be applied to sequences with arbitrary lengths,
with no limitation imposed by training datasets. (2)

https://github.com/cpcp1998/PermuteFormer
https://github.com/cpcp1998/PermuteFormer
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Relative position encoding is more efficient and
effective than absolute position encoding. (Shaw
et al., 2018)

Besides Performer, existing relative position en-
codings also do not fit with other efficient Trans-
formers. Some relative position encoding (Raffel
et al., 2020) adds a bias to the attention matrix,
and others (Shaw et al., 2018; Dai et al., 2019) add
a relative-position-dependent bias to key vectors.
Both require explicit calculation of dot-products be-
tween query vectors and key vectors. This conflicts
with the second and third categories of efficient
Transformers described in Section 2 because they
reduce the computation complexity by avoiding the
explicit calculation of dot-products between query
vectors and key vectors. As for the first category of
efficient Transformers, LSH in Kitaev et al. (2020)
may fail to locate major attention weights in the
presence of relative position encoding; Zaheer et al.
(2020); Beltagy et al. (2020) rely on global tokens
heavily, whose relative positions to other tokens
are not defined.

In this paper, we propose a Performer-
compatible relative position encoding that scales
linearly on long sequences. Performer with this
novel relative position encoding is named Per-
muteFormer. PermuteFormer applies a position-
aware transformation on query features and key
features to encode positional information. More
specifically, we choose a random permutation π :
{1, 2, · · · , d} → {1, 2, · · · , d} where d is the di-
mension of query / key features per attention head,
and applies the permutation i times to i-th token’s
query / key feature.2 In this way, positional in-
formation is encoded into attention weights. We
prove that, although the transformation applied to
query feature and key feature of a token depends
on its absolute position, the effects of absolute po-
sition on query features and key features cancel out
with each other on calculating dot-product of them.
Thus, the final attention weights do not depend on
the absolute positions, and PermuteFormer encodes
relative position only.

PermuteFormer is as efficient as Performer, with
negligible computational overhead. Permuting of
query features and key features can be implemented
efficiently, with computational complexity propor-
tional to their size. Since the size is far less than
the computational complexity of the whole model,

2When we say applying a permutation π to a vector x =
[x1, x2, · · · , xd], we mean the operation maps x to vector
[xπ(1), xπ(2), · · · , xπ(d)].

the cost of permutation in PermuteFormer is negli-
gible compared to the overall computational cost
of Performer. The analysis above is also confirmed
by the experiment results.

We evaluate PermuteFormer on Long-Range
Arena (Tay et al., 2020b) for bidirectional case
and on WikiText-103 (Merity et al., 2017) for uni-
directional case. Long-Range Arena is a bench-
mark designed to evaluate efficient Transformers
on long sequences. We find that the new relative
position encoding improves the performance of Per-
muteFormer significantly on Long-Range Arena.
It not only performs better than Performer but
also out-performs the vanilla Transformer, as well
as other efficient Transformers, e.g., Kitaev et al.
(2020); Wang et al. (2020); Xiong et al. (2021).
WikiText-103 is a language modeling dataset. Per-
muteFormer reduces the performance gap between
Performer and Transformer on WikiText-103. It
also speeds up the convergence of the model.

Contributions The main contribution of this pa-
per is summarized as follows.

• We discuss possible ways to add relative po-
sition encoding to Performer. We theoreti-
cally propose three properties that Performer-
compatible relative position encoding should
hold.

• We introduce PermuteFormer, a Performer
model with relative position encoding that
scales linearly to long sequences. It permutes
elements of query features and key features to
encode positional information. It is the only
Performer-compatible relative position encod-
ing with linear complexity, as far as we know.
PermuteFormer is as efficient as Performer.

• We conduct extensive experiments to evaluate
PermuteFormer. It achieves strong empiri-
cal performance and obtains state-of-the-art
on Long-Range Arena, a benchmark for effi-
cient Transformers. It also improves the per-
formance of Performer on language modeling
tasks like WikiText-103.

2 Related Work

Efficient Transformers Transformers suffer
from complexity quadratic to the sequence length.
Various methods have been proposed to improve
the efficiency of Transformers. We classify them
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Figure 1: Attention in Transformer, Performer and Per-
muteFormer. Although attention is multi-headed in all
of them, only one head is illustrated for clarity. Trans-
former applies softmax on dot-products of queries and
keys to get the attention matrix, and then multiplies at-
tention matrix and values to obtain outputs of attention
module. Performer applies feature map, a non-linear
projection, to queries and keys to get query features
and key features. Then, it multiplies query features,
key features and values from right to left. Permute-
Former applies a position-aware permutation on query
features and key features first, and then do multiplica-
tions the same way as Performer. Each token’s query /
key feature is illustrated as a row of blocks in the fig-
ure, and its elements are marked with different colors.
The position-aware permutation permutes elements of
each token’s query / key feature along the head size
dimension in each attention head. Depending on the to-
ken’s position, the permutation applied to query / key
feature is different. Note that for Performer and Per-
muteFormer, only the numerator in Equation 11 is il-
lustrated, as the denominator is simpler than the numer-
ator.

