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Abstract

Since state-of-the-art approaches to offensive
language detection rely on supervised learn-
ing, it is crucial to quickly adapt them to the
continuously evolving scenario of social me-
dia. While several approaches have been pro-
posed to tackle the problem from an algorith-
mic perspective, so to reduce the need for an-
notated data, less attention has been paid to the
quality of these data. Following a trend that
has emerged recently, we focus on the level of
agreement among annotators while selecting
data to create offensive language datasets, a
task involving a high level of subjectivity. Our
study comprises the creation of three novel
datasets of English tweets covering different
topics and having five crowd-sourced judg-
ments each. We also present an extensive set
of experiments showing that selecting training
and test data according to different levels of an-
notators’ agreement has a strong effect on clas-
sifiers performance and robustness. Our find-
ings are further validated in cross-domain ex-
periments and studied using a popular bench-
mark dataset. We show that such hard cases,
where low agreement is present, are not nec-
essarily due to poor-quality annotation and we
advocate for a higher presence of ambiguous
cases in future datasets, particularly in test sets,
to better account for the different points of
view expressed online.

1 Introduction

When creating benchmarks for NLP tasks through
crowd-sourcing platforms, it is important to con-
sider possible issues with inter-annotator agree-
ment. Indeed, crowd-workers do not necessarily
have a linguistic background and are not trained to
perform complex tasks, thus jeopardizing bench-
mark quality. Furthermore, some crowd-workers
try to maximize their pay by supplying quick an-
swers that have nothing to do with the correct label.
This issue has been tackled in the past by propos-
ing approaches to control for annotators’ expertise

and reliability (Hovy et al., 2013), trying to iden-
tify spammers and mitigate their effect on annota-
tion, or by repeating labeling on targeted examples
(Sheng et al., 2008). However, not all tasks are the
same: while in some cases, like for instance PoS-
tagging or parsing, disagreement among annotators
is more likely due to unclear annotation guidelines
and can usually be reconciled through adjudication,
full annotators’ agreement should not be necessar-
ily enforced in social computing tasks, whose goal
is to study and manage social behavior and orga-
nizational dynamics, especially in virtual worlds
built over the Internet (Wang, 2007). In these tasks —
which include offensive language detection among
others — subjectivity, bias and text ambiguity play
an important role (Aroyo et al., 2019), and being
an inherent component of the task they should be
measured and analysed rather than discarded (Klen-
ner et al., 2020; Basile, 2020). Indeed, instead of
aiming for a global consensus on what constitutes
verbal abuse on social media, we investigate the
impact of different degrees of disagreement, how
classifiers behave with ambiguous training and test
data, and the role of disagreement in current shared
tasks. More specifically, we first collect and anno-
tate three datasets of English tweets covering dif-
ferent domains, to test if agreement among a pool
of generic classifiers can be considered a proxy for
annotator agreement. We then focus on how anno-
tator agreement (both in training and test set) im-
pacts classifiers’ performance, considering domain-
specific and generic classifiers as well as in-domain
and out-of-domain experiments. We also show that
low agreement examples — no matter how difficult
they can be — still provide useful signal for training
offensive language detection systems and do not
represent random annotations. So “coin-flipping”
or example removal seems not to be the right strat-
egy to solve these disagreement cases. Then, we
measure disagreement in the English test set of the
last Offenseval shared task (Zampieri et al., 2020),
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and analyse to what extent the high performance
achieved by most participating systems is related
to high agreement in annotation.

We release the new annotated datasets upon re-
quest,! including more than 10k tweets covering
three domains. The messages have been labeled
with 50k crowd-worker judgements and annotated
with agreement levels. To our knowledge, this rep-
resents the first dataset explicitly created to cover
different agreement levels in a balanced way.We
also advocate for the release of more datasets like
the one we propose, especially for highly subjective
tasks, where the need to include different points of
view should be accounted for.

NOTE: This paper contains examples of lan-
guage which may be offensive to some readers.
They do not represent the views of the authors.

2 Related Work

While there has been an extensive discussion on
minimal standards for inter-annotator agreement to
ensure data quality (Di Eugenio and Glass, 2004;
Passonneau, 2004; Artstein and Poesio, 2008), re-
cently an increasing number of works argue that
disagreement is unavoidable because language is
inherently ambiguous (Aroyo and Welty, 2015),
proposing ways to tackle annotators’ disagreement
when building training sets (Dumitrache et al.,
2019). Hsueh et al. (2009), for example, identify a
set of criteria to select informative yet unambigu-
ous examples for predictive modeling in a senti-
ment classification task. Rehbein and Ruppenhofer
(2011) analyse the impact that annotation noise can
have on active learning approaches. Other works
along this line investigate the impact of uncertain or
difficult instances on supervised classification (Pe-
terson et al., 2019), while Beigman Klebanov and
Beigman (2014) show that including hard cases in
training data results in poorer classification of easy
data in a word classification task. Along the same
lines, Jamison and Gurevych (2015) show that fil-
tering instances with low agreement improve clas-
sifier performance in four out of five tasks. Both
works observe that the presence of such instances
lead to misclassifications.

