Reducing Discontinuous to Continuous Parsing with Pointer Network
Reordering

Daniel Fernandez-Gonzalez and Carlos Gomez-Rodriguez
Universidade da Corufa, CITIC
FASTPARSE Lab, LyS Group
Depto. de Ciencias de la Computacion y Tecnologias de la Informacién
Campus de Elvina, s/n, 15071 A Corufa, Spain
d.fgonzalez@udc.es,carlos.gomez@udc.es

Abstract

Discontinuous constituent parsers have always
lagged behind continuous approaches in terms
of accuracy and speed, as the presence of con-
stituents with discontinuous yield introduces
extra complexity to the task. However, a dis-
continuous tree can be converted into a contin-
uous variant by reordering tokens. Based on
that, we propose to reduce discontinuous pars-
ing to a continuous problem, which can then
be directly solved by any off-the-shelf contin-
uous parser. To that end, we develop a Pointer
Network capable of accurately generating the
continuous token arrangement for a given in-
put sentence and define a bijective function to
recover the original order. Experiments on the
main benchmarks with two continuous parsers
prove that our approach is on par in accuracy
with purely discontinuous state-of-the-art algo-
rithms, but considerably faster.

1 Introduction

Discontinuous phrase-structure trees (with cross-
ing branches like the one in Figure 1(a)) are crucial
for fully representing the wide range of syntac-
tic phenomena present in human languages such
as long-distance extractions, dislocations or cross-
serial dependencies, among others.

Although continuous approaches ignore these
linguistic phenomena by, for instance, removing
them from the original treebank (a common prac-
tice in the Penn Treebank (Marcus et al., 1993)),
there exist different algorithms that can handle dis-
continuous parsing. Currently, we can highlight (1)
those based in Linear Context-Free Rewriting Sys-
tems (LCFRS) (Vijay-Shanker et al., 1987), which
allow exact CKY-style parsing of discontinuous
structures at a high computational cost (Gebhardt,
2020; Ruprecht and Morbitz, 2021); (2) a variant of
the former that, while still making use of LCFRS
formalisms, increases parsing speed by implement-
ing a span-based scoring algorithm (Stern et al.,
2017) and not explicitly defining a set of rules

(Stanojevi¢ and Steedman, 2020; Corro, 2020); (3)
transition-based parsers that deal with discontinu-
ities by adding a specific transition in charge of
changing token order (Versley, 2014; Maier, 2015;
Maier and Lichte, 2016; Stanojevi¢ and Alhama,
2017; Coavoux and Crabbé, 2017) or by designing
new data structures that allow interactions between
already-created non-adjacent subtrees (Coavoux
et al., 2019; Coavoux and Cohen, 2019); and, fi-
nally, (4) several approaches that reduce discon-
tinuous constituent parsing to a simpler problem,
converting it, for instance, into a non-projective
dependency parsing task (Ferndndez-Gonzalez and
Martins, 2015; Fernandez-Gonzalez and Gémez-
Rodriguez, 2020a) or into a sequence labelling
problem (Vilares and Gémez-Rodriguez, 2020). In
(4), we can also include the solutions proposed by
Boyd (2007) and Versley (2016), which transform
discontinuous treebanks into continuous variants
where discontinuous constituents are encoded by
creating additional constituent nodes and extend-
ing the original non-terminal label set (following
a pseudo-projective technique (Nivre and Nilsson,
2005)), to then be processed by continuous pars-
ing models and discontinuities recovered in a post-
processing step.

It is well known that discontinuities are inher-
ently related to the order of tokens in the sentence,
and a discontinuous tree can be transformed into
a continuous one by just reordering the words and
without including additional structures, an idea
that has been exploited in practically all transition-
based parsers and other approaches (Vilares and
Gomez-Rodriguez, 2020). However, in these mod-
els the reordering process is tightly integrated and
inseparable from the parsing process.

