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Abstract

This paper proposes a new representation for
CCG derivations. CCG derivations are rep-
resented as trees whose nodes are labeled
with categories strictly restricted by CCG rule
schemata. This characteristic is not suitable
for span-based parsing models because they
predict node labels independently. In other
words, span-based models may generate in-
valid CCG derivations that violate the rule
schemata. Our proposed representation de-
composes CCG derivations into several inde-
pendent pieces and prevents the span-based
parsing models from violating the schemata.
Our experimental result shows that an off-the-
shelf span-based parser with our representa-
tion is comparable with previous CCG parsers.

1 Introduction

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a mildly context-sensitive grammar
formalism. Several neural CCG parsing methods
have been proposed so far (Lewis and Steedman,
2014; Xu et al., 2015; Lewis et al., 2016; Vaswani
et al., 2016; Lee et al., 2016; Xu, 2016; Yoshikawa
et al., 2017; Stanojević and Steedman, 2019, 2020;
Bhargava and Penn, 2020; Tian et al., 2020; Prange
et al., 2021; Liu et al., 2021). Currently, neural
span-based models (Cross and Huang, 2016; Stern
et al., 2017; Gaddy et al., 2018; Kitaev and Klein,
2018) have been successful in the field of con-
stituency parsing. However, we cannot directly
apply this technique to CCG parsing. Span-based
models assume that each node label in parse trees
can be predicted independently, while, in CCG,
each node label (category) is strictly restricted by
CCG rule schemata. The independence assumption
of span-based models implies that the models are
not guaranteed to generate valid CCG derivations.

To solve this problem, we propose a method of
representing CCG derivations in a way suitable for
span-based parsing models. Our proposed repre-

X/Y Y |1Z1 · · · |dZd ⇒ X|1Z1 · · · |dZd (>d)
Y |1Z1 · · · |dZd X\Y ⇒ X|1Z1 · · · |dZd (<d)

Figure 1: CCG rule schemata.

sentation decomposes CCG derivations into sev-
eral independent pieces and can prevent the span-
based parsing models from violating the CCG rule
schemata. Furthermore, as a by-product of our
representation, the parsing models can assign out-
of-vocabulary (OOV) categories, which have not
appeared in training data. This characteristic has
been attracting attention in CCG parsing research
(Bhargava and Penn, 2020; Prange et al., 2021; Liu
et al., 2021). Our experimental result shows that an
off-the-shelf span-based parser with our representa-
tion is comparable with previous CCG parsers and
can generate correct OOV categories.

2 CCG and Span-based Parsing

This section gives an overview of Combinatory
Categorial Grammar (CCG) (Steedman, 2000) and
explains why we cannot directly apply the span-
based approach to CCG parsing.

2.1 Combinatory Categorial Grammar

CCG represents syntactic information by basic cat-
egories (e.g., S, NP) and complex categories. Com-
plex categories are in the form of X/Y or X\Y ,
where X and Y are categories. Intuitively, each
category X/Y means that it receives a category
Y from its right and returns a category X . In the
case of X\Y , the direction is from its left. For-
mally, categories are combined using CCG rule
schemata. Figure 1 shows CCG rule schemata.
Here, X , Y and Zi(1 ≤ i ≤ d) are categories, and
|i ∈ {/, \}. |1Z1 · · · |dZd is called an argument
stack (Kuhlmann and Satta, 2014), and we use a
Greek letter to represent an argument stack. For
example, we use the following notation for the first
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rule schema:

X/Y Y α⇒ Xα. (1)

We define |α| = d and the arity of a category
Y = Xα where X is a basic category is defined as
follows:

arity(Y ) = |α| (2)

2.2 Span-based Parsing
A span-based parsing model (Stern et al., 2017;
Gaddy et al., 2018; Kitaev and Klein, 2018) has
a single scoring function s(i, j, l) that scores each
label l for each span (i, j). The score of a tree T is
defined as follows:

s(T ) =
∑

(i,j,l)∈T
s(i, j, l). (3)

The parsing problem is formulated as finding the
tree T ∗ with the highest score:

T ∗ = arg max
T

s(T ) (4)

and can be solved using an efficient CKY-like pars-
ing algorithm because of the following characteris-
tic:1

• The model can determine each label l for a
span (i, j) independently of the other spans.

Unfortunately, CCG parsing cannot take this ap-
proach because each label (category) is strictly re-
stricted by the CCG rule schemata. If we apply the
span-based approach to CCG parsing forcibly, the
following problem occurs:

• The parsing model may generate invalid
CCG derivations that violate the CCG rule
schemata.

3 Span-based representation

To overcome the problem described in the previous
section, we propose a new representation for CCG
derivations. We call the new ones span-based rep-
resentations (SBRs for short), which decomposes
CCG derivations into several independent pieces
to prevent the span-based parsing model from vio-
lating the CCG rule schemata. Figure 2 shows an
example of CCG derivation and its SBR version.