Several approaches have been presented that im-
plement strategies to deal with disagreement when
training classifiers for diverse tasks. In most cases,
disagreement has been treated as a consequence
of low annotation quality, and addressed through

!See Ethics Statement section for further details

methodologies aimed at minimising the effects of
noisy crowdsourced data. Simpson et al. (2020),
for example, present a Bayesian sequence com-
bination approach to train a model directly from
crowdsourced labels rather than aggregating them.
They test their approach on tasks such as NER
where disagreement is mainly due to poor anno-
tation quality. Other works have focused instead
on uncertainty in PoS-tagging, integrating annota-
tors’ agreement in the modified loss function of a
structured perceptron (Plank et al., 2014). Also Ro-
drigues and Pereira (2018) propose an approach to
automatically distinguish the good and the unreli-
able annotators and capture their individual biases.
They propose a novel crowd layer in deep learning
classifiers to train neural networks directly from
the noisy labels of multiple annotators, using only
backpropagation.

Other researchers have suggested to remove hard
cases from the training set (Beigman Klebanov and
Beigman, 2009) because they may potentially lead
to poor classification of easy cases in the test set.
We argue instead that disagreement is inherent to
the kind of task we are going to address (i.e. of-
fensive language detection) and, in line with recent
works, we advocate against forced harmonisation
of annotators’ judgements for tasks involving high
levels of subjectivity (Klenner et al., 2020; Basile,
2020). Among recent proposals to embrace the un-
certainty exhibited by human annotators, Gordon
et al. (2021) propose a novel metric to evaluate so-
cial computing tasks that disentangles stable opin-
ions from noise in crowd-sourced datasets. Akhtar
et al. (2020), instead, divide the annotators into
groups based on their polarization, so that different
gold standard datasets are compiled and each used
to train a different classifier.

Compared to existing works, our contribution is
different in that we are interested mainly in the pro-
cess of dataset creation rather in evaluation metrics
or classification strategies. Indeed, our research
is guided mainly by research questions concern-
ing the data selection process, the composition of
datasets and the evaluation using controlled levels
of agreement. To this purpose, we create the first
dataset for offensive language detection with three
levels of agreement and balanced classes, encom-
passing three domains. This allows us to run com-
parative in-domain and out-of-domain evaluations,
as well as to analyse existing benchmarks like the
Offenseval dataset (Zampieri et al., 2020) using the
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same approach. While few crowd-sourced datasets
for toxic and abusive language detection have been
released with disaggregated labels (Davidson et al.,
2017), they have not been created with the goal
of analysing disagreement, therefore no attention
has been paid to balance the number of judgments
across different dimensions, like in our case.

3 Data Selection and Annotation

In our study, we focus on three different domains,
which have been very popular in online conversa-
tions in 2020: Covid-19, US Presidential elections
and Black Lives Matter (BLM) movement. After
an empirical analysis of online discussions, a set of
hashtags and keywords for each domain are defined
(e.g. #covidl9, #election202, #blm). Then, using
Twitter public APIs, tweets in English containing
at least one of the above keywords are collected
in a time span between January and November
2020 (for more details about data collection see Ap-
pendix D). From this data collection, we randomly
select 400,000 tweets (around 130,000 for each
domain), which we then pre-process by splitting
hashtags into words using the Ekphrasis tool (Gim-
pel et al., 2010) and then replacing all mentions to
users and urls with (user) and (url) respectively.

3.1 Ensemble of classifiers to select data for
annotation

Since we do not know the real distribution of agree-
ment levels in the data we collected, random sam-
pling for annotation might be a sub-optimal choice.
Thus, we developed a strategy to pre-evaluate the
tweets, trying to optimize annotators’ effort by hav-
ing a balanced dataset (in fact data might be very
skewed leading to over-annotation of some classes
and under-annotation of others). To pre-evaluate
the tweets we use a heuristic approach by creat-
ing an ensemble of 5 different classifiers, all based
on the same BERT configuration and fine-tuned
starting from the same abusive language dataset
(Founta et al., 2018). Since the original dataset
contains four classes (Spam, Normal, Abusive
and Hateful), we first remove the tweets from
the Spam class and map the remaining ones into a
binary of fensive or non-offensive label,
by merging Abusive and Hateful tweets into
the of fensive class and mapping the Normal
class into the non-offensive one. We then
select 15k tweets from the Founta dataset (~100k
tweets) for speeding up the process, as we are not

interested in the overall performance of the differ-
ent classifiers, but rather in their relative perfor-
mances. Each classifier of the ensemble is trained
using a different balance for the training and the
evaluation set, so to yield slightly different predic-
tions. In particular, all five classifiers are trained
with the BERT-Base uncased model?, a max seq
length of 64, a batch size of 16 and 15 epochs.
One classifier has been trained using 12k tweets
in the training and 3k in the validation set, a sec-
ond classifier was trained using the same training
instances but repeated twice (24k), while the vali-
dation set remained the same. In a third and fourth
configuration, we repeat twice the offensive and
the non-offensive training instances respectively.
Finally, in a fifth configuration we change the pro-
portion between training and validation set (10k for
training, 5k for validation).