Likely due to the lack of accurate models to ac-
complish reordering in isolation, we are not aware
of any approach framed in (4) that explicitly re-
duces discontinuous constituent parsing into a con-
tinuous problem, keeping the original set of con-

10570

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10570-10578
November 7-11, 2021. (©2021 Association for Computational Linguistics

a) ROOT

r PP PP

ADV VAFIN APPR ADJA NN NN APPR NN VVPP §.
| 1 | |

I 1 I I I 1
W= Allerdings, wird; in, bestimmten; Vierteln, Wasser; ausg Brunnen; verteilty .o

b) ROOT

S
r
VP
!

ADV APPR ADJA NN APPR NN
| | [| | |

1
T T
PP PP ‘
VVPP VAFIN NN $.
! ' ! |

W= Allerdings, in, bestimmten; Vierteln, auss Brunnen, verteilty wird, Wassers .o

C) fO=0, f)=7, fQ)=1, fB)=2 f@) =3, f(5)=8, f(6)=4 f()=5 f®)=6 f©)=9

Figure 1: a) Discontinuous constituent tree for a sentence in German NEGRA development split, b) its canonical
continuous arrangement and ¢) conversion of original positions into absolute CCA positions through function f

implemented by a Pointer Network.

stituent nodes and solving it with a completely in-
dependent continuous parser that does not have to
deal with an extended label set. Please note that
existing approaches that perform discontinuous-to-
continuous conversion, such as (Boyd, 2007) and
(Versley, 2016), not only modify the original dis-
continuous tree by including artificial constituent
nodes and enlarging its label scheme (probably pe-
nalizing parsing performance), but they are not able
to fully recover the original discontinuous tree due
to limitations of the proposed encodings.

In this paper, we study the (fully reversible)
discontinuous-to-continuous conversion by token
reordering and how any off-the-shelf continuous
parser can be directly applied without any further
adaptation or extended label set. To undertake the
independent token reordering, we rely on a Pointer
Network architecture (Vinyals et al., 2015) that can
accurately relocate those tokens causing disconti-
nuities in the sentence to new positions, generating
new sentences that can be directly parsed by any
continuous parser. We test our approach ! with two
continuous algorithms (Kitaev et al., 2019; Yang
and Deng, 2020) on three widely-used discontin-
uous treebanks, obtaining remarkable accuracies
and outperforming current state-of-the-art discon-
tinuous parsers in terms of speed.

2 Pointer Network Reordering

2.1 Continuous Canonical Arrangement

Let w = wy, ..., w,—1 be an input sentence of n
tokens, and ¢ a discontinuous constituent tree for
w. We are interested in a permutation (reordering)
w’ of w that turns ¢ into a continuous tree . While
there can be various permutations that achieve this
for a given tree, we will call continuous canonical
arrangement (CCA) of w and ¢ the permutation
obtained by placing the tokens of w in the order

'Source code available at https://github.com/
danifg/Pointer-Network-Reordering.

given by an in-order traversal of ¢.

This permutation defines a bijective function,
f:{0,...,n =1} = {0,...,n — 1}, mapping
each token at position ¢ in w to its new CCA posi-
tion j in w’. Then, w' can be parsed by a continu-
ous parser and, by keeping track of f (i.e., storing
original token positions), it is trivial to recover the
discontinuous tree by applying its inverse f 1. The
challenge is in accurately predicting the CCA po-
sitions for a given sentence w (i.e. learning f)
without knowing the parse tree ¢, a complex task
that will have a large impact on discontinous pars-
ing performance, as observed by e.g. Vilares and
Go6mez-Rodriguez (2020), who recently dealt with
reordering to extend their sequence-tagging encod-
ing for discontinuous parsing.

In Figure 1, we depict how a discontinuous tree
(a) is converted into a continuous variant (b) by
applying function f to map each original position
to its corresponding CCA position (c).