We realize span-based CCG parsing as follows:
1In the standard CKY algorithm, each score is kept for

each pair of a span (i, j) and a label l. On the other hand, in
span-based parsing, for each span (i, j), only the label with
the highest score is kept. For more detail, see (Gaddy et al.,
2018).

1. Convert CCG derivations into SBRs (Section
3.2).

2. Train a span-based parsing model using SBRs
and parse sentences to generate SBRs.

3. Convert the output SBRs into CCG deriva-
tions. (Section 3.3).

The basic idea behind our method is that each
node label in an SBR represents a constraint on
the categories of nodes in a CCG derivation. Our
method recovers a CCG derivation from its SBR
version by satisfying such constraints. Because
constraints encoded in SBR’s labels are indepen-
dent, a span-based model using SBRs does not
suffer from violating CCG rule schemata.

3.1 SBR’s label

An SBR’s label consists of the following informa-
tion:

• a CCG rule schema

• a mapping from variables that occur only in
the left-hand side of the rule to categories

For each node n (except leaf nodes) in a CCG
derivation, its SBR version has a corresponding
node. The SBR’s label means that the category
of n is created by the specified rule schema, and
the categories of n’s children satisfy the constraint
represented by the mapping. For example, the label
(>0, Y := NP) means that the left and right chil-
dren’s categories are in the form of X/NP and NP

and X is inherited from its parent’s category.

3.1.1 Additional information
SBR’s label cannot encode root categories of CCG
derivations and unary rules. To encode this in-
formation, we introduce three types of additional
information:

• RT :X means that the category of the node n
is X , if n is the root node.

• UL :X means that the left child l is unary
branching and the category of l’s child is X .

• UR :X means that the right child r is unary
branching and the category of r’s child is X .

We call these information tags.
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Figure 2: A CCG derivation (left) and its SBR version (right).

CCG derivation’s category SBR’s label
left child L right child R parent P S

X/Y Y α Xα (>|α|, Y :=Y )

Y α X\Y Xα (<|α|, Y :=Y )

X/(Xβ) (Xβ)α Xα (>|α|, beta :=β)

(Xβ)α X\(Xβ) Xα (<|α|, beta :=β)

Table 1: Conversion from CCG categories to SBR’s la-
bels.

3.2 Converting CCG derivations into SBRs

Algorithm 1 obtains an SBR from a CCG deriva-
tion. Table 1 summarizes the conversion from cat-
egories into SBR’s labels. Algorithm 1 uses this
table in the function SBRlabel that returns a SBR’s
label. Here, we introduce two additional patterns
for adjuncts or type-raised categories (shown in the
last two rows).2 Introducing these patterns reduces
the number of SBR’s labels.

3.3 Converting SBRs into CCG derivations

Algorithm 2 recovers a CCG derivation from an
SBR. The recovery process proceeds in a top-
down fashion. First, the root label is recovered
from an additional tag RT.3 That is, we call
recover(n, RT(label(n))) for an SBR n. Then,
the categories of the children are recovered using
Table 1 in reverse (the function recoverCAT(S, P )
returns the categories). This process is repeated re-
cursively until the leaf nodes are reached. When the
SBR’s label is in the form of (>d, · · ·) or (<d, · · ·)
and arity(P ) < d, L and R cannot be defined.
In this case, recoverCAT(S, P ) replaces d with

2These are special cases of the CCG rule schemata shown
in Figure 1.

3If the parsing model fails to assign RT tag, we use
RT : Sdcl as a default.

Algorithm 1 convert(n)

1: n is a CCG derivation node.
2: label(n) is the label of n.
3: par(n) is the parent of n.
4: chiL(n), chiR(n) and chiU(n) are the left, right and

unary child of n.
5: node(l, C) makes a node with a label l and children C.
6:
7: if n is a preterminal node then
8: n′ ← chiu(n)
9: else if n is binary branching then

10: l, r ← chiL(n), chiR(n)
11: L,R, P ← label(l), label(r), label(n)
12: S ← SBRlabel(L,R, P )
13: if n is a root node then
14: add RT :P to S
15: end if
16: if l is unary branching then
17: l← chiu(l)
18: add a tag UL :label(l) to S
19: end if
20: if r is unary branching then
21: r ← chiu(r)
22: add a tag UR :label(r) to S
23: end if
24: n′ ← node(S, 〈convert(l), convert(r)〉)
25: end if
26: return n′

arity(P ).

4 Generating OOV categories

In our proposed representation, lexical categories
are not directly assigned to words. Lexical cat-
egories are decomposed into several node labels.
This means that lexical categories are not defined
by a finite set and that the span-based parsing model
learned from SBRs may generate OOV lexical cat-
egories that do not appear in the training data.



