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Abstract

Discontinuous constituent parsers have always
lagged behind continuous approaches in terms
of accuracy and speed, as the presence of con-
stituents with discontinuous yield introduces
extra complexity to the task. However, a dis-
continuous tree can be converted into a contin-
uous variant by reordering tokens. Based on
that, we propose to reduce discontinuous pars-
ing to a continuous problem, which can then
be directly solved by any off-the-shelf contin-
uous parser. To that end, we develop a Pointer
Network capable of accurately generating the
continuous token arrangement for a given in-
put sentence and define a bijective function to
recover the original order. Experiments on the
main benchmarks with two continuous parsers
prove that our approach is on par in accuracy
with purely discontinuous state-of-the-art algo-
rithms, but considerably faster.

1 Introduction

Discontinuous phrase-structure trees (with cross-
ing branches like the one in Figure 1(a)) are crucial
for fully representing the wide range of syntac-
tic phenomena present in human languages such
as long-distance extractions, dislocations or cross-
serial dependencies, among others.

Although continuous approaches ignore these
linguistic phenomena by, for instance, removing
them from the original treebank (a common prac-
tice in the Penn Treebank (Marcus et al., 1993)),
there exist different algorithms that can handle dis-
continuous parsing. Currently, we can highlight (1)
those based in Linear Context-Free Rewriting Sys-
tems (LCFRS) (Vijay-Shanker et al., 1987), which
allow exact CKY-style parsing of discontinuous
structures at a high computational cost (Gebhardt,
2020; Ruprecht and Morbitz, 2021); (2) a variant of
the former that, while still making use of LCFRS
formalisms, increases parsing speed by implement-
ing a span-based scoring algorithm (Stern et al.,
2017) and not explicitly defining a set of rules

(Stanojevi¢ and Steedman, 2020; Corro, 2020); (3)
transition-based parsers that deal with discontinu-
ities by adding a specific transition in charge of
changing token order (Versley, 2014; Maier, 2015;
Maier and Lichte, 2016; Stanojevi¢ and Alhama,
2017; Coavoux and Crabbé, 2017) or by designing
new data structures that allow interactions between
already-created non-adjacent subtrees (Coavoux
et al., 2019; Coavoux and Cohen, 2019); and, fi-
nally, (4) several approaches that reduce discon-
tinuous constituent parsing to a simpler problem,
converting it, for instance, into a non-projective
dependency parsing task (Ferndndez-Gonzalez and
Martins, 2015; Fernandez-Gonzalez and Gémez-
Rodriguez, 2020a) or into a sequence labelling
problem (Vilares and Gémez-Rodriguez, 2020). In
(4), we can also include the solutions proposed by
Boyd (2007) and Versley (2016), which transform
discontinuous treebanks into continuous variants
where discontinuous constituents are encoded by
creating additional constituent nodes and extend-
ing the original non-terminal label set (following
a pseudo-projective technique (Nivre and Nilsson,
2005)), to then be processed by continuous pars-
ing models and discontinuities recovered in a post-
processing step.

It is well known that discontinuities are inher-
ently related to the order of tokens in the sentence,
and a discontinuous tree can be transformed into
a continuous one by just reordering the words and
without including additional structures, an idea
that has been exploited in practically all transition-
based parsers and other approaches (Vilares and
Gomez-Rodriguez, 2020). However, in these mod-
els the reordering process is tightly integrated and
inseparable from the parsing process.

Likely due to the lack of accurate models to ac-
complish reordering in isolation, we are not aware
of any approach framed in (4) that explicitly re-
duces discontinuous constituent parsing into a con-
tinuous problem, keeping the original set of con-
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Figure 1: a) Discontinuous constituent tree for a sentence in German NEGRA development split, b) its canonical
continuous arrangement and ¢) conversion of original positions into absolute CCA positions through function f

implemented by a Pointer Network.

stituent nodes and solving it with a completely in-
dependent continuous parser that does not have to
deal with an extended label set. Please note that
existing approaches that perform discontinuous-to-
continuous conversion, such as (Boyd, 2007) and
(Versley, 2016), not only modify the original dis-
continuous tree by including artificial constituent
nodes and enlarging its label scheme (probably pe-
nalizing parsing performance), but they are not able
to fully recover the original discontinuous tree due
to limitations of the proposed encodings.