2.2 Pointer Networks

To implement function f and accurately obtain the
CCA positions for each token, we rely on Pointer
Networks (Vinyals et al., 2015). This neural ar-
chitecture was developed to, given an input se-
quence, output a sequence of discrete numbers that
correspond to positions from the input. Unlike
regular sequence-to-sequence models that use the
same dictionary of output labels for the whole train-
ing dataset, Pointer Networks employ an attention
mechanism (Bahdanau et al., 2014) to select posi-
tions from the input, so they can handle as many
labels as the length of each sentence instead of
having a fixed output dictionary size.

For our purpose, the input sequence will be w
and the output sequence, the absolute CCA posi-
tions (i.e., positions j in w’). Additionally, we
keep track of already-assigned CCA positions and
extend the Pointer Network with the uniqueness
constraint: once a CCA position is assigned to an

10571

https://github.com/danifg/Pointer-Network-Reordering
https://github.com/danifg/Pointer-Network-Reordering

input token, it is no longer available for the rest of
the sentence. As a consequence, the Pointer Net-
work will just need n-1 steps to relocate each token
of the original sentence from left to right, assigning
to the last token the remaining CCA position.

Although the overall performance of the pointer
is high enough, we note that the specific accuracy
on tokens affected by discontinuities is substan-
tially lower. This was expected due to the com-
plexity of the task and can be explained by the fact
that these kind of tokens are less frequent in the
training dataset and, in languages such as English,
the amount of discontinuous sentences is scarce,
not providing enough examples to adequately train
the pointer. To increase the pointer performance,
we decided to jointly train a labeller in charge of
identifying those tokens. More specifically, we con-
sider that a token is involved in a discontinuity if its
original position 7 differs from the CCA position j.
This is regardless of whether the token is part of a
discontinuous constituent or not, e.g., in Figure 1
it includes both the tokens in blue (that move left)
and those in red (that move right). The idea behind
this strategy is to prefer those models that better
relocate tokens that change its absolute position in
the resulting CCA.

While it can be argued that directly handling
absolute CCA positions might underperform ap-
proaches that use relative positions instead (as re-
ported by Vilares and Gémez-Rodriguez (2020)),
we already explored that strategy and found that
the use of relative CCA positions yielded worse
accuracy in a Pointer Network framework. This
can be mainly explained by the fact that we can-
not apply the uniqueness constraint when relative
positions are used, not reducing the search space
while the sentence processing advances. Moreover,
in regular sequence-to-sequence approaches, the
use of relative positions leads to a lower size of the
output dictionary, but this benefit has no impact in
Pointer Networks since the size of the dictionary
will always be the sentence length.

2.3 Neural Architecture

Following other pointer-network-based models
(Ma et al., 2018; Fernandez-Gonzalez and Gémez-
Rodriguez, 2019), we design a specific neural ar-
chitecture for our problem:

Encoder Each input sentence w is encoded, to-
ken by token, by a BILSTM-CNN architecture (Ma
and Hovy, 2016) into a sequence of encoder hidden

states hy, ..., h,_1. To that end, each input token
is initially represented as the concatenation of three
different vectors obtained from character-level rep-
resentations, regular pre-trained word embeddings
and fixed contextualized word embeddings ex-
tracted from the pre-trained language model BERT
(Devlin et al., 2019).

Decoder An LSTM is used to model the decod-
ing process. At each time step ¢, the decoder is fed
the encoder hidden state h; of the current token
w; to be relocated and generates a decoder hidden
state s that will be used for computing the proba-
bility distribution over all available CCA positions
from the input (i.e., j € [0,n—1]\ A, with A being
the set of already-assigned CCA positions). A bi-
affine scoring function (Dozat and Manning, 2017)
is used for computing this probability distribution
that will implement the attention mechanism:

vij = score(s;, h;) = g1(s;)" Wga(hy)
+U"g1(st) + VT ga(hy) + b;

a; = softmax(vy)

where W, U and V are the weights and ¢, (-) and
g2(+) are multilayer perceptrons (MLP).