into three categories. The first category of efficient
Transformer omits the calculation of part of the
attention matrix, exploiting the sparsity of the at-
tention matrix. Kitaev et al. (2020) groups queries
into buckets by local sensitive hash and computes
intra-bucket attention weights only. Zaheer et al.
(2020); Beltagy et al. (2020) limit attention ma-
trix to specific sparse shapes. The second kind
of efficient Transformers lowers matrix rank to re-
duce computation. Wang et al. (2020) projects
keys and values to constant length independent of
sequence lengths. Tay et al. (2020a) generates at-
tention weights without keys. The third category
of efficient Transformers, named Performer in this
paper, leverages kernel methods to speed models
up. Choromanski et al. (2020); Peng et al. (2021)
view attention weights as kernel function of queries
and keys, so they can be approximated by random
features. Katharopoulos et al. (2020) relaxes the ap-
proximation requirement and finds that the model
still works. Likhosherstov et al. (2020); Kasai et al.
(2021) implement the unidirectional Performer as
RNN so that their memory footprint is constant.

Relative Position Encoding Transformer itself
does not capture the positional information of to-
kens, as it is invariant to permutations of tokens.
Vaswani et al. (2017) solves this problem by adding
a position embedding vector to the input of Trans-
former. Because the added position embedding
depends on the absolute positions of tokens in a se-
quence, it is called absolute position encoding. For
better representation of positional relation between
tokens, Shaw et al. (2018) introduces relative posi-
tion encoding to encode distances between tokens
directly. There are two styles of relative position
encoding. Shaw et al. (2018) adds relative posi-
tion embedding to keys and values, while Dai et al.
(2019) adds relative position embedding to queries
and keys. Raffel et al. (2020), as the other style of
relative position encoding, adds bias directly to the
attention weights.

Concurrent Work Su et al. (2021) introduces
RoFormer with a new kind of relative position en-
coding named RoPE, which is interoperable with
Performer. Briefly, RoPE is a multiplicative si-
nusoidal absolute position embedding that rotates
query (feature) vectors and key (feature) vectors
according to their positions.

However, to make RoPE independent of absolute
position, they sacrifice the property of attention ma-
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trices that every row sums to one. Moreover, they
only discuss the possibility of integrating RoPE
with Performer, but no experiment result is reported
on such a model.

On the other hand, PermuteFormer’s position
encoding preserves the property of attention matri-
ces mentioned above. In this paper, we compare
the performance of PermuteFormer with RoFormer
through experiment. The result shows that Permute-
Former fits the data better than RoFormer.

3 Methods

We propose an efficient relative position encoding
that is compatible with Performer architecture. Per-
former with this new relative position encoding
is named as PermuteFormer, because it permutes
elements of query feature and key feature to en-
code positional information. The difference among
vanilla Transformer, Performer and PermuteFormer
is illustrated in Figure 1.

In this section, we first introduce Transformer
and Performer briefly, and then describe details
of PermuteFormer. For brevity and clarity, dis-
cussions in this section focus on a single head in
multi-head attention. They can be directly applied
to the whole multi-head attention.

3.1 Transformer and Performer
We give a brief introduction of Transformer and
Performer’s attention module in this section. Other
parts of Transformer architecture (Vaswani et al.,
2017) are omitted as they are unmodified in Per-
former and PermuteFormer.

The attention module in Transformer is a map-
ping from a sequence of vectors {xin

i }Li=1 to an-
other sequence of vectors {xout

i }Li=1 with the same
length L. In the attention module, the input vectors
are first linearly mapped to three representations,
named query, key and value. Formally,

qi = Wqx
in
i , ki = Wkx

in
i , vi = Wvx

in
i , (1)

where Wq, Wk, Wv are transformation matrices
for query, key and value, respectively. Then, sim-
ilarities between queries and keys are calculated.
The similarities are normalized to produce attention
weights

αij =
sim(qi,kj)∑L
l=1 sim(qi,kl)

, (2)

where sim(qi,kj) is the similarity of vector qi and
vector kj . Finally, output vectors xout

i are obtained

by weighted sum of values with weight {αij}Li,j=1.

xout
i =

L∑
j=1

αijvj . (3)

Vanilla Transformer (Vaswani et al., 2017) adopts
the following function as the similarity metric of
queries and keys.

simTrans(qi,kj) = exp
(
q>i kj/

√
d
)
. (4)

To reduce computation and memory cost, Per-
former’s similarity function is approximated with
kernel trick.

simPerf(qi,kj) = φ(qi)
>φ(kj), (5)

where φ(·) is a non-linear feature map from Rd
to Rm for some model-specific m, so that the atten-
tion module can be expressed as follows.

xout
i =

(
φ(qi)

>∑L
j=1φ(kj)v

>
j

φ(qi)>
∑L

j=1φ(kj)

)>
. (6)

We call φ(qi) as query feature and φ(ki) as key
feature.