The rationale for this choice is twofold: (i)
since we will collect 5 crowd-annotations for each
tweet, we want to have an intuitive and possible
direct comparison between ensemble agreement
and annotators’ agreement (i.e. five votes per tweet
coming from the classifiers and five from crowd-
workers). (ii) The dataset in Founta et al. (2018)
has been specifically created to encompass several
types of offensive language. We can therefore con-
sider it as a general prior knowledge about verbal
abuse online before adapting our systems to the 3
domains of interest.

In the following sections we will denote unan-
imous agreement with A™" (i.e. agreement be-
tween 5 annotators or classifiers), mild agreement
with A™ (i.e. 4 out of 5 annotations agreeing on the
same label), and weak agreement with A (i.e. the
5 annotations include 3 of them in agreement and 2
in disagreement). When focusing also on the label
we will use the same notation, representing offen-
sive tweets as Ot /+/0 and non offensive ones as
N++/+/0 respectively.

The pre-evaluation through the classifier ensem-
ble resulted in the following agreement distribution:
about 92% of the data was classified as A™". For
about 5% of the data, agreement among the clas-
sifiers was A, while for the remaining 3% of the
data, they fell in the A situation.

212-layer, 768-hidden, 12-heads, 110M parameters
https://github.com/google-research/bert
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3.2 Data Annotation with AMT

In order to analyse the relation between automated
and manual annotation with respect to agreement
and disagreement, we select an equal number of
tweets from each class of agreement of the en-
semble (AT+, AT, A%) to be manually annotated.
For each domain and each agreement class we
select 1,300 tweets — equally divided between
offensive and non-offensive predictions
— for a total of 3,900 tweets per domain.

Every tweet is annotated by 5 native speakers
from the US, who we expect to be familiar with the
topics, using Amazon Mechanical Turk. We follow
for all domains the same annotation guidelines,
aimed at collecting crowd-workers’ judgements on
the offensiveness of the messages using the binary
labels of fensive and not offensive (see
Guidelines included in Appendix A).

To ensure high-quality annotations, we select
a pool of tweets from the three domains of inter-
est and ask three expert linguists to annotate them.
The tweets with perfect agreement are used as gold
standard. We then include a gold standard tweet in
every HIT (group of 5 tweets to be annotated). If a
crowd-worker fails to evaluate the gold tweet, the
HIT is discarded. Moreover, after the task comple-
tion we remove all the annotations done by workers
who did not reach a minimum overall accuracy of
70% with respect to the gold standard. As a con-
sequence of this quality control, for some tweets
we could not collect five annotations, and they had
to be removed from the final dataset. On the other
hand, it was a crucial process to minimise the possi-
ble impact of spam and low-quality annotations on
disagreement — which is the focus of our analysis.
The total number of tweets annotated using AMT
is 10,753, including 3,472 for Covid-19, 3,490 for
US elections and 3,791 for BLM. Some (slightly
modified) examples of tweets judged with differ-
ent levels of agreement by crowd-annotators are
reported in Table 1.

3.3 Annotators and Ensemble Agreement

If we use the majority vote for crowd-annotated
data, the datasets have an average distribution of
31% of offensive and 69% non-offensive tweets,
while it is 50% each according to ensemble anno-
tation we used for sampling. This means that our
classifiers tend to label more tweets as offensive
compared to human annotators, as shown in the
confusion matrix in Fig. 1. It is interesting to note

that, although the tweets to be annotated were se-
lected evenly across classifiers’ agreement classes,
the agreement between annotators is not uniformly
distributed.

As regards annotators’ agreement, for about 43%
of the tweets annotated we have full consensus be-
tween annotators (A1 ). The vast majority of these
tweets were judged unanimously as non-offensive
(34,12% N*7T), and only 8,05% of the data were
judged unanimously offensive (O ), the less rep-
resented type of agreement. For the remaining data,
29,35% has mild agreement (A", 4 out of 5 anno-
tators agreed) with 19% N and 10,35% O™, and
another 28,28% of the data in the class A° (3 vs 2
annotators) with 15,56% N and 12,92% O°.

Classifiers ensemble

N* N* Ne o° o* o Total
1434 542 485 369 144 3669
Z EERIA 5.04% 4.51% 3.43% 1.34% 34.12%
& 299 390 395 387 373 199 2043
2.78% 363% 367% 360% 347% 1.85% 19.00%

118 284 325 328 313 305 1673
1.10% 2.64% 3.02% 3.05% 291% 2.84% 15.56%

40 173 226 262 294 394 1389
0.37% 1.61% 2.10% 2.44% 273% 3.66% 12.92%

No

Crowd-annotators
00

o 19 101 133 139 212 509 1113
0.18%  0.94%  1.24%  1.29% 1.97%  4.73% 10.35%

i 15 37 68 81 119 546 866

S} 0.14%  0.34% 0.63% 0.75% 1.11%  5.08%  8.05%

1925 1680 1689 1682 1680 2097 10753
17.90% 15.62% 15.71% 15.64% 15.62% 19.50% 100.00%

Total

Figure 1: Confusion matrix (raw number of tweets and
percentage) between classifiers ensemble agreement (x-
axis) and crowd-annotators agreement (y-axis) on of-
fensive (“O”) and non-offensive (“N”) labels.