In this paper, we study the (fully reversible)
discontinuous-to-continuous conversion by token
reordering and how any off-the-shelf continuous
parser can be directly applied without any further
adaptation or extended label set. To undertake the
independent token reordering, we rely on a Pointer
Network architecture (Vinyals et al., 2015) that can
accurately relocate those tokens causing disconti-
nuities in the sentence to new positions, generating
new sentences that can be directly parsed by any
continuous parser. We test our approach ! with two
continuous algorithms (Kitaev et al., 2019; Yang
and Deng, 2020) on three widely-used discontin-
uous treebanks, obtaining remarkable accuracies
and outperforming current state-of-the-art discon-
tinuous parsers in terms of speed.

2 Pointer Network Reordering

2.1 Continuous Canonical Arrangement

Let w = wy, ..., w,—1 be an input sentence of n
tokens, and ¢ a discontinuous constituent tree for
w. We are interested in a permutation (reordering)
w’ of w that turns ¢ into a continuous tree . While
there can be various permutations that achieve this
for a given tree, we will call continuous canonical
arrangement (CCA) of w and ¢ the permutation
obtained by placing the tokens of w in the order

'Source code available at https://github.com/
danifg/Pointer-Network-Reordering.

given by an in-order traversal of ¢.

This permutation defines a bijective function,
f:{0,...,n =1} = {0,...,n — 1}, mapping
each token at position ¢ in w to its new CCA posi-
tion j in w’. Then, w' can be parsed by a continu-
ous parser and, by keeping track of f (i.e., storing
original token positions), it is trivial to recover the
discontinuous tree by applying its inverse f 1. The
challenge is in accurately predicting the CCA po-
sitions for a given sentence w (i.e. learning f)
without knowing the parse tree ¢, a complex task
that will have a large impact on discontinous pars-
ing performance, as observed by e.g. Vilares and
Go6mez-Rodriguez (2020), who recently dealt with
reordering to extend their sequence-tagging encod-
ing for discontinuous parsing.

In Figure 1, we depict how a discontinuous tree
(a) is converted into a continuous variant (b) by
applying function f to map each original position
to its corresponding CCA position (c).

2.2 Pointer Networks

To implement function f and accurately obtain the
CCA positions for each token, we rely on Pointer
Networks (Vinyals et al., 2015). This neural ar-
chitecture was developed to, given an input se-
quence, output a sequence of discrete numbers that
correspond to positions from the input. Unlike
regular sequence-to-sequence models that use the
same dictionary of output labels for the whole train-
ing dataset, Pointer Networks employ an attention
mechanism (Bahdanau et al., 2014) to select posi-
tions from the input, so they can handle as many
labels as the length of each sentence instead of
having a fixed output dictionary size.

For our purpose, the input sequence will be w
and the output sequence, the absolute CCA posi-
tions (i.e., positions j in w’). Additionally, we
keep track of already-assigned CCA positions and
extend the Pointer Network with the uniqueness
constraint: once a CCA position is assigned to an
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input token, it is no longer available for the rest of
the sentence. As a consequence, the Pointer Net-
work will just need n-1 steps to relocate each token
of the original sentence from left to right, assigning
to the last token the remaining CCA position.

Although the overall performance of the pointer
is high enough, we note that the specific accuracy
on tokens affected by discontinuities is substan-
tially lower. This was expected due to the com-
plexity of the task and can be explained by the fact
that these kind of tokens are less frequent in the
training dataset and, in languages such as English,
the amount of discontinuous sentences is scarce,
not providing enough examples to adequately train
the pointer. To increase the pointer performance,
we decided to jointly train a labeller in charge of
identifying those tokens. More specifically, we con-
sider that a token is involved in a discontinuity if its
original position 7 differs from the CCA position j.
This is regardless of whether the token is part of a
discontinuous constituent or not, e.g., in Figure 1
it includes both the tokens in blue (that move left)
and those in red (that move right). The idea behind
this strategy is to prefer those models that better
relocate tokens that change its absolute position in
the resulting CCA.

While it can be argued that directly handling
absolute CCA positions might underperform ap-
proaches that use relative positions instead (as re-
ported by Vilares and Gémez-Rodriguez (2020)),
we already explored that strategy and found that
the use of relative CCA positions yielded worse
accuracy in a Pointer Network framework. This
can be mainly explained by the fact that we can-
not apply the uniqueness constraint when relative
positions are used, not reducing the search space
while the sentence processing advances. Moreover,
in regular sequence-to-sequence approaches, the
use of relative positions leads to a lower size of the
output dictionary, but this benefit has no impact in
Pointer Networks since the size of the dictionary
will always be the sentence length.