In this way, the O(L2) attention weight matrix
is not explicitly calculated, so that the attention
module costs only O(L) time and memory, rather
than the O(L2) complexity as vanilla Transformer.
Different Performers differ by the choice of the
mapping φ(·). A simple working choice is the
ReLU function φ(x) = max(x,0) (Choromanski
et al., 2020).

3.2 Relative Position Encoding for Performer
In this section, we discuss adding relative posi-
tion encoding to Performer. We choose to modify
the similarity function (Equation 5) to encode po-
sitional information. Specifically, we introduce
an additional layer of position-dependent linear
transformation over query features and key features.
Now, the similary function becomes

simPerm(qi,kj) =
(
Miφ(qi)

)>(
Njφ(kj)

)
,
(7)

where Mi,Nj ∈ Rm×m are matrices parameter-
ized by token’s position i and j.

To ensure the similarity function depends only
on the relative positions rather than absolute ones,
Mi,Nj must hold the following property.
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Property 1 (Relative). M>i Nj is a function of i−j,
i.e., it only depends on i− j.

To prevent the similarity function from explod-
ing as the sequence length grows, we have

Property 2 (Bounded). For a bidirectional model,
there is an B that for all i, j ∈ Z, ‖M>i Nj‖ < B.
For a unidirectional model, there is an B that for
all i > j ∈ Z, ‖M>i Nj‖ < B.

Additionally, the similarity function should be
positive; otherwise, the model would be numeri-
cally unstable. If the similarity function alters be-
tween positive and negative values, in some cases,
the denominator in Equation 2 may be zero while
its numerator is not zero, leading the output of
attention module tend to infinity. To keep the sim-
ilarity function positive, one simple but efficient
solution is to make all elements of query features
and key features positive (Choromanski et al., 2020;
Katharopoulos et al., 2020).

Property 3 (Positive). The linear transformations
corresponding to matrix Mi and Nj map Rm+ to
Rm+ .

We prove that, M>i Nj must be in a specific form
to fulfill the requirement of Property 1.

Proposition 1. Let {Mi}∞i=−∞ be a series of l×m
matrices, {Ni}∞i=−∞ be a series of l × n matrices.
Then, M>i Nj only depends on i − j, if and only
if that, there is an integer l′, matrices R ∈ Rl′×m,
Q ∈ Rl′×n, and an invertible matrix P ∈ Rl′×l′ ,
such that

M>i Nj = (P−i>R)>(PjQ), (8)

Proof is given in Appendix. Although this propo-
sition does not impose any additional constraint on
Mi and Nj , it suggests that effectively we only
need to consider the case that

Mi = P−i>R,Nj = PjQ (9)

3.3 PermuteFormer
Based on the analysis of the previous section,
we introduce PermuteFormer by selecting specific
P,Q,R in Equation 9.

To meet constraints imposed by Property 2 and
Property 3, we choose the following solution for
PermuteFormer.

R = Q = I,P = r−1Pπ, (10)

where r = 1 for bidirectional models and 0 < r <
1 for unidirectional models, π : {1, 2, · · · ,m} →

{1, 2, · · · ,m} is a permutation and Pπ is the cor-
responding permutation matrix. (A permutation
matrix is a square binary matrix that has exactly
one entry of 1 in each row and each column and
0s elsewhere. For permutation π the corresponding
permutation matrix Pπ is the matrix that Pπ,ij = 1
if π(i) = j; Pπ,ij = 0 otherwise.) Note that differ-
ent attention heads may have different Pπ and r, so
that both long-term and short-term dependencies
are captured.

Substitute Equation 9, 10 into Equation 7, we
get the similarity function of PermuteFormer

simPerm(qi,kj) =
(
riPi

πφ(qi)
)>(

r−jPj
πφ(kj)

)
.

(11)

PermuteFormer can encode relative positions up
to the order of the permutation π. Goh and Schmutz
(1991) proves that the order of random permuta-
tion grows exponentially with the head size. For
a model with the same size as BERT-base (De-
vlin et al., 2019), the dimension of queries / keys
per attention head is 64, corresponding to an av-
erage order of over 3000. To further extend Per-
muteFormer’s ability to encode long sequences, we
choose different permutations for different atten-
tion heads, so that the longest distance Permute-
Former can encode is the least common multiple of
all permutations’ orders, which can be up to 1e27
for a model with head size of 64.