We also compute Pearsons’ correlation coeffi-
cient between the agreement of the ensemble classi-
fiers and that of annotators. It achieves a moderate
correlation (r = 0.51), showing that training an en-
semble of classifiers on generic data to pre-screen
domain-specific tweets before manual annotation
could help identifying tweets that are either unam-
biguous or more challenging. A similar correlation
(r = 0.50) was obtained on an ensemble of Bil-
STM classifiers trained with the same training and
development sets of the five BERT-based classi-
fiers, suggesting that the pre-screening approach
could be used also with other classifiers.

3.4 Qualitative analysis of (dis)agreement

Through a manual analysis of the tweets belonging
to the A° class, we can identify few phenomena that
lead to disagreement in annotation. In many cases,

10531



N Stand for something or else fall for anything. #BlackLivesMatter
Hello world! What a great day to be alive #Trump2020 #MAGA
N Come on man! Lock’em up!!! #maga
Not the first time. You all misspelled #blacklivesmatter. Speak up! @user
O Set fire to Fox News (metaphorically)
@user is outing #BLACK_LIVES_MATTER as a cult! HE IS CORRECT!
o #DISGUSTING #Democrats terrorize old folks just before #elections2020
I love this shit! #BlackLivesMatter
o+ @user You're a bumbling fool #elections2020
Elections 2020: Red Rapist v. Blue Racist
O++ Y’all trending about kpop stans instead of #BlackLivesMatter big fack you
Crazy idiots. This is batshit bullshit. #elections2020

Table 1: Examples of tweets with different degrees of crowd-workers’ agreement. The messages have been created
starting from real examples by slightly changing their wording, so to make it impossible to retrieve the original ones
on Twitter. N=Not offensive, O=Offensive. ++/+/0 correspond to high, medium and low agreement respectively.

tweets are ambiguous and more context would be
needed to fully understand whether the user wanted
to offend someone or not. These cases include
the presence of deictic expressions or pronouns
referring to previous tweets, see for example:

(1) Shoulda thrown this clowns bike off
the bridge!

(2) Won’t work. Gangs will terrorize the
city. Murder at will and maybe they’ll
shoot the Mayor.

Other cases include generic expressions of anger
that are not targeted against a specific person or
group, or expressions of negative feelings, see for
example:

(3) Amen ! Enough of this crap !

Finally, questions, and in particular rhetorical
questions, are very frequent in the A° class and
their interpretation seems to represent a challenging
task for crowd-workers:

(4) if George Floyd was white would the
cop have acted in the same violent, mur-
derous way?
(5) What is it with these kids of leftist
politicians?

Overall, disagreement does not seem to stem
from poor annotation of some crowd-workers, but
rather from genuine differences in the interpretation
of the tweets. Additionally, BLM and US American
elections are recent events and annotators may have
been biased by their personal opinion on the topic
during annotation, an effect that has already been
highlighted in Sap et al. (2019, 2020).

4 C(lassification experiments

After collecting information on human agreement
on tweets covering three different domains, we
aim at assessing the impact of (dis)agreement on
classifier behaviour.

To this end, we create several balanced configu-
rations of the datasets, so to control for the effect
of agreement level, label distribution and domain
topic. We first split the data into a training and
test set of 75% and 25% for each domain. Then,
to control for the effect of training data size, we
further downsample all sets to the smallest one, so
that each agreement sample is equally represented
(Att, A+, A%). In this way, we obtain 3 sets of
training data — one per ambiguity level — contain-
ing 900 tweets each. Every set further contains 300
tweets from each domain, half for of fensive la-
bel and half for non-offensive label so to con-
trol also for the effect of label distribution across
domains and agreement levels.

4.1 Impact of (dis)agreement in training data

To assess the impact of agreement level in training
data, we run a series of experiments by compar-
ing two different classifiers: the first one relies on
BERT directly fine-tuned on domain data, while
the second foresees also an intermediate fine-tuning
step using the entire dataset in Founta et al. (2018),
inspired by the supplementary training approach
from Phang et al. (2018). BERT is used with the
same parameters of the ensemble classifiers, re-
ported in Section 3.1. The domain data used for
fine-tuning are built starting from the training data
described above divided into different agreement
levels (A1T+, AT, AY and their combinations).
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Trainin, Trainin . Founta +

split ¢ size ¥ | All domains all domains
ATT 900 0.746 0.757
At 900 0.734 0.753

A° 900 0.639 0.683
ATHF 1800 0.755 0.756
AT/0 1800 0.728 0.724
ATH/0 1800 0.723 0.730
ATH/H/0 2700 0.745 0.752
Baseline - training only on Founta et al. data: 0.667 F1

Table 2: Performance (F1) when training on data with
different levels of human agreement (rows), fine-tuned
either on domain data or using the dataset from Founta
et al. (2018) and domain data.