The attention vector ay is then used as a pointer
that, at time step ¢, will select the highest-scoring
position j as the new CCA position for the token
originally located at <.

The Pointer Network is trained by minimizing
the total log loss (cross entropy) to choose the cor-
rect sequence of CCA positions. Additionally, a bi-
nary biaffine classifier (Dozat and Manning, 2017)
that identifies relocated tokens is jointly trained by
summing the pointer and labeller losses. Since the
decoding process requires n — 1 steps to assign
the CCA position to each token and at each step
the attention vector a; is computed over the whole
input, the proposed neural model can process a sen-
tence in O(n?) time complexity. Figure 2 depicts
the neural architecture and the decoding procedure
for reordering the sentence in Figure 1(a).

3 Experiments

3.1 Setup

Data We test our approach on two German dis-
continuous treebanks, NEGRA (Skut et al., 1997)
and TIGER (Brants et al., 2002), and the discon-
tinuous English Penn Treebank (DPTB) (Evang
and Kallmeyer, 2011) with standard splits as de-
scribed in Appendix A.1, discarding PoS tags in all

10572

Allerdings,, wird;

in, bestimmten; ... Brunnen; verteilt; .

BiLSTM Encoder

LSTM Decoder

ho| | M hy| by

- S U

Figure 2: Simplified sketch of the Pointer Network architecture and decoding steps to reorder the sentence in

Figure 1(a).

label. UAS Rec. Prec. F1 %gold %pred
TIGER no 94.16 76.11 76.20 76.15 17.65 17.63
yes 94.19 77.66 76.14 76.89 17.65 18.00
NEGRA no 94.56 79.44 80.20 79.82 18.73 18.55
yes 94.82 81.58 80.21 80.89 18.73 19.05
DPTB no 97.69 78.63 77.56 78.09 7.25 735
yes 97.88 82.20 78.40 80.26 7.25 7.61

Table 1: Pointer performance with and without the la-
beller on dev splits. label. = using labeller or not.
UAS = Unlabelled Attachment Score. Rec., Prec. and
F1 = Recall, precision and F-score on relocated tokens.
% gold = % of relocated tokens on the gold set. % pred
= % of relocated tokens predicted by the pointer.

cases. We apply discodop? (van Cranenburgh
et al., 2016) to transform them into continuous
treebanks. This tool follows a depth-first in-order
traversal that reorders words to remove crossing
branches. For all treebanks, we convert discon-
tinuous trees in export format into continuous
variants in discbracket format, using the re-
sulting word permutation as CCAs for training
the pointer and keeping track of the original word
order for implementing the inverse function f~1!.
Additionally, the resulting continuous treebanks
in discbracket format are also converted by
discodop into the commonly-used bracket
format for training continuous parsers.

Pointer settings Word vectors are initialized
with a concatenation of pre-trained structured-
skipgram embeddings (Ling et al., 2015) and fixed
weights extracted from one or several layers of
the BASE and LARGE sizes of the pre-trained lan-
guage model BERT (Devlin et al., 2019). In partic-
ular, we follow (Fernandez-Gonzalez and Gomez-
Rodriguez, 2020b) and extract weights from the
second-to-last layer for the BASE models and, for

Mttps://github.com/andreasve/
disco-dop

the LARGE models, we use a combination of four
layers from 17 to 20. We do not try other variations
that might probably work better for our specific
task. While regular word embeddings are fine-
tuned during training, BERT-based embeddings
are kept fixed following a less resource-consuming
strategy. See Appendix A.2 for further details.

Parsers For parsing the CCAs generated by the
pointer, we employ two off-the-shelf continuous
constituent parsers that excel in continuous bench-
marks: the chart-based parser by Kitaev et al.
(2019) and the transition-based model by Yang and
Deng (2020). In both cases, we adopt the basic con-
figuration (described in their respective papers) and
just vary the encoder initialization with BERTEsg
and BERT] srge (Devlin et al., 2019), as well as
XLNet (Yang et al., 2019).