There are two additional parameters Permute-
Former introduces, π and r. As π is a discrete
parameter that cannot be optimized by gradient-
based methods, we treat it as a hyper-parameter of
the model. We randomly sample π at initialization
of the neural network and fix its value during the
whole training process. Although the model may
get a better performance on training π, we find that
a random permutation is good enough for Permute-
Former to work, so we do not tune π to save energy.
Parameter r, on the other hand, can be optimized
by gradient-based methods, but we also treat it as a
hyper-parameter.

3.4 Computational Cost
We analyze computational cost of PermuteFormer
in this section. PermuteFormer is as fast as Per-
former, which is the most efficient Transformer
(Tay et al., 2020b) to our knowledge.

Let L denote the length of the sequence, H de-
note the number of heads in the model, and m
denote the per-head hidden dimension of query fea-
tures and key features.
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The computational overhead introduced by Per-
muteFormer includes the computation of Pi

π, the
application of linear transformation Pi

π on query
features and key features, as well as calculation of
powers of r.

Multiplication of permutation matrices is equiv-
alent to multiplication of corresponding permuta-
tions. In our case, it reads that

Pi
π = Pπi , (12)

where πi is the i-th power of permutation π that

πi(x) = π(πi−1(x)) and π0(x) = x. (13)

We can compute these πi and cache them before
training and inference. This takes O(LHm) time
and O(LHm) memory.

As Pi
π is a permutation matrix, there is no need

to do cumbersome matrix-vector multiplication. In-
stead, a gather operation on query features and
key features is enough. The memory and time
complexity of this gather operation is equal to
the size of query features and key features, i.e.,
O(LHm).

Powers of scalar r can be calculated easily.
Thus, the total overhead introduced by Permute-

Former is O(LHm). Since the complexity of at-
tention in Performer is O(LHm2), this overhead
is negligible.

3.5 Trick for Two-Dimensional Case
As Transformer-based models are getting popular
in fields other than natural language processing
these days, it is worth noting that PermuteFormer
is also applicable to 2D inputs like images and
multi-modal documents (Xu et al., 2020).

One naive way to deal with two-dimension in-
puts is to follow the convention in benchmark Tay
et al. (2020b). Pixels in the 2D space are first flat-
tened to an 1D sequence before fed into the model.
However, this causes problems for relative position
encoding. It makes the rightmost pixel in the first
row adjacent to the leftmost pixel in the second
row, so the relative position of these two distant
pixels is extremely close in the 1D sequence, which
is incorrect. It is almost impossible for the model
to learn something meaningful out of the wrong
relative position.

To remedy this, we adapt PermuteFormer’s at-
tention for 2D inputs. We permute some elements
of the query / key feature according to a pixel’s hor-
izontal position, while others according to its verti-
cal position. More precisely, we modified equation

11 as follows

simPerm(qi,kj) =
(
Pxi
πxP

yi
πyφ(qi)

)>(
P
xj
πxP

yj
πyφ(kj)

)
,

(14)

where (xi, yi), (xj , yj) are coordinates of the i-th
and j-th pixel, respectively. πx and πy are two
permutations commutative with each other.

4 Experiments

We evaluate bidirectional PermuteFormer on Long-
Range Arena, which consists of many long-
sequence tasks. Unidirectional PermuteFormer is
evaluated on WikiText-103, a language modeling
task.3

4.1 Long-Range Arena

Long-Range Arena (Tay et al., 2020b) is a bench-
mark for efficient Transformers. It concentrates
on efficient Transformers’ performance on long se-
quences. The benchmark consists of five subtasks
from various domains: byte-level text classifica-
tion, byte-level document retrieval, image classifi-
cation on sequence of pixels, Pathfinder, and long
ListOps. We follow the evaluation protocol of Tay
et al. (2020b), except that we exclude the long
ListOps task from the benchmark, because a sim-
ple classifier on the first token4 performs on par
with the best model reported in Tay et al. (2020b).
In the four selected tasks, image classification has
10 labels, while the others are binary classification
tasks.

4.1.1 Setup and Implementations
We compare our PermuteFormer with the vanilla
Transformer and Performer. A version of Su et al.
(2021) is also implemented on Performer for com-
parison. In addition, we also list performances
of other efficient Transformers from Xiong et al.
(2021), including Reformer (Kitaev et al., 2020),
Linformer (Wang et al., 2020) and Nyströmformer
(Xiong et al., 2021). Conventional relative position
encoding, such as Shaw et al. (2018); Dai et al.
(2019); Raffel et al. (2020), is not included, as it is

3Long-Range Arena can be fetched from
https://github.com/google-research/
long-range-arena. WikiText-103 can be fetched
from https://s3.amazonaws.com/research.
metamind.io/wikitext/wikitext-103-v1.
zip.