10582

Algorithm 2 recover(n, P )

1: n is a node in an SBR.
2: n′ is a node in a CCG derivation.
3: P , L and R are categories.
4: UL(S) is a UL tag if exists.
5: UR(S) is a UR tag if exists.
6:
7: if n is a terminal (word) node then
8: n′ = node(P, 〈n〉)
9: else

10: S ← label(n)
11: L,R← recoverCat(S, P )
12: if UL(S) 6= null then
13: l← node(L, 〈recover(chiL(n), UL(S))〉)
14: else
15: l← recover(chiL(n), L)
16: end if
17: if UR(S) 6= null then
18: r ← node(R, 〈recover(chiR(n), UR(S))〉)
19: else
20: r ← recover(chiR(n), R)
21: end if
22: n′ ← node(P, 〈l, r〉)
23: end if
24: return n′

5 Experiment

We conducted an experiment using the CCGBank
(Hockenmaier and Steedman, 2007)4 to evaluate
the performance of our method.5 We used the
Berkeley Neural Parser (Kitaev and Klein, 2018)
with BERT (Devlin et al., 2019) as a span-based
parser. We converted the training (sections 02–21)
and the development (section 00) data into SBRs
and learned the model from the data. The num-
ber of SBR’s labels in the training data was 486.6

The hyperparameters for training were identical
to those of Kitaev et al. (2019). We evaluated the
parsing performance by labeled F1 on the test data
(section 23). We obtained labeled dependencies us-
ing the C&C parser’s generate program (Clark
and Curran, 2007). As a baseline model, we trained
a model directly using the CCG derivations.

Table 2 shows parsing performances on the test
data. Our proposed and the baseline methods have
high precision (92.8% and 94.0%) but low recall
(82.2% and 76.3%). One of the reasons for the low

4In the CCGBank, adjuncts and type-raised categories
take an argument category using feature unification. Our
method treats this feature unification in the last two rows
in Table 1. SBRlabel does not allow the X occur-
ring in X/(Xβ) and X\(Xβ) to have any feature, and
recoverCat removes features from the X . For exam-
ple, SBRlabel(S/S, Sdcl, Sdcl) = (>0, beta := []) and
RecoverCat((>0, beta := []), Sdcl) = (S/S, Sdcl).

5The code is available at https://github.com/
yosihide/span-based-ccg-derivation.

6The training data has 1639 categories including 1285
lexical ones (supertags).

Method Pre. Rec. F1

Lewis and Steedman (2014) – – 86.1
Xu et al. (2015) 87.7 86.4 87.0
Lewis et al. (2016) 88.6 87.5 88.1
Vaswani et al. (2016) – – 88.3
Lee et al. (2016) – – 88.7
Xu (2016) 89.8 85.8 87.8
Yoshikawa et al. (2017) – – 88.8
Stanojević and Steedman (2019) – – 90.5
Bhargava and Penn (2020) – – 90.9
Tian et al. (2020) – – 90.7
Prange et al. (2021) – – 90.8
Liu et al. (2021) - – 90.9
Baseline 94.0 76.3 84.2
Baseline + markedup 93.9 76.8 84.5
Ours 92.8 82.2 87.2
Ours + markedup 91.7 87.6 89.6

Table 2: Labeled F1 on the test data.

Method Rec. (%)
Bhargava and Penn (2020) 22
Prange et al. (2021) 3
ours 18

Table 3: Recall for OOV lexical categories on the test
data.

recall was that the C&C parser’s generate pro-
gram failed to obtain dependencies from the output
CCG derivations. Our proposed and the baseline
methods failed to obtain dependencies from 206
and 371 sentences of 2407 test data sentences, re-
spectively. The generate program cannot work
when the CCG derivation is invalid or has a lexical
category that is not listed in its markedup file.
To mitigate this problem, we added such lexical
categories to the markedup file.7 Adding lexi-
cal categories increased the recall (87.6%) of our
method significantly. On the other hand, the recall
of the baseline method was still low (76.8%) due
to the invalid CCG derivations. This result shows
that a span-based parsing using CCG derivations
does not work well and that our proposed method
improves the parsing performance. The final result
of our method was comparable with previous CCG
parsers.

5.1 OOV categories

Another interesting point of our method is the possi-
bility of generating OOV categories. Table 3 shows
the recall for OOV lexical categories. We obtained
a similar result with previous research. Our method
correctly assigned OOV categories for 4 words.8

7The new markedup file was generated automatically.
8There are only 22 occurrences of OOV categories in the

test data.

https://github.com/yosihide/span-based-ccg-derivation
https://github.com/yosihide/span-based-ccg-derivation
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We can say that our proposed approach can treat
OOV categories.

6 Conclusion

This paper proposed a new representation for CCG
derivations. Our proposed representation realizes
a span-based CCG parser that follows the CCG
binary rule schemata. Furthermore, the parser can
generate OOV categories. One remaining prob-
lem in the proposed method is to treat unary rule
schemata in CCG. Our method encodes unary rules
using the additional information described in Sec-
tion 3.1.1, but this approach may violate the unary
rule schemata. In the future, we will extend the
method to treat CCG unary rules validly.
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