Metrics Following standard practice, we ignore
punctuation and root symbols for evaluating discon-
tinuous parsing and use discodop for reporting
F-score and discontinuous F-score (DF1).> For
jointly evaluating the pointer and labeller perfor-
mance, we rely on the Labelled Attachment Score*
(LAS) and choose the model with the highest score
on the development set. For reporting speeds, we
use sentences per second (sent/s).

3.2 Results

Table 1 highlights how the labeller enhances the
pointer’s performance. While the overall UAS (or
LAS when the labeller is used, since its accuracy
is 100% in all cases) is not affected substantially,
it can be seen that the percentage of relocated to-

3F-score measured only on discontinuous constituents.

* A standard metric used for dependency parsing that, in our
case, measures which tokens have the correct CCA position
and also were correctly identified as relocated token.

10573

https://github.com/andreasvc/disco-dop
https://github.com/andreasvc/disco-dop

TIGER NEGRA DPTB

Parser (no tags or predicted PoS tags) F1 DF1 sent/s F1 DF1 sent/s F1 DF1 sent/s
Versley (2016) 79.5 - - - - - - - -
Coavoux and Cohen (2019) 82.5 559 o4 83.2 56.3 - 90.9 673 38
Coavoux et al. (2019) 82.7 559 126 832 546 - 91.0 71.3 80
Stanojevi¢ and Steedman (2020) 83.4 53.5 - 83.6 50.7 - 90.5 67.1 -
Corro (2020) 85.2 512 474 86.3 56.1 478 929 649 355
Corro (2020) + BERTx 90.0 62.1 - 91.6 66.1 - 94.8 68.9 -
Ruprecht and Morbitz (2021) 82.5 559 101 82.7 49.0 136 90.1 729 95
Ruprecht and Morbitz (2021) + BERTgase 88.3 69.0 60 90.9 72.6 68 93.3 80.5 57
Vilares and Gémez-Rodriguez (2020) 77.5 395 568 75.6 346 715 88.8 45.8 611
Vilares and Gémez-Rodriguez (2020) + BERTgase 84.6 51.1 80 839 456 80 91.9 50.8 80
Vilares and Gémez-Rodriguez (2020) + BERT arcr - - - - - - 92.8 539 34
Fernandez-Gonzélez and Gémez-Rodriguez (2020a) 85.7 60.4 - 85.7 58.6 - - - -
Ferndndez-Gonzdlez and Gémez-Rodriguez (2020b)* 86.6 62.6 - 86.8 69.5 - - - -
Ferndndez-Gonzdlez and Gémez-Rodriguez (2020b)+BERTg, . 89.8 71.0 - 91.0 76.6 - - - -
Pointer + Kitaev et al. (2019) + BERTgase 88.5 63.0 238 90.0 65.9 275 94.0 68.9 231
Pointer + Kitaev et al. (2019) + BERTLarcr 90.5 68.1 207 92.0 679 216 947 729 193
Pointer + Kitaev et al. (2019) + XLNet - - - - - - 95.1 74.1 179
Pointer + Yang and Deng (2020) + BERTgase 88.5 62.7 157 90.4 66.5 188 94.1 672 152
Pointer + Yang and Deng (2020) + BERT L arce 90.5 68.8 129 91.7 67.9 158 948 71.3 135
Pointer + Yang and Deng (2020) + XLNet - - - - - - 95.5 734 133

Table 2: Comparison of our approach against discontinuous constituent parsers on the test split. BERTx denotes
that the size was not specified in the original paper. In those cases where the parser uses XLNet, the pointer is
initialized with BERT| spge. * uses extra dependency information. All reported speeds were measured on GPU.

kens predicted by the pointer is higher (increased
recall without harming precision), also leading to
an improvement in F-score.