4This classifier outputs 0 if the first token is [MIN, outputs
9 if the first token of the sequence is [MAX, and outputs 4
otherwise. It achieves an accuracy of 37.25 on the test set.

https://github.com/google-research/long-range-arena
https://github.com/google-research/long-range-arena
https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip
https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip
https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip
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Model Text Retrieval Image Pathfinder Average

Transformer 63.9923 80.0226 42.83142 72.40165 64.8155
w/ sinusoidal pos. emb. 64.0617 79.8133 43.30152 73.00183 65.0460

Reformer 64.88 78.64 43.29 69.36 64.04
Linformer 55.91 79.37 37.84 67.60 60.18

Nyströmformer 65.52 79.56 41.58 70.94 64.40
Performer 63.9542 79.8230 43.08174 72.63108 64.8753
RoFormer 66.0017 75.2755 26.16109 58.8726 56.5731

PermuteFormer 65.9526 80.6626 43.0252 72.91100 65.6430
w/o 2D rel. pos. 65.9526 80.6626 36.1095 65.7259 62.1029
w/o Property 3 50.27 70.62 10.00 50.05 45.24

Table 1: Performance on Long-Range Arena in accuracy. Results of Transformer, Performer, RoFormer and all
variants of PermuteFormer are evaluated by us. Results for Reformer, Linformer and Nyströmformer are taken
from Xiong et al. (2021). Numbers reported by us are average accuracies of five runs. Standard deviations are
shown as subscripts, in units of 0.01.

Model Text (4K) Retrieval (4K) Image (1K) Pathfinder (1K)

Transformer 622 (1.00×) 2404 (1.00×) 26 (1.00×) 180 (1.00×)
Reformer 437 (0.70×) 1086 (0.45×) 30 (1.15×) 153 (0.85×)
Linformer 323 (0.52×) 483 (0.20×) 14 (0.54×) 68 (0.38×)

Nyströmformer 332 (0.53×) 566 (0.24×) 15 (0.58×) 65 (0.36×)
Performer 354 (0.57×) 553 (0.23×) 13 (0.50×) 61 (0.34×)

PermuteFormer 361 (0.58×) 550 (0.23×) 13 (0.50×) 62 (0.34×)

Performer + T5-style 28585 81070 3697 24601
pos. emb. (estimated) (46.0×) (33.7×) (142×) (137×)

Table 2: Training time for one epoch in seconds. Ratio to Transformer is included in parentheses. Lower is better.
The sequence length of the first two tasks is 4000, while that of the last two is 1024.

Model Text (4K) Retrieval (4K) Image (1K) Pathfinder (1K)

Transformer 72.03 (1.00×) 20.23 (1.00×) 3.28 (1.00×) 3.89 (1.00×)
Reformer 30.60 (0.42×) 13.57 (0.67×) 13.44 (4.10×) 13.49 (3.47×)
Linformer 19.82 (0.28×) 4.33 (0.21×) 3.31 (1.01×) 4.20 (1.08×)

Nyströmformer 23.55 (0.33×) 9.28 (0.46×) 7.01 (2.14×) 9.14 (2.35×)
Performer 30.20 (0.42×) 5.09 (0.25×) 3.01 (0.92×) 3.80 (0.98×)

PermuteFormer 31.18 (0.43×) 5.18 (0.26×) 2.99 (0.91×) 3.89 (1.00×)

Table 3: Inference latency for one sample in milliseconds. Ratio to Transformer is included in parentheses. Lower
is better. The sequence length of the first two tasks is 4000, while that of the last two is 1024.
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almost computational infeasible to apply them to
such long sequences.

For efficiency, we choose a simple feature map

φ(x) = max(x,0) + ε, (15)

for both Performer and PermuteFormer. ε is added
to the features to ensure that the denominator in
Equation 2 is not zero. We set ε = 0.001.

In this paper, all neural networks are trained
from scratch. Learning rates are manually tuned on
Transformer to match the results reported by other
papers. Then, these hyper-parameters are fixed on
training of Performer and PermuteFormer. Model
sizes are the same as those described in Tay et al.
(2020b). The hidden dimension of query features
and key features are four times of that of queries
and keys. Absolute position embedding is disabled
for PermuteFormer. Models are optimized with
Adam (Kingma and Ba, 2015). More details of
hyper-parameters can be found in the appendix.
Each experiment is run five times and the average
accuracy is reported. Experiments are done on
machines with 8 V100 GPUs.

4.1.2 Results
Performance The results are summarized in Ta-
ble 1. It shows that the relative position encod-
ing in PermuteFormer significantly improves the
performance of Performer in all the tasks, includ-
ing both language tasks and vision tasks. It not
only achieves better accuracy than existing efficient
Transformers without relative position encoding,
but also performs better than vanilla Transformer,
as well as Performer with Su et al. (2021)’s relative
position encoding.

Efficiency We record the training time of each
model on all the tasks, as well as their latency on
inference. The result is listed in Table 2 and Ta-
ble 3. It shows that Performer runs around two to
three times faster than Transformer. The second
line and the third line of the table indicate that Per-
muteFormer’s speed is almost the same as that of
Performer. This aligns with our analysis in § 3.4
that the overhead of PermuteFormer is negligible
compared to the computation cost of Performer
itself.