2.3 Neural Architecture

Following other pointer-network-based models
(Ma et al., 2018; Fernandez-Gonzalez and Gémez-
Rodriguez, 2019), we design a specific neural ar-
chitecture for our problem:

Encoder Each input sentence w is encoded, to-
ken by token, by a BILSTM-CNN architecture (Ma
and Hovy, 2016) into a sequence of encoder hidden

states hy, ..., h,_1. To that end, each input token
is initially represented as the concatenation of three
different vectors obtained from character-level rep-
resentations, regular pre-trained word embeddings
and fixed contextualized word embeddings ex-
tracted from the pre-trained language model BERT
(Devlin et al., 2019).

Decoder An LSTM is used to model the decod-
ing process. At each time step ¢, the decoder is fed
the encoder hidden state h; of the current token
w; to be relocated and generates a decoder hidden
state s that will be used for computing the proba-
bility distribution over all available CCA positions
from the input (i.e., j € [0,n—1]\ A, with A being
the set of already-assigned CCA positions). A bi-
affine scoring function (Dozat and Manning, 2017)
is used for computing this probability distribution
that will implement the attention mechanism:

vij = score(s;, h;) = g1(s;)" Wga(hy)
+U"g1(st) + VT ga(hy) + b;

a; = softmax(vy)

where W, U and V are the weights and ¢, (-) and
g2(+) are multilayer perceptrons (MLP).

The attention vector ay is then used as a pointer
that, at time step ¢, will select the highest-scoring
position j as the new CCA position for the token
originally located at <.

The Pointer Network is trained by minimizing
the total log loss (cross entropy) to choose the cor-
rect sequence of CCA positions. Additionally, a bi-
nary biaffine classifier (Dozat and Manning, 2017)
that identifies relocated tokens is jointly trained by
summing the pointer and labeller losses. Since the
decoding process requires n — 1 steps to assign
the CCA position to each token and at each step
the attention vector a; is computed over the whole
input, the proposed neural model can process a sen-
tence in O(n?) time complexity. Figure 2 depicts
the neural architecture and the decoding procedure
for reordering the sentence in Figure 1(a).

3 Experiments

3.1 Setup

Data We test our approach on two German dis-
continuous treebanks, NEGRA (Skut et al., 1997)
and TIGER (Brants et al., 2002), and the discon-
tinuous English Penn Treebank (DPTB) (Evang
and Kallmeyer, 2011) with standard splits as de-
scribed in Appendix A.1, discarding PoS tags in all
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Figure 2: Simplified sketch of the Pointer Network architecture and decoding steps to reorder the sentence in

Figure 1(a).

label. UAS Rec. Prec. F1 %gold %pred
TIGER no 94.16 76.11 76.20 76.15 17.65 17.63
yes 94.19 77.66 76.14 76.89 17.65 18.00
NEGRA no 94.56 79.44 80.20 79.82 18.73 18.55
yes 94.82 81.58 80.21 80.89 18.73 19.05
DPTB no 97.69 78.63 77.56 78.09 7.25 735
yes 97.88 82.20 78.40 80.26 7.25 7.61

Table 1: Pointer performance with and without the la-
beller on dev splits. label. = using labeller or not.
UAS = Unlabelled Attachment Score. Rec., Prec. and
F1 = Recall, precision and F-score on relocated tokens.
% gold = % of relocated tokens on the gold set. % pred
= % of relocated tokens predicted by the pointer.

cases. We apply discodop? (van Cranenburgh
et al., 2016) to transform them into continuous
treebanks. This tool follows a depth-first in-order
traversal that reorders words to remove crossing
branches. For all treebanks, we convert discon-
tinuous trees in export format into continuous
variants in discbracket format, using the re-
sulting word permutation as CCAs for training
the pointer and keeping track of the original word
order for implementing the inverse function f~1!.
Additionally, the resulting continuous treebanks
in discbracket format are also converted by
discodop into the commonly-used bracket
format for training continuous parsers.

Pointer settings Word vectors are initialized
with a concatenation of pre-trained structured-
skipgram embeddings (Ling et al., 2015) and fixed
weights extracted from one or several layers of
the BASE and LARGE sizes of the pre-trained lan-
guage model BERT (Devlin et al., 2019). In partic-
ular, we follow (Fernandez-Gonzalez and Gomez-
Rodriguez, 2020b) and extract weights from the
second-to-last layer for the BASE models and, for

Mttps://github.com/andreasve/
disco-dop

the LARGE models, we use a combination of four
layers from 17 to 20. We do not try other variations
that might probably work better for our specific
task. While regular word embeddings are fine-
tuned during training, BERT-based embeddings
are kept fixed following a less resource-consuming
strategy. See Appendix A.2 for further details.