Results are reported in Table 2. Note that, for
training, the tweets in a given partition for all do-
mains are merged, while they are tested on each
domain separately. The reported F1 is an average
of the three results (results for each domain can be
found in the Appendix and are consistent with the
ones reported here). We observe that, if we con-
sider only one level of agreement, data with total
agreement are the best for prediction (A*™), up
to the point that AT data alone provide better re-
sults than using all data available in the three splits
(all), despite the different size (900 vs. 2700 in-
stances). Additionally, the combination of high and
mild agreement data (A++/T) yields results that
are in line with the best configuration obtained with
two fine-tuning steps (0.755 vs 0.757). This result
clearly indicates that for this kind of task it is not
necessary to collect huge datasets for fine-tuning,
since few data from the target domain may suffice
if properly selected. Finally, the effect of using
low agreement data for training is detrimental, in
line with findings reported in past works (Reidsma
and op den Akker, 2008; Jamison and Gurevych,
2015). This can be spotted in two results: the use
of generic data alone as in our baseline is better
than using low agreement in-domain data (0.667 vs.
0.639) and all configurations where A is added to
mild and high agreement data perform worse than
without AY (0.734 vs 0.728 and 0.746 vs 0.723).

4.2 TImpact of (dis)agreement in test data

As a next step, we investigate how classifier’s per-
formance varies as a function of annotators’ agree-
ment in the test data. To this end, we divide also our
test set into subsets according to the same agree-
ment levels (ATT, A+, AY) and calculate separate
F1s on each of these splits. We run the classifier for

‘all domains’ described in Section 4.1, i.e. trained
on the three domains and tested on one of them. Re-
sults, reported in Table 3, are obtained by averaging
the F1 for each domain.

We observe a dramatic drop in performance
when agreement decreases in the test set, indicating
that ambiguous data are the most challenging to
classify. These results highlight the need to con-
trol for ambiguity also in the test set when creating
offensive language benchmarks (for example in
shared tasks), in order to avoid high system perfor-
mance being due to a lack of challenging examples.
The best performance on ambiguous data is ob-
tained when training on unambiguous and mildly
ambiguous data (A /1), Interestingly, adding A™
data to AT data leads to the highest increase in
performance exactly for A test data (from 0.552 to
0.574). This rules out the possibility that a certain
level of disagreement in the training set is more
effective in classifying the same type of ambiguity
in the test set (e.g. train and test on A data), and
suggests that high agreement or mild agreement
training sets perform better in all cases.

Training split | Training size | Tested on F1

ATF/+ 1800 | AT+ 0.860
AtTH/+ 1800 | AT 0.768
ATH/+ 1800 | A° 0.574
ATF 900 | ATT 0.847
ATT 900 | AT 0.763
ATT 900 | A° 0.552
AC 900 | ATT 0.662
A° 900 | AT 0.639
A° 900 | A° 0.567

Table 3: Performance on AT/, AT+, AC data, clas-
sified with “all domains" configuration in Table 2.

4.3 Impact of (dis)agreement on
out-of-domain data

We then test the effect of cross-domain classifica-
tion according to agreement levels, so to minimise
the impact of possible in-domain overfitting. We
repeat the experiments described in the previous
section by using two domains for training and the
third for testing. As an example, a classifier model
was trained using AT data from Covid 19 and
US Presidential campaign, and tested on A data
on BLM. This has been repeated for each domain
and each agreement level. For conciseness of pre-
sentation, we report in Table 4 the F1 obtained by
averaging F1 on each domain (results for each do-
main can be found in the Appendix and also in
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this case they are consistent with the one reported
here). Results confirm that (i) the classifier yields
a good performance when the training data have
high agreement, even in an out-of-domain scenario,
and (ii) adding A° data to the training set has a
detrimental effect on performance. Finally, if we
compare these results with Table 2, we observe that
the effect of overfitting on in-domain data is very
limited.

Training Training | Outof  Founta + out
split size domain  of domain
ATT 600 | 0.719 0.747
At 600 | 0.677 0.716
A° 600 | 0.567 0.658
ATHF 1,200 | 0.732 0.748
AT/0 1,200 | 0.659 0.715
ATH/0 1,200 | 0.714 0.722
ATF/H/0 1,800 | 0.722 0.737

Table 4: Performance (F1) in the out-of-domain setting.
Results are the average F1 obtained by the classifier on
each domain when trained on the other two.

4.4 (Dis)agreement versus Randomness

An additional question we want to address is
whether low agreement data provide some useful
information for training offensive language detec-
tion systems or if the effect of such data is no more
that of random annotation.

We therefore replicate the experiments of Table 2
by replacing the label of A° data with a random one.
Since we want to obtain the same controlled dis-
tribution we assign the same probability to N and
O labels. Results are reported in Table 5. As can
be seen, when using A%and data the results worsen
as compared to A, indicating that the label in A°
are not assigned by chance and they can contain
useful signal for the classifier, albeit challenging.
Consistently with previous results, the more gold
and high agreement data is added to the training,
the smaller the effect of A%rand. These results show
also that coin-flipping, which has been suggested
in past works to resolve hard disagreement cases
(Beigman Klebanov and Beigman, 2009), may not
be ideal because it leads to a loss of information.