In Table 2, we show how our novel neural ar-
chitecture (combined with two continuous parsers)
achieves competitive accuracies in all datasets, out-
performing all existing parsers when the largest pre-
trained models are employed. It is important also to
remark that F-scores on discontinuities produced by
our setup (and where the pointer has an important
role) are on par with purely discontinuous parsers.’
Regarding efficiency, the proposed Pointer Net-
work provides high speeds even with BERT srge:
on the test splits, 553.7 sent/s on TIGER, 613.5
sent/s on NEGRA and 694.3 sent/s on DPTB. As a
result, continuous parsers’ efficiency is not penal-
ized, and the pointer+parser combinations are faster
than all existing approaches that use pre-trained lan-
guage models (including the fastest parser to date
by Vilares and Gémez-Rodriguez (2020), which is
also outperformed by a wide margin in terms of
accuracy). Finally, as also observed on continuous
treebanks, no meaningful differences can be seen
between both continuous parsers’ performance.

4 Conclusions and Future work

We show that, by accurately removing crossing
branches from discontinuous trees, continuous

SWe believe that the remarkable performance obtained on
discontinuities by Ferndndez-Gonzdlez and Gémez-Rodriguez
(2020b) probably owes to the leverage of additional non-
projective dependency information.

parsers can perform discontinuous parsing more
efficiently, achieving accuracies on par with more
expensive discontinuous approaches. In addition,
the proposed Pointer Network can be easily com-
bined with any off-the-self continuous parser and,
while barely affecting its efficiency, it can extend its
coverage to fully model discontinuous phenomena.
We will investigate alternatives to the in-
order reordering (e.g., pre- and post-order traver-
sal or language-specific rules to generate more
continuous-friendly structures). While we think
that using a different CCA would have no substan-
tial impact on Pointer Network reordering, it might
affect continuous parsing performance (as it may
be easier for the parser to process reordered con-
stituent trees with a syntax closer to original contin-
uous structures, and factors like the degree of left
vs. right branching may also have an influence).

Acknowledgments

We acknowledge the European Research Council
(ERC), which has funded this research under the
European Union’s Horizon 2020 research and inno-
vation programme (FASTPARSE, grant agreement
No 714150), ERDF/MICINN-AEI (ANSWER-
ASAP, TIN2017-85160-C2-1-R), Xunta de Galicia
(ED431C 2020/11), and Centro de Investigacién de
Galicia “CITIC”, funded by Xunta de Galicia and
the European Union (ERDF - Galicia 2014-2020
Program), by grant ED431G 2019/01.

10574

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. = CoRR,
abs/1409.0473.

Adriane Boyd. 2007. Discontinuity revisited: An im-
proved conversion to context-free representations.
In Proceedings of the Linguistic Annotation Work-
shop, pages 41-44, Prague, Czech Republic. Associ-
ation for Computational Linguistics.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. TIGER tree-
bank. In Proceedings of the 1st Workshop on Tree-
banks and Linguistic Theories (TLT), pages 24—-42.

Maximin Coavoux and Shay B. Cohen. 2019. Discon-
tinuous constituency parsing with a stack-free tran-
sition system and a dynamic oracle. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 204-217, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Maximin Coavoux and Benoit Crabbé. 2017. Incre-
mental discontinuous phrase structure parsing with
the GAP transition. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 1259-1270,
Valencia, Spain. Association for Computational Lin-
guistics.

Maximin Coavoux, Benoit Crabbé, and Shay B. Cohen.
2019. Unlexicalized transition-based discontinuous
constituency parsing. Transactions of the Associa-
tion for Computational Linguistics, 7:73—89.

Caio Corro. 2020. Span-based discontinuous con-
stituency parsing: a family of exact chart-based al-
gorithms with time complexities from O(n"6) down
to O(n"3). In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2753-2764, Online. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In ICLR. OpenReview.net.

Amit Dubey and Frank Keller. 2003. Probabilistic pars-
ing for German using sister-head dependencies. In
Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics, pages 96—
103, Sapporo, Japan.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS
parsing of English discontinuous constituents. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 104-116, Dublin, Ire-
land. Association for Computational Linguistics.