Parsers For parsing the CCAs generated by the
pointer, we employ two off-the-shelf continuous
constituent parsers that excel in continuous bench-
marks: the chart-based parser by Kitaev et al.
(2019) and the transition-based model by Yang and
Deng (2020). In both cases, we adopt the basic con-
figuration (described in their respective papers) and
just vary the encoder initialization with BERTEsg
and BERT] srge (Devlin et al., 2019), as well as
XLNet (Yang et al., 2019).

Metrics Following standard practice, we ignore
punctuation and root symbols for evaluating discon-
tinuous parsing and use discodop for reporting
F-score and discontinuous F-score (DF1).> For
jointly evaluating the pointer and labeller perfor-
mance, we rely on the Labelled Attachment Score*
(LAS) and choose the model with the highest score
on the development set. For reporting speeds, we
use sentences per second (sent/s).

3.2 Results

Table 1 highlights how the labeller enhances the
pointer’s performance. While the overall UAS (or
LAS when the labeller is used, since its accuracy
is 100% in all cases) is not affected substantially,
it can be seen that the percentage of relocated to-

3F-score measured only on discontinuous constituents.

* A standard metric used for dependency parsing that, in our
case, measures which tokens have the correct CCA position
and also were correctly identified as relocated token.
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TIGER NEGRA DPTB

Parser (no tags or predicted PoS tags) F1 DF1 sent/s F1 DF1 sent/s F1 DF1 sent/s
Versley (2016) 79.5 - - - - - - - -
Coavoux and Cohen (2019) 82.5 559 o4 83.2 56.3 - 90.9 673 38
Coavoux et al. (2019) 82.7 559 126 832 546 - 91.0 71.3 80
Stanojevi¢ and Steedman (2020) 83.4 53.5 - 83.6 50.7 - 90.5 67.1 -
Corro (2020) 85.2 512 474 86.3 56.1 478 929 649 355
Corro (2020) + BERTx 90.0 62.1 - 91.6 66.1 - 94.8 68.9 -
Ruprecht and Morbitz (2021) 82.5 559 101 82.7 49.0 136 90.1 729 95
Ruprecht and Morbitz (2021) + BERTgase 88.3 69.0 60 90.9 72.6 68 93.3 80.5 57
Vilares and Gémez-Rodriguez (2020) 77.5 395 568 75.6 346 715  88.8 45.8 611
Vilares and Gémez-Rodriguez (2020) + BERTgase 84.6 51.1 80 839 456 80 91.9 50.8 80
Vilares and Gémez-Rodriguez (2020) + BERT arcr - - - - - - 92.8 539 34
Fernandez-Gonzélez and Gémez-Rodriguez (2020a) 85.7 60.4 - 85.7 58.6 - - - -
Ferndndez-Gonzdlez and Gémez-Rodriguez (2020b)* 86.6 62.6 - 86.8 69.5 - - - -
Ferndndez-Gonzdlez and Gémez-Rodriguez (2020b)+BERTg, . 89.8 71.0 - 91.0 76.6 - - - -
Pointer + Kitaev et al. (2019) + BERTgase 88.5 63.0 238 90.0 65.9 275 94.0 68.9 231
Pointer + Kitaev et al. (2019) + BERTLarcr 90.5 68.1 207 92.0 679 216 947 729 193
Pointer + Kitaev et al. (2019) + XLNet - - - - - - 95.1 74.1 179
Pointer + Yang and Deng (2020) + BERTgase 88.5 62.7 157 90.4 66.5 188 94.1 672 152
Pointer + Yang and Deng (2020) + BERT L arce 90.5 68.8 129 91.7 67.9 158 948 71.3 135
Pointer + Yang and Deng (2020) + XLNet - - - - - - 95.5 734 133

Table 2: Comparison of our approach against discontinuous constituent parsers on the test split. BERTx denotes
that the size was not specified in the original paper. In those cases where the parser uses XLNet, the pointer is
initialized with BERT| spge. * uses extra dependency information. All reported speeds were measured on GPU.

kens predicted by the pointer is higher (increased
recall without harming precision), also leading to
an improvement in F-score.