We take T5 (Raffel et al., 2020) as an example
to illustrate that existing relative position encoding
is computationally infeasible for long sequences.
We train Performer with T5 with a few iterations to
estimate the running time for one epoch. The result

Model PPL

Transformer(Vaswani et al., 2017) 30.18

Performer(Choromanski et al., 2020) 36.87
PermuteFormer 32.49

PermuteFormer w/o r 35.76
PermuteFormer w/o Pπ 33.08

Table 4: Perplexity (PPL) of models on test split of
WikiText-103 language modeling dataset.

0 5 10 15 20 25 30

50

100

150

Epochs

Perplexity on WikiText-103

Transformer
Performer

PermuteFormer
PermuteFormer w/o r

PermuteFormer w/o Pπ

Figure 2: Trends of perplexity during training on test
split of WikiText-103 language modeling dataset.

is shown in the last line of Table 2. It indicates that
T5 is significantly slower than Transformer, not to
say Performer.

4.1.3 Ablation Study

We evaluate whether 2D relative position encoding
is useful for PermuteFormer. We train Permute-
Former with 1D relative position encoding, and the
result is shown in the second last line of Table 1.
As expected, its performance drops significantly
for tasks with 2D inputs. Thus, 1D relative position
encoding is harmful to vision tasks as discussed in
§ 3.5.

We also justify that Property 3 is necessary for
PermuteFormer, i.e., the transformation should pre-
serve positiveness of query features and key fea-
tures. We train a PermuteFormer with the permu-
tation matrix Pπ replaced by a random orthogonal
matrix. The result is listed in the last line of Table 1,
that PermuteFormer without Property 3 does not
converge on most of the tasks.
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4.2 WikiText-103
We evaluate unidirectional PermuteFormer on
WikiText-103 (Merity et al., 2017). It is a language
modeling dataset with about 103 million tokens
extracted from verified articles on Wikipedia.

4.2.1 Setup and Implementations
We compare PermuteFormer with the vanilla Trans-
former and Performer. Models are implemented
with fairseq (Ott et al., 2019). We adopt hyper-
parameters suggested by fairseq5: 6 layers, hid-
den dimension of 512, feed forward dimension of
1024, 8 attention heads. Feature map is the same
as Equation 5. r takes its value in [0.88, 0.99]. For
comparison with absolute position encoding, we set
the sequence length to 512. Perplexity is measured
on the test set. To avoid predicting tokens with lit-
tle context at the beginning of a sequence, only the
last 256 tokens are counted in the results. Effects of
r and Pπ are measured separately through ablation
studies, i.e., removing r or Pπ in Equation 11.

4.2.2 Results
The results for WikiText-103 are listed in Table 4.
We also plot trending of perplexity during training
in Figure 2. It shows that PermuteFormer lowers
the performance gap between Transformer and Per-
former. It also speeds up convergence of models.

The last two lines of Table 4 indicate that perfor-
mance of PermuteFormer drops without r or Pπ.
Thus, both r and Pπ are crucial for PermuteFormer.
r may be helpful for PermuteFormer to focus on
local context, while Pπ is responsible for encoding
relative positional information.

5 Conclusions

We discuss possible ways to add relative position
encoding to Performer, a family of efficient Trans-
formers scales linearly. Based on the analysis, we
propose PermuteFormer, a variant of Performer
with position-aware permutation to encode rela-
tive positional information. While improving the
performance, this novel relative position encoding
introduces negligible overhead compared to the
overall computational cost of Performer. Experi-
ments show that it runs as fast as Performer.

Extensive experiments are conducted on Per-
muteFormer, including byte-level text tasks and
pixel-level image classification of Long-Range

5We use the same command-line options as described in
https://github.com/pytorch/fairseq/tree/
master/examples/language_model.

Arena, as well as language modeling on WikiText-
103. Bidirectional PermuteFormer is used for the
former tasks, while unidirectional PermuteFormer
is adopted for the latter one. Results show that
PermuteFormer uniformly improves the perfor-
mance of Performer, accelerates convergence, and
achieves state-of-the-art on some tasks.

Ethical Considerations

This paper does not introduce new datasets. All the
experiments and discussions are based on public
datasets, which have been widely used for years.
This paper focuses on speeding up NLP models
generally. It is not directly connected to specific
real-world applications.