5 Experiments on Offenseval dataset

Our experiments show that when training and test
data include tweets with different agreement lev-
els, classification of offensive language is still a
challenging task. Indeed, our classification results
reported in Table 2 and 4 suggest that on this kind

Trainin, Trainin, . Founta +
split ¢ size ® | All domains all domains
AD 900 0.639 0.683
AOrand 900 0.505 0.576
AT/0 1800 0.728 0.724
At/ Orana 1800 0.657 0.689
ATH/0 1800 0.723 0.730
At+/Orana 1800 0.684 0.703
ATH/H/0 2700 0.745 0.752
AtTF/+/0rana 2700 0.719 0.730

Table 5: Performance (F1) when training on data with
different levels of human agreement (rows) and replac-
ing A° labels with random ones (A" <n4). First line of
each group is reported from Table 2 for comparison.

of balanced data, F1 with Transformer-based mod-
els is ~=0.75. However, system results reported for
the last Offenseval shared task on offensive lan-
guage identification in English tweets (Zampieri
et al., 2020) show that the majority of submissions
achieved an F1 score > 0.90 on the binary classifi-
cation task.

We hypothesize that this delta in performance
may depend on a limited presence of low agreement
instances in the Offenseval dataset used for evalua-
tion (Zampieri et al., 2019). We therefore randomly
sample 1,173 tweets from the task test data (30%
of the test set) and annotate them with Amazon Me-
chanical Turk using the same process described in
the previous sections (5 annotations per tweet). We
slightly modify our annotation guidelines by includ-
ing the cases of profanities, which were explicitly
considered offensive in Offenseval guidelines.

Results, reported in Table 6 (left column) show
that the outcome of the annotation is clear-cut:
more than 90% of the tweets in the sample have
either a high (A™) or very high (A™1) agreement
level. Furthermore, only 6.4% of the annotations
(75) have a different label from the original Of-
fenseval dataset, 50% of which are accounted for
by the A° class alone. So our annotation is very
consistent with the official one and the distribution
is very skewed towards high agreement levels, as
initially hypothesized.

To understand whether this skewness can be gen-
eralised, i.e. if this sample distribution might be
representative of a population distribution, we also
estimate the distribution of agreement levels in the
initial pool of data (around 400k tweets) we col-
lected using US Election, BLM and Covid-related
hashtags (Section 3).> The estimate of the distri-

3Since we pre-selected the tweets to be annotated through
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Agreement Offenseval 400k Tweets

ATT 75.62% (887) | 68.52% (274,514)
At 1475% (173) | 19.08%  (76,457)
A 9.63% (113) | 12.40%  (49,694)
NTF 6436% (755) | 65.12% (260,925)
Nt 5.80%  (68) | 15.50%  (62,085)
N° 460% (54 | 7.94%  (31,813)
0° 503%  (59) | 4.46%  (17,882)
ot 8.95% (105) | 3.59%  (14,372)
o+t 11.25% (132) | 3.39%  (13,589)

Table 6: Comparison of agreement distribution in Of-
fenseval sample and projection on 400k tweets.

bution for class AT, AT* and A° is reported in
Table 6 (right column). A comparison between the
two columns shows that disagreement distribution
in the Offenseval sample is in line with the dis-
tribution in the data we initially collected before
balancing, providing initial evidence that this dis-
tribution — with few disagreement cases — might be
a ‘natural’ one for online conversations on Twitter.

Differences emerge when considering the ratio
of offensive tweets. In Offenseval data, the percent-
age of offensive tweets is more than double the per-
centage in our data (25.23% vs. 11.44%), because
the authors adopted several strategies to overrepre-
sent offensive tweets (Zampieri et al., 2019).

As a final analysis, we collect the runs submitted
to Offenseval and compute the F1 score of each of
these systems over the three levels of agreement
separately. Overall, we consider all runs that in
the task obtained F1 > 0.75, i.e. 81 runs out of 85.
Results are reported in Table 7 as the average of
the F1 obtained by the different systems. This last
evaluation confirms our previous findings, since F1
increases when agreement level increases in test
data. This finding, together with the distribution of
agreement levels, shows that the high performance
obtained by the best systems in the shared task
is most probably influenced by the prevalence of
tweets with total agreement.

Offenseval 2020 - test subsets F1 StDev
ATT (887 tweets) 0.915 | £0.055
AT (173 tweets) 0.817 | £0.075
A® (113 tweets) 0.656 | £ 0.067

Table 7: Average F1 obtained by the best systems at
Offenseval 2020 £ StDeyv.

the classifier ensemble, to estimate the real distribution of
agreement levels in our data we classified with the ensemble
all of them (400k tweets). Then, to determine the proportion
of each class of agreement, we projected the distribution of
annotators’ agreement level for each ensemble class, using the
confusion matrix reported in Figure 1.