Daniel Ferndndez-Gonzdlez and Carlos Goémez-
Rodriguez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710-716, Minneapolis, Minnesota.
Association for Computational Linguistics.

Daniel Fernandez-Gonzilez and Carlos Goémez-
Rodriguez. 2020a. Discontinuous constituent
parsing with pointer networks. In Proceedings of
the Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 7724-7731. AAAI
Press.

Daniel Fernandez-Gonzédlez and Carlos Goémez-
Rodriguez. 2020b. Multitask pointer network for
multi-representational parsing.

Daniel Ferndndez-Gonzédlez and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523-1533, Beijing,
China. Association for Computational Linguistics.

Kilian Gebhardt. 2020. Advances in using grammars
with latent annotations for discontinuous parsing. In
Proceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 91-97, Online. Association for Computa-
tional Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Published as a
conference paper at the 3rd International Conference
for Learning Representations, San Diego, 2015.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3499-3505, Florence, Italy. Associa-
tion for Computational Linguistics.

Wang Ling, Chris Dyer, Alan W. Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
Word2Vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 1299-1304, Denver, Colorado.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional Istm-cnns-crf. In

10575

https://www.aclweb.org/anthology/W07-1506
https://www.aclweb.org/anthology/W07-1506
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/W11-2913
https://www.aclweb.org/anthology/W11-2913
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/https://doi.org/10.1609/aaai.v34i05.6275
https://doi.org/https://doi.org/10.1609/aaai.v34i05.6275
http://arxiv.org/abs/2009.09730
http://arxiv.org/abs/2009.09730
https://doi.org/10.3115/v1/P15-1147
https://doi.org/10.18653/v1/2020.iwpt-1.9
https://doi.org/10.18653/v1/2020.iwpt-1.9
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340

Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1064—
1074. Association for Computational Linguistics.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard H. Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, Melbourne, Aus-

tralia, July 15-20, 2018, pages 1403-1414.

Wolfgang Maier. 2015. Discontinuous incremental
shift-reduce parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1202-1212, Beijing, China. As-
sociation for Computational Linguistics.

Wolfgang Maier and Timm Lichte. 2016. Discontinu-
ous parsing with continuous trees. In Proceedings
of the Workshop on Discontinuous Structures in Nat-
ural Language Processing, pages 47-57, San Diego,
California. Association for Computational Linguis-
tics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19:313-330.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 99-106, Ann
Arbor, Michigan. Association for Computational
Linguistics.

Thomas Ruprecht and Richard Morbitz. 2021.
Supertagging-based parsing with linear context-free
rewriting systems. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2923-2935, Online.
Association for Computational Linguistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kiibler, Marie
Candito, Jinho D. Choi, Richard Farkas, Jen-
nifer Foster, Takes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiérkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Wolinski, Alina Wréblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL
2013 shared task: A cross-framework evaluation of
parsing morphologically rich languages. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146-182,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An annotation scheme for
free word order languages. In Proceedings of the

Fifth Conference on Applied Natural Language Pro-
cessing, ANLC *97, pages 88-95, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Milos Stanojevi¢ and Raquel G. Alhama. 2017. Neu-
ral discontinuous constituency parsing. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1666—1676,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Milo§ Stanojevi¢ and Mark Steedman. 2020. Span-
based LCFRS-2 parsing. In Proceedings of the 16th
International Conference on Parsing Technologies
and the IWPT 2020 Shared Task on Parsing into
Enhanced Universal Dependencies, pages 111-121,
Online. Association for Computational Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818-827, Vancouver, Canada.
Association for Computational Linguistics.

Andreas van Cranenburgh, Remko Scha, and Rens Bod.
2016. Data-oriented parsing with discontinuous con-
stituents and function tags. J. Language Modelling,
4:57-111.