The purpose of this paper is to reduce the compu-
tational cost of Transformer without performance
drop. We hope our work will reduce energy con-
sumption for future work of NLP. We also try our
best to reduce carbon cost in experiments, such as
minimizing hyper-parameter tuning. It takes about
10 days on 8 V100 GPUs to get all the figures in
this paper.
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A Proof of Proposition 1

Lemma A.1. Let

{Mi}∞i=−∞ ∈ Rl×m, (16)

{Ni}∞i=−∞ ∈ Rl×n. (17)

Assume

∀i, j, k ∈ Z,M>i Nj = M>i+kNj+k. (18)

Then, there exists{
M′i
}∞
i=−∞ ∈ Rl

′×m′
, (19){

N′i
}∞
i=−∞ ∈ Rl

′×n′
, (20)

P ∈ Rm
′×m,Q ∈ Rn

′×n, (21)

such that

∀i, j, k ∈ Z,M′>i N′j = M′
>
i+kN

′
j+k, (22)

∀i, j ∈ Z,M>i Nj = (M′iP)>(N′jQ), (23)
∞∑

i=−∞
im(M′i) = Rl

′
,
∞∑

i=−∞
im(N′i) = Rl

′
, (24)

∀i ∈ Z, ker(M′i) = {0}, ker(N′i) = {0}. (25)

Proof. Induction on l,m, n.
If l = m = n = 0, then M′i = Mi, N′i = Ni,

P = Im, Q = In satisfies Equation 22-25.
Obviously, M′i = Mi, N′i = Ni, P = Im,

Q = In satisfies Equation 22-23.

Case 1) It does not satisfy Equation 24. Without
loss of generality, assume

∑∞
i=−∞ im(Mi) 6= Rl.

Then (
∑∞

i=−∞ im(Mi))
⊥ 6= {0}. Let unit vec-

tor x ∈ (
∑∞

i=−∞ im(Mi))
⊥. For any i, x ∈

im(Mi)
⊥, so Mi = (Il − xx>)Mi. Since

rank(Il − xx>) = l − 1, there is A ∈ R(l−1)×l

such that Il − xx> = A>A.
Let M̃i = AMi, Ñi = ANi. Then, M>i Nj =

M̃>i Ñj . By induction, there is M′i, N
′
i, P, Q that

satisfies Equation 22-25.
Case 2) It satisfies Equation 24, but not Equa-

tion 25. Without loss of generality, assume unit
vector x ∈ ker(Ni) for some i. Then, for
any j, k, M>kNjx = M>k+i−jNix = 0. Thus,
Njx ∈ im(Mk)

⊥ for any k. Equivalently, Njx ∈
(
∑∞

k=−∞ im(Mk))
⊥. By Equation 24, Njx = 0.

So x ∈ ker(Nj) for any j.
Therefore, for any j ∈ Z, Nj = Nj(In − xx>).

Since rank(In − xx>) = n − 1, there is A ∈
R(n−1)×n such that In − xx> = A>A.

Let M̃i = Mi, Ñi = NiA
>. Then M̃>i Ñj =

M>i NjA
> = M>i+kNj+kA

> = M̃>i+kÑj+k. By
induction we have M̃′i, Ñ

′
i, P̃, Q̃ that

∀i, j, k ∈ Z, M̃′i>Ñ′j = M̃′i+k
>Ñ′j+k,

∀i, j ∈ Z, M̃>i Ñj = (M̃′iP̃)>(Ñ′jQ̃),
∞∑

i=−∞
im(M̃′i) = Rl̃

′
,
∞∑

i=−∞
im(Ñ′i) = Rl̃

′
,

∀i ∈ Z, ker(M̃′i) = {0}, ker(Ñ′i) = {0}.

So M′i = M̃′i, N
′
i = Ñ′i, P = P̃, Q = Q̃A

satisfies Equation 22-25.
Case 3) It satisfies both Equation 24 and Equa-

tion 25. Nothing to prove.

Lemma A.2. Let

{Mi}∞i=−∞ ∈ Rl×m, (26)

{Ni}∞i=−∞ ∈ Rl×n. (27)

Assume

∀i, j, k ∈ Z,M>i Nj = M>i+kNj+k, (28)
∞∑

i=−∞
im(Mi) = Rl,

∞∑
i=−∞

im(Ni) = Rl, (29)

∀i ∈ Z, ker(Mi) = {0}, ker(Ni) = {0}. (30)

Then, there exists{
M′i
}∞
i=−∞ ∈ Rl×l, (31){

N′i
}∞
i=−∞ ∈ Rl×l, (32)

P ∈ Rl×m,Q ∈ Rl×n, (33)

https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
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such that

∀i, j, k ∈ Z,M′>i N′j = M′
>
i+kN

′
j+k, (34)

∀i, j ∈ Z,M>i Nj = (M′iP)>(N′jQ), (35)
∞∑

i=−∞
im(M′i) = Rl,

∞∑
i=−∞

im(N′i) = Rl, (36)

∀i ∈ Z, ker(M′i) = {0}, ker(N′i) = {0}. (37)

Proof. Induction on l −m, l − n.
If l−m = l−n = 0, then M′i = Mi, N′i = Ni,

P = Il, Q = Il satisfies Equation 34-37.
Without loss of generality, we only need to dis-

cuss the case that n < l.
If n < l, im(N0) 6= Rl. On the other hand,∑∞
i=−∞ im(Ni) = Rl. So there is a column of

Np for some p 6= 0 that in Rl\im(N0). More
generally, there is a vector e ∈ Rn and an integer
p, that Npe ∈ Rl\im(N0).