6 Discussion and Conclusions

We have presented a data annotation process and
a thorough set of experiments for assessing the ef-
fect of (dis)agreement in training and test data for
offensive language detection. We showed that an
ensemble of classifiers can be employed to prelimi-
narily select potentially unambiguous or challeng-
ing tweets. By analysing these tweets we found that
they represent real cases of difficult decisions, de-
riving from interesting phenomena, and are usually
not due to low-quality annotations. We also found
that these challenging data are minimally present
in a popular benchmark dataset, accounting for
higher system performance. We believe that such
hard cases should be more represented in bench-
mark datasets used for evaluation of hate speech
detection systems, especially in the test sets, so to
develop more robust systems and avoid overesti-
mating classification performance. This goal can
be achieved by integrating the common practice of
oversampling the minority offensive class with the
oversampling of minority agreement classes.

From a multilingual perspective, we also noted
that at Offenseval 2020 the best performing systems
on Arabic scored 0.90 F1 with a training set of 8k
tweets, 0.85 on Greek with less than 9k tweets,
and 0.82 on Turkish despite having more than 32k
examples for training. This shows that the amount
of training data is not sufficient to ensure good
classification quality, and that also in this case a
study on disagreement levels could partly explain
these differences (this is further corroborated by
the fact that for Turkish the lowest overall inter-
annotator agreement score was reported).

As future work, we plan to develop better ap-
proaches to classify (dis)agreement, in order to
ease oversampling of low agreement classes. Pre-
liminary experiments (not reported in this paper)
show that the task is not trivial, since supervised
learning with LMs such as BERT does not work
properly when trying to discriminate between am-
biguous and not ambiguous tweets. Indeed, BERT-
based classification performed poorly both in the
binary task (ambiguous vs. not ambiguous) and
in the three-way one (offensive vs. not offensive
vs. ambiguous). This suggests that ambiguity is a
complex phenomenon where lexical, semantic and
pragmatic aspects are involved, which are difficult
to capture through a language model.

This corpus, together with the experiments pre-
sented in this paper, will hopefully shed light onto
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the important role played by annotators’ disagree-
ment, something that we need to understand better
and to see as a novel perspective on data. Indeed,
if we want to include diversity in the process of
data creation and reduce both the exclusion of mi-
norities’ voices and demographic misrepresenta-
tion (Hovy and Spruit, 2016), disagreement should
be seen as a signal and not as noise.

7 Ethics Statement

The tweets in this dataset have been annotated by
crowd-workers using Amazon Mechanical Turk.
All requirements introduced by the platform for
tasks containing adult content were implemented,
for example adding a warning in the task title. We
further avoid to put any constraints on the mini-
mum length of sessions or on the minimum amount
of data to be labeled by each crowd-worker, there-
fore they were not forced to prolonged exposure to
offensive content. Indeed, we observed that crowd-
workers tended to annotate for short sessions, on
average 20 minutes, which suggests that annotat-
ing was not their main occupation. Crowd-workers
were compensated on average with 6 US$ per hour.

Although we put in place strict quality control
during data collection, we compensated the com-
pleted hits also when annotations were finally dis-
carded because they did not reach the minimum
accuracy threshold of 70% w.r.t. the gold stan-
dard. We also engaged in email conversations with
crowd-workers when they were blocked because
of mismatches with the gold standard tweets. In
several cases, we clarified with them the issue and
subsequently unlocked the task.

Concerning the annotated dataset, we support
scientific reproducibility and we would like to
encourage other researchers to build upon our
findings. However, we are aware that ethical
issues may arise related to the complexity and
delicacy of judgments of offensiveness in case
they are made public. Therefore, in compliance
with Twitter policy, we want to make sure that
our dataset will be reused for non-commercial
research only* avoiding any discriminatory pur-
pose, event monitoring, profiling or targeting of
individuals. The dataset, in the form of tweet
IDs with accompanying annotation, can be ob-
tained upon request following the process described
at this link: https://github.com/dhfbk/
annotators—agreement-dataset. Re-

“https://developer.twitter.com/en/developer-terms/policy

questors will be asked to prove their compliance
with Twitter policy concerning user protection and
non-commercial purposes, as well as to declare that
they will not use our dataset to collect any sensitive
category of personal information. Also, releasing
the tweet IDs instead of the text will enforce users’
right to be forgotten, since it will make it impossi-
ble to retrieve tweets if their authors delete them
or close their account. Although we are aware
of the risks related to developing and releasing
hate speech datasets, this research was carried out
with the goal of improving conversational health
on social media, and even exposing the limitations
of binary offensive language detection. We be-
lieve that our findings confirm the context- and
perspective-dependent offensiveness of a message,
and we therefore avoid binary labels, stressing the
importance of taking multiple points of view (in our
case, five raters) into account. Following the same
principle of avoiding profiling, crowd-workers’ IDs
are not included in the dataset, so that it will not
be possible to infer annotator-based preferences or
biases.
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A Annotation Guidelines for AMT

This section contains the instructions provided to
annotators on Amazon Mechanical Turk. The first
part changes according to the domain:

Covid-19: The tweets in this task have been
collected during the pandemic. Would you find the
content of the messages offensive? Try to judge the
offensiveness of the tweets independently from your
opinion but solely based on the abusive content
that you may find.