Yannick Versley. 2014. Experiments with easy-first
nonprojective constituent parsing. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 39-53,
Dublin, Ireland. Dublin City University.

Yannick Versley. 2016. Discontinuity (re)2-visited: A
minimalist approach to pseudoprojective constituent
parsing. In Proceedings of the Workshop on Discon-
tinuous Structures in Natural Language Processing,
pages 58—69, San Diego, California.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. In Pro-
ceedings of the 25th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL’87), pages
104-111, Morristown, NJ, USA. Association for
Computational Linguistics.

David Vilares and Carlos G6émez-Rodriguez. 2020.
Discontinuous constituent parsing as sequence la-
beling. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2771-2785, Online. Associa-
tion for Computational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 2692-2700. Curran Asso-
ciates, Inc.

10576

https://doi.org/10.3115/v1/P15-1116
https://doi.org/10.3115/v1/P15-1116
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.18653/v1/2021.naacl-main.232
https://doi.org/10.18653/v1/2021.naacl-main.232
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://doi.org/10.18653/v1/D17-1174
https://doi.org/10.18653/v1/D17-1174
https://doi.org/10.18653/v1/2020.iwpt-1.12
https://doi.org/10.18653/v1/2020.iwpt-1.12
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/2020.emnlp-main.221
https://doi.org/10.18653/v1/2020.emnlp-main.221

Kaiyu Yang and Jia Deng. 2020. Strongly incremental
constituency parsing with graph neural networks. In
Neural Information Processing Systems.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

10577

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

A Appendices

A.1 Treebank splits

Standard splits for discontinuous German NEGRA
(Skut et al., 1997) and TIGER (Brants et al., 2002)
treebanks are defined by (Dubey and Keller, 2003)
and (Seddah et al., 2013), respectively. For the dis-
continuous version of the English Penn Treebank
(DPTB) (Evang and Kallmeyer, 2011), commonly-
used splits are defined as follows: Sections 2 to 21
for training, 22 for development and 23 for testing.
In Table 3, we report the number of samples per
treebank split.

Treebank Training Dev Test
TIGER 40,472 5,000 5,000
NEGRA 18,602 1,000 1,000
DPTB 39,832 1,700 2,416

Table 3: Treebank statistics.

A.2 Pointer Settings

Pre-trained word embeddings The spe-
cific pre-trained BERT models used in this
work were: for English, bert-base-cased
and bert-large-cased; and, for Ger-
man, bert-base-german-cased and
deepset/gbert-large. The same pre-
trained models were also used for both continuous
parsers, including also x1net-large-cased
in those experiments where XLNet is employed
for initializing the parser’s encoder.

Hyper-parameters We use the Adam optimizer
(Kingma and Ba, 2014) and the same hyper-
parameter selection as the dependency parser by
(Ma et al., 2018). No further adaptation to our
specific task was performed. These are detailed in
Table 4.

Hardware Our approach (combined with the
two specified continuous parsers) was fully tested
on an Intel(R) Core(TM) i9-10920X CPU @
3.50GHz with a single GeForce RTX 3090 GPU.
All speeds are measured considering the time taken
by the whole process, i.e., the reordering, continu-
ous parsing and reversal of the reordering.

10578

Architecture hyper-parameters

CNN window size 3
CNN number of filters 50
BiLSTM encoder layers 3
BiLSTM encoder size 512
LSTM decoder layers 1
LSTM decoder size 512
LSTM layers dropout 0.33
Word/Char. embedding dimension 100
BERTgAsE embedding dimension 768
BERT . arGe embedding dimension 1024
Embeddings dropout 0.33
MLP layers 1
MLP activation function ELU
CCA Position MLP size 512
Label MLP size 128
UNK replacement probability 0.5
Beam size 10
Adam optimizer hyper-parameters

Initial learning rate 0.001
B1, B2 0.9
Batch size 32
Decay rate 0.75
Gradient clipping 5.0

Table 4: Model hyper-parameters.

