
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1068–1083
November 7–11, 2021. c©2021 Association for Computational Linguistics

1068

Certified Robustness to Programmable Transformations in LSTMs

Yuhao Zhang, Aws Albarghouthi∗, Loris D’Antoni
Department of Computer Science, University of Wisconsin-Madison, USA.

{yuhaoz, aws, loris}@cs.wisc.edu

Abstract

Deep neural networks for natural language
processing are fragile in the face of ad-
versarial examples—small input perturba-
tions, like synonym substitution or word
duplication, which cause a neural network
to change its prediction. We present an
approach to certifying the robustness of
LSTMs (and extensions of LSTMs) and
training models that can be efficiently cer-
tified. Our approach can certify robust-
ness to intractably large perturbation spaces
defined programmatically in a language
of string transformations. Our evaluation
shows that (1) our approach can train mod-
els that are more robust to combinations of
string transformations than those produced
using existing techniques; (2) our approach
can show high certification accuracy of the
resulting models.

1 Introduction

Adversarial examples are small perturbations of
an input that fool a neural network into changing
its prediction (Carlini and Wagner, 2017; Szegedy
et al., 2014). In NLP, adversarial examples involve
modifying an input string by, for example, replac-
ing words with synonyms, deleting stop words, in-
serting words, etc. (Ebrahimi et al., 2018; Li et al.,
2019; Zhang et al., 2019).

Ideally, a defense against adversarial examples
in NLP tasks should fulfill the following desiderata:
(1) Handle recursive models, like LSTMs and ex-
tensions thereof, which are prevalent in NLP. (2)
Construct certificates (proofs) of robustness. (3)
Defend against arbitrary string transformations,
like combinations of word deletion, insertion, etc.

It is quite challenging to fulfill all three desider-
ata; indeed, existing techniques are forced to make

∗Author’s name in native alphabet: ú

�
Gñ

	
«Q�. Ë @ �ð

@

LSTM

to

LSTM

the

LSTM

movie

LSTM

movie

LSTM

the LSTM

...

...

...

abstract
{ film

movies}

memoize hidden states

join hidden states

(b) ARC: Abstract Recursive Certification

to the movie
to the film
to the movies
to the movie
to the movie

...

...

...

...

...
(a) Enumeration of all strings

Figure 1: An illustration of our approach.

tradeoffs. For instance, the theoretical insights un-
derlying a number of certification approaches are
intimately tied to symbol substitution (Jia et al.,
2019; Huang et al., 2019; Ye et al., 2020; Xu et al.,
2020; Dong et al., 2021), and some techniques can-
not handle recursive models (Huang et al., 2019;
Zhang et al., 2020). On the other hand, techniques
that strive to be robust to arbitrary string transfor-
mations achieve this at the expense of certifica-
tion (Zhang et al., 2020; Ebrahimi et al., 2018).

In this paper, we ask: Can we develop a certified
defense to arbitrary string transformations that
applies to recursive neural networks?

Our approach. Certifying robustness involves
proving that a network’s prediction is the same
no matter how a given input string is perturbed. We
assume that the perturbation space is defined as a
program describing a set of possible string transfor-
mations (Zhang et al., 2020)—e.g., if you see the
word “movie”, replace it with “film” or “movies”.
Such transformations can succinctly define a per-
turbation space that is exponentially large in the
length of the input; so, certification by enumerating
the perturbation space is generally impractical.

1069

We present ARC (Abstract Recursive Certifica-
tion), an approach for certifying robustness to pro-
grammatically defined perturbation spaces. ARC
can be used within an adversarial training loop to
train robust models. We illustrate the key ideas
behind ARC through a simple example. Consider
the (partial) input sentence to the movie..., and say
we are using an LSTM for prediction. Say we have
two string transformations: (T1) If you see the
word movie, you can replace it with film or movies.
(T2) If you see the word the or to, you can delete
it. ARC avoids enumerating the large perturbation
space (Fig. 1(a)) using two key insights.