US Presidential campaign: The tweets in this
task have been collected during the last US Pres-
idential campaign. Would you find the content of
the messages offensive? Try to judge the offensive-
ness of the tweets independently from your political
orientation but solely based on the abusive content
that you may find.

Black Lives Matter: These tweets are related to
the Black Lives Matter protests. Would you find the
content of the messages offensive? Try to judge the
offensiveness of the tweets independently from your
opinion but solely based on the abusive content
that you may find.

The second part of the task description, instead,
is the same for all the domains, containing a defini-
tion of what is offensive and informing the workers
that there is a quality check on the answers:

Offensive: Profanity, strongly impolite, rude,
violent or vulgar language expressed with angry,
fighting or hurtful words in order to insult or de-
base a targeted individual or group. This language
can be derogatory on the basis of attributes such
as race, religion, ethnic origin, sexual orientation,
disability, or gender. Also sarcastic or humorous
expressions, if they are meant to offend or hurt one
or more persons, are included in this category.

Normal: rweets that do not fall in the previous
category.

Quality Check: the HIT may contain a gold
standard sentence, manually annotated by three
different researchers, whose outcome is in agree-
ment. If that sentence is wrongly annotated by a
worker, the HIT is automatically rejected.

Asking annotators to label the tweets indepen-
dently from their views, opinions or political orien-
tation was inspired by recent works, showing that
making explicit possible biases in the annotators
contributes to reduce such bias (Sap et al., 2019).
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Training Training Size All dqmains . Founta + a'll domains.
BLM Covid Election | BLM Covid Election

ATF 900 | 0.756 0.752 0730 | 0.768 0.752  0.752
At 900 | 0.745 0.724 0.734 | 0774 0.736  0.748
A° 900 | 0.647 0.644  0.626 | 0.689 0.652  0.707
AtH/+ 1800 | 0.776 0.756  0.732 | 0.779 0.738  0.750
AT/0 1800 | 0.738 0.738  0.707 | 0.744 0.698  0.729
ATH/0 1800 | 0.732  0.733 0.704 | 0.746 0.723 0.721
ATH/F/0 2700 | 0.758 0.736 0742 | 0.766 0.748  0.742

Table 8: Test results on single domains using a model trained on all domains.

Training

Training Size

Out of domain

Founta + out of domain

BLM Covid Election | BLM Covid Election
ATT 600 | 0.699 0.734  0.723 | 0.760 0.736  0.746
At 600 | 0.681 0.720  0.631 | 0.718 0.706  0.725
A° 600 | 0.557 0.603  0.542 | 0.674 0.629  0.672
AT+ 1800 | 0.696 0.758  0.742 | 0.740 0.771 0.734
AT/0 1800 | 0.641 0.686  0.649 | 0.733 0.696  0.716
ATH/0 1800 | 0.695 0.726  0.720 | 0.737 0.706  0.722
ATF/F/0 2700 | 0.737 0736 0.692 | 0734 0.756  0.720

Table 9: Results in the out-of-domain setting, testing the classifier on each domain when trained on the other two.

B Impact of (dis)agreement on
classification - results in detail

Table 8 displays domain-specific results related to
the analysis shown in Section 4.1 of the main docu-
ment, where for sake of brevity we have shown only
an average between the three domains. The table
confirms that also on single domains, training data
with higher level of agreement improve predictions,
while training data with low level of agreement are
detrimental. Classification took about 2 minutes on
a Titan X for the runs using only domain-specific
data. Adding the intermediate fine-tuning on data
from Founta et al. (2018) increases the time to 1.5
hours.

C Impact of (dis)agreement on
out-of-domain data - results in detail

Similar to the previous table, Table 9 displays out-
of-domain results related to the analysis shown
in Section 4.3 of the main document, where we
report only an average between the three domains.
The results are consistent with the average scores
reported in the main document, i.e. that training
data with high agreement improve prediction, while
training data with low agreement are detrimental.
Classification took about the same time of the runs
in the single domain configuration.

D Twitter data collection

Through its application programming interface
(API), Twitter provides access to publicly avail-
able messages upon specific request. For each of
the domains analysed, a set of hashtags and key-
words was identified that unequivocally character-
izes the domain and is collectively used. During a
specific period of observation, all the tweets con-
taining at least an item of this hashtags/keywords
seed list were retrieved in real time (using "filter" as
query). The most relevant entries from the covid-19
seed list are: covid-19, coronavirus, ncov, #Wuhan,
covidl9, sarscov2 and covid. Data were collected
in the time span between 25 January and 09 Novem-
ber 2020. The most relevant entries from the blm
seed list are: george floyd, #blm, black lives matter.
Tweets were collected between 24 May 2020 and
16 June 2020. The most relevant entries from the
US Elections seed list are: #maga, #elections2020,
Trump, Biden, Harris, Pence. The tweets were col-
lected between 30 September 2020 and 04 Novem-
ber 2020.

For each domain, a big bulk of data was collected
in real time for each specific time span. From these
about 400,000 tweets were randomly selected and
evaluated with the ensemble method as described
in Section 3 of the main paper.
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