Let M̃i = Mi, Ñi = [Ni,Np+ie], A =
[In,0n]

>. Then,

M̃>i ÑjA = M>i Nj . (38)

M̃>i Ñj

=[M>i Nj ,M
>
i Np+je]

=[M>i+kNj+k,M
>
i+kNp+j+ke]

=M̃>i+kÑj+k.

(39)

∞∑
i=−∞

im(M̃i) =
∞∑

i=−∞
im(Mi) = Rl. (40)

∀i ∈ Z, ker(M̃i) = ker(Mi) = {0}. (41)

Rl ⊃
∞∑

i=−∞
im(Ñi) ⊃

∞∑
i=−∞

im(Ni) = Rl.

(42)

If for some i, ker(Ñi) 6= {0}, let x be a non-zero
vector in ker(Ñi). Then, for any k, M̃>k Ñ0x =
M̃>k+iÑix = 0. Thus, Ñ0x ∈ im(M̃k)

⊥ for any
k. Equivalently, Ñ0x ∈ (

∑∞
k=−∞ im(M̃k))

⊥ =

{0}. So ker(Ñ0) 6= {0}. However, by construc-
tion Ñ0 = [N0,Npe], so ker(Ñ0) = {0}. Thus,

∀i ∈ Z, ker(Ñi) = {0}. (43)

By induction we have M̃′i, Ñ
′
i, P̃, Q̃ that

∀i, j, k ∈ Z, M̃′i>Ñ′j = M̃′i+k
>Ñ′j+k,

∀i, j ∈ Z, M̃>i Ñj = (M̃′iP̃)>(Ñ′jQ̃),
∞∑

i=−∞
im(M̃′i) = Rl̃

′
,
∞∑

i=−∞
im(Ñ′i) = Rl̃

′
,

∀i ∈ Z, ker(M̃′i) = {0}, ker(Ñ′i) = {0}.

So M′i = M̃′i, N
′
i = Ñ′i, P = P̃, Q = Q̃A

satisfies Equation 34-37.

Proposition A.1. Let {Mi}∞i=−∞ be a series of
l × m matrices, {Ni}∞i=−∞ be a series of l × n
matrices. Then, M>i Nj only depends on i − j,
if and only if that, there is an integer l′, matrices
P ∈ Rl′×m, Q ∈ Rl′×n, and an invertible matrix
A ∈ Rl′×l′ , such that

M>i Nj = (A−i>P)>(AjQ), (44)

Proof. (⇐) If part.
M>i Nj = (A−i>P)>(AjQ) = P>Aj−iQ de-

pends on i− j only.
(⇒) Only If part.
By Lemma A.1 and Lemma A.2, there is{

M′i
}∞
i=−∞ ∈ Rl

′×l′ , (45){
N′i
}∞
i=−∞ ∈ Rl

′×l′ , (46)

P ∈ Rl
′×m,Q ∈ Rl

′×n, (47)

such that

∀i, j, k ∈ Z,M′>i N′j = M′
>
i+kN

′
j+k, (48)

∀i, j ∈ Z,M>i Nj = (M′iP)>(N′jQ), (49)

∀i ∈ Z, rank(M′i) = l′, rank(N′i) = l′. (50)

Since M′>0 N
′
i−1 = M′>1 N

′
i,

N′i = (M′
−>
1 M′

>
0 )N

′
i−1 (51)

= (M′
−>
1 M′

>
0 )

iN′0 (52)

= AiN′0, (53)

where A ∈ Rl′×l′ is an invertible matrix. Similarly,
M′i = BiM′0. Substitute them into Equation 48,
we have

∀i, j, k ∈ Z,

M′
>
0 B

i>AjN′0 = M′
>
0 B

(i+k)>Aj+kN′0
(54)

Since A, B, N′0 and M′0 are invertible,

∀ki ∈ Z,Bk>Ak = I. (55)

Thus, B = A−>.
Thus,

M>i Nj = (M′iP)>(N′jQ) (56)

= (BiM′0P)>(AjN′0Q) (57)

= (A−i>P′)>(AjQ′), (58)

where P′ = M′0P and Q′ = N′0Q.
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B Hyper-parameters for Long-Range
Arena

Task Text Retrieval Image Pathfiner

Batch size 16 32 256 256
Epochs 10 10 50 80

LR 1e-5 2e-4 1e-2 5e-4
Warmup 4000 1000 200 4000

Table 5: Hyper-parameters for Long-Range Arena