In Table 2, we show how our novel neural ar-
chitecture (combined with two continuous parsers)
achieves competitive accuracies in all datasets, out-
performing all existing parsers when the largest pre-
trained models are employed. It is important also to
remark that F-scores on discontinuities produced by
our setup (and where the pointer has an important
role) are on par with purely discontinuous parsers.’
Regarding efficiency, the proposed Pointer Net-
work provides high speeds even with BERT srge:
on the test splits, 553.7 sent/s on TIGER, 613.5
sent/s on NEGRA and 694.3 sent/s on DPTB. As a
result, continuous parsers’ efficiency is not penal-
ized, and the pointer+parser combinations are faster
than all existing approaches that use pre-trained lan-
guage models (including the fastest parser to date
by Vilares and Gémez-Rodriguez (2020), which is
also outperformed by a wide margin in terms of
accuracy). Finally, as also observed on continuous
treebanks, no meaningful differences can be seen
between both continuous parsers’ performance.

4 Conclusions and Future work

We show that, by accurately removing crossing
branches from discontinuous trees, continuous

SWe believe that the remarkable performance obtained on
discontinuities by Ferndndez-Gonzdlez and Gémez-Rodriguez
(2020b) probably owes to the leverage of additional non-
projective dependency information.

parsers can perform discontinuous parsing more
efficiently, achieving accuracies on par with more
expensive discontinuous approaches. In addition,
the proposed Pointer Network can be easily com-
bined with any off-the-self continuous parser and,
while barely affecting its efficiency, it can extend its
coverage to fully model discontinuous phenomena.
We will investigate alternatives to the in-
order reordering (e.g., pre- and post-order traver-
sal or language-specific rules to generate more
continuous-friendly structures). While we think
that using a different CCA would have no substan-
tial impact on Pointer Network reordering, it might
affect continuous parsing performance (as it may
be easier for the parser to process reordered con-
stituent trees with a syntax closer to original contin-
uous structures, and factors like the degree of left
vs. right branching may also have an influence).
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A Appendices

A.1 Treebank splits

Standard splits for discontinuous German NEGRA
(Skut et al., 1997) and TIGER (Brants et al., 2002)
treebanks are defined by (Dubey and Keller, 2003)
and (Seddah et al., 2013), respectively. For the dis-
continuous version of the English Penn Treebank
(DPTB) (Evang and Kallmeyer, 2011), commonly-
used splits are defined as follows: Sections 2 to 21
for training, 22 for development and 23 for testing.
In Table 3, we report the number of samples per
treebank split.

Treebank Training Dev  Test
TIGER 40,472 5,000 5,000
NEGRA 18,602 1,000 1,000
DPTB 39,832 1,700 2,416

Table 3: Treebank statistics.

A.2 Pointer Settings

Pre-trained word embeddings The spe-
cific pre-trained BERT models used in this
work were: for English, bert-base-cased
and bert-large-cased; and, for Ger-
man, bert-base-german-cased and
deepset/gbert-large. The same pre-
trained models were also used for both continuous
parsers, including also x1net-large-cased
in those experiments where XLNet is employed
for initializing the parser’s encoder.

Hyper-parameters We use the Adam optimizer
(Kingma and Ba, 2014) and the same hyper-
parameter selection as the dependency parser by
(Ma et al., 2018). No further adaptation to our
specific task was performed. These are detailed in
Table 4.

Hardware Our approach (combined with the
two specified continuous parsers) was fully tested
on an Intel(R) Core(TM) i9-10920X CPU @
3.50GHz with a single GeForce RTX 3090 GPU.
All speeds are measured considering the time taken
by the whole process, i.e., the reordering, continu-
ous parsing and reversal of the reordering.
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Architecture hyper-parameters

CNN window size 3
CNN number of filters 50
BiLSTM encoder layers 3
BiLSTM encoder size 512
LSTM decoder layers 1
LSTM decoder size 512
LSTM layers dropout 0.33
Word/Char. embedding dimension 100
BERTgAsE embedding dimension 768
BERT . arGe embedding dimension 1024
Embeddings dropout 0.33
MLP layers 1
MLP activation function ELU
CCA Position MLP size 512
Label MLP size 128
UNK replacement probability 0.5
Beam size 10
Adam optimizer hyper-parameters

Initial learning rate 0.001
B1, B2 0.9
Batch size 32
Decay rate 0.75
Gradient clipping 5.0

Table 4: Model hyper-parameters.