Memoization: ARC exploits the recursive struc-
ture of LSTM networks, and their extensions (BiL-
STMs, TreeLSTMs), to avoid recomputing interme-
diate hidden states. ARC memoizes hidden states
of prefixes shared across multiple sequences in the
perturbation space. For example, the two sentences
to the movie... and to the film.... share the pre-
fix to the, and therefore we memoize the hidden
state after the word the, as illustrated in Fig. 1(b)
with dashed blue lines. The critical challenge is
characterizing which strings share prefixes without
having to explicitly explore the perturbation space.

Abstraction: ARC uses abstract interpreta-
tion (Cousot and Cousot, 1977) to symbolically
represent sets of perturbed strings, avoiding a com-
binatorial explosion. Specifically, ARC represents
a set of strings as a hyperrectangle in a Rn and
propagates the hyperrectangle through the network
using interval arithmetic (Gehr et al., 2018; Gowal
et al., 2019).This idea is illustrated in Fig. 1(b),
where the words film and movies are represented as
a hyperrectangle. By joining hidden states of differ-
ent sentences (a common idea in program analysis),
ARC can perform certification efficiently.

Memoization and abstraction enable ARC to effi-
ciently certify robustness to very large perturbation
spaces. Note that ARC subsumes Xu et al. (2020)
because ARC can certify arbitrary string transfor-
mations, while Xu et al. (2020) only works on word
substitutions.

Contributions. We make the following contribu-
tions: (1) We present ARC, an approach for train-
ing certifiably robust recursive neural networks. We
demonstrate our approach on LSTMs, BiLSTMs,
and TreeLSTMs. (2) We present a novel applica-
tion of abstract interpretation to symbolically cap-
ture a large space of strings, defined programmati-
cally, and propagate it through a recursive network

Table 1: ARC compared to other approaches. Ye et al.
(2020) provide probabilistic certificates.

Approach LSTM Cert Transf.

Ebrahimi et al. (2018) 3 7 arbitrary
Ko et al. (2019a) 3 3 lp norm
Huang et al. (2019) 7 3 substitution
Jia et al. (2019) 3 3 substitution
Zhang et al. (2020) 7 7 arbitrary
Ye et al. (2020) 3 P substitution
Xu et al. (2020) 3 3 substitution
Dong et al. (2021) 3 7 substitution
ARC (this paper) 3 3 arbitrary

(Section 4). (3) Our evaluation shows that ARC
can train models that are more robust to arbitrary
perturbation spaces than those produced by exist-
ing techniques; ARC can show high certification
accuracy of the resulting models; and ARC can cer-
tify robustness to attacks (transformations) that are
out-of-scope for existing techniques (Section 5).

2 Related Work

Table 1 compares ARC to most related approaches.

Certification of robustness in NLP. See Li et al.
(2020) for a survey of robust training. Some works
focus on certifying the lp norm ball of each word
embedding for LSTMs (Ko et al., 2019b; Jacoby
et al., 2020) and transformers (Shi et al., 2020).
Others focus on certifying word substitutions for
CNNs (Huang et al., 2019) and LSTMs (Jia et al.,
2019; Xu et al., 2020), and word deletions for
the decomposable attention model (Welbl et al.,
2020). Existing techniques rely on abstract inter-
pretation, such as IBP (Gowal et al., 2019) and
CROWN (Zhang et al., 2018). We focus on certi-
fying the robustness of LSTM models (including
TreeLSTMs) to a programmable perturbation space,
which is out-of-scope for existing techniques. Note
that Xu et al. (2020) also uses memoization and
abstraction to certify, but ARC subsumes Xu et al.
(2020) because ARC can certify arbitrary string
transformations. We use IBP, but our approach
can use other abstract domains, such as zono-
topes (Gehr et al., 2018).

SAFER (Ye et al., 2020) is a model-agnostic
approach that uses randomized smoothing (Cohen
et al., 2019) to give probabilistic certificates of ro-
bustness to word substitution. Our approach gives
a non-probabilistic certificate and can handle arbi-
trary perturbation spaces beyond substitution.

Robustness techniques in NLP. Adversarial train-

1070

ing is an empirical defense method that can im-
prove the robustness of models by solving a
robust-optimization problem (Madry et al., 2018),
which minimizes worst-case (adversarial) loss.
Some techniques in NLP use adversarial attacks
to compute a lower bound on the worst-case
loss (Ebrahimi et al., 2018; Michel et al., 2019).
ASCC (Dong et al., 2021) overapproximates the
word substitution attack space by a convex hull
where a lower bound on the worst-case loss is com-
puted using gradients. Other techniques compute
upper bounds on adversarial loss using abstract
interpretation (Gowal et al., 2019; Mirman et al.,
2018). Huang et al. (2019) and Jia et al. (2019);
Xu et al. (2020) used abstract interpretation to train
CNN and LSTM models against word substitu-
tions. A3T (Zhang et al., 2020) trains robust CNN
models against a programmable perturbation space
by combining adversarial training and abstraction.
Our approach uses abstract interpretation to train
robust LSTMs against programmable perturbation
spaces as defined in Zhang et al. (2020).

3 Robustness Problem and Preliminaries

We consider a classification setting with a neural
network Fθ with parameters θ, trained on samples
from domain X and labels from Y . The domain X
is a set of strings over a finite set of symbols Σ (e.g.,
English words or characters), i.e., X = Σ∗. We use
x ∈ Σ∗ to denote a string; xi ∈ Σ to denote the ith
element of the string; xi:j to denote the substring
xi, . . . , xj ; ε to denote the empty string; and LENx

to denote the length of the string.

Robustness to string transformations. A pertur-
bation space S is a function in Σ∗ → 2Σ∗ , i.e., S
takes a string x and returns a set of possible per-
turbed strings obtained by modifying x. Intuitively,
S(x) denotes a set of strings that are semantically
similar to x and therefore should receive the same
prediction. We assume x ∈ S(x).

Given string x with label y and a perturbation
space S, We say that a neural network Fθ is S-
robust on (x, y) iff

∀z ∈ S(x). Fθ(z) = y (1)

Our primary goal in this paper is to certify, or
prove, S-robustness (Eq 1) of the neural network
for a pair (x, y). Given a certification approach, we
can then use it within an adversarial training loop
to yield certifiably robust networks.

Robustness certification. We will certify S-
robustness by solving an adversarial loss objective:

max
z∈S(x)

Lθ(z, y) (2)

where we assume that the loss function Lθ is <
0 when Fθ(z) = y and > 0 when Fθ(z) 6= y.
Therefore, if we can show that the solution to the
above problem is < 0, then we have a certificate of
S-robustness.

Certified training. If we have a procedure to com-
pute adversarial loss, we can use it for adversarial
training by solving the following robust optimiza-
tion objective (Madry et al., 2018), where D is the
data distribution:

arg min
θ

E
(x,y)∼D

[
max
z∈S(x)

Lθ(z, y)

]
(3)

3.1 Programmable Perturbation Spaces
In our problem definition, we assumed an arbitrary
perturbation space S. We adopt the recently pro-
posed specification language (Zhang et al., 2020) to
define S programmatically as a set of string trans-
formations. The language is very flexible, allowing
the definition of a rich class of transformations as
match and replace functions.

Single transformations. A string transformation
T is a pair (ϕ, f), where ϕ : Σs → {0, 1} is the
match function, a Boolean function that specifies
the substrings (of length s) to which the trans-
formation can be applied; and f : Σs → 2Σt is
the replace function, which specifies how the sub-
strings matched by ϕ can be replaced (with strings
of length t). We will call s and t the size of the do-
main and range of transformation T , respectively.

Example 3.1. In all examples, the set of symbols
Σ is English words. So, strings are English sen-
tences. Let Tdel be a string transformation that
deletes the stop words “to” and “the”. Formally,
Tdel = (ϕdel, fdel), where ϕdel : Σ1 7→ {0, 1} and
fdel : Σ1 → 2Σ0

are:

ϕdel(x) =

{
1, x ∈ {“to”, “the”}
0, otherwise

, fdel(x) = {ε},

Let Tsub be a transformation substituting the
word “movie” with “movies” or “film”. Formally,
Tsub = (ϕsub, fsub), where ϕsub : Σ1 7→ {0, 1} and
fsub : Σ1 → 2Σ1

are:

ϕsub(x) =

{
1, x = “movie”
0, otherwise

, fsub(x) =

{
“film”,

“movies”

}

1071

Defining perturbation spaces. We can compose
different string transformation to construct pertur-
bation space S:

S = {(T1, δ1), . . . , (Tn, δn)}, (4)

where each Ti denotes a string transformation that
can be applied up to δi ∈ N times. Note that
the transformations can be applied whenever they
match a non-overlapping set of substrings and are
then transformed in parallel. We illustrate with an
example and refer to Zhang et al. (2020) for formal
semantics.

Example 3.2. Let S = {(Tdel, 1), (Tsub, 1)} be a
perturbation space that applies Tdel and Tsub to the
given input sequence up to once each. If x =“to
the movie”, a subset of the perturbation space S(x)
is shown in Fig. 1(a).

Decomposition. S = {(Ti, δi)}i can be decom-
posed into

∏
(δi + 1) subset perturbation spaces

by considering all smaller combinations of δi. We
denote the decomposition of perturbation space S
as DECS , and exemplify below:

Example 3.3. S1 = {(Tdel, 2)} can be de-
composed to a set of three perturbation spaces
DECS1 = {∅, {(Tdel, 1)}, {(Tdel, 2)}}, while S2 =
{(Tdel, 1), (Tsub, 1)} can be decomposed to a set of
four perturbation spaces

DECS2 = {∅, {(Tdel, 1)}, {(Tsub, 1)}, {(Tdel, 1), (Tsub, 1)}}

where ∅ is the perturbation space with no transfor-
mations, i.e., if S = ∅, then S(x) = {x} for any
string x.

We use notation Sk↓ to denote S after reducing
δk by 1; therefore, Sk↓ ∈ DECS .

3.2 The LSTM Cell
We focus our exposition on LSTMs. An LSTM cell
is a function, denoted LSTM, that takes as input a
symbol xi and the previous hidden state and cell
state, and outputs the hidden state and the cell state
at the current time step. For simplicity, we use hi
to denote the concatenation of the hidden and cell
states at the ith time step, and simply refer to it as
the state. Given string x, we define hi as follows:

hi = LSTM(xi, hi−1) hi, hi−1 ∈ Rd,

where h0 = 0d and d is the dimensionality of the
state. For a string x of length n, we say that hn is
the final state.

For a string x and state h, We use LSTM(x, h)
to denote

LSTM(xLENx , LSTM(. . . , LSTM(x1, h) . . .))

E.g., LSTM(x, h0) is the final state of the LSTM
applied to x.

4 ARC: Abstract Recursive Certification

In this section, we present our technique for prov-
ing S-robustness of an LSTM on (x, y). For-
mally, we do this by computing the adversarial loss,
maxz∈S(x) Lθ(z, y). Recall that if the solution is
< 0, then we have proven S-robustness. To solve
adversarial loss optimally, we effectively need to
evaluate the LSTM on all of S(x) and collect all
final states:

F = {LSTM(z, h0) | z ∈ S(x)} (5)

Computing F precisely is challenging, as S(x)
may be prohibitively large. Therefore, we propose
to compute a superset of F , which we will call F̂ .
This superset will therefore yield an upper bound
on the adversarial loss. We prove S-robustness if
the upper bound is < 0.

To compute F̂ , we present two key ideas that
go hand-in-hand: In Section 4.1, we observe that
strings in the perturbation space share common
prefixes, and therefore we can memoize hidden
states to reduce the number of evaluations of LSTM
cells—a form of dynamic programming. We care-
fully derive the set of final states F as a system of
memoizing equations. The challenge of this deriva-
tion is characterizing which strings share common
prefixes without explicitly exploring the perturba-
tion space. In Section 4.2, we apply abstract in-
terpretation to efficiently and soundly solve the
system of memoizing equations, thus computing
an overapproximation F̂ ⊇ F .

4.1 Memoizing Equations of Final States

Tight Perturbation Space. Given a perturbation
space S, we shall use S= to denote the tight pertur-
bation space where each transformation Tj in S is
be applied exactly δj times.

Think of the set of all strings in a perturbation
space as a tree, like in Fig. 1(b), where strings
that share prefixes share LSTM states. We want to
characterize a subset HS

i,j of LSTM states at the
ith layer where the perturbed prefixes have had all
transformations in a space S applied on the original
prefix x1:j .

1072

ori:

pert:

jj−1...

ii−1...
S =

HS
i−1,j−1 (Case 1)

ori:

pert:

j...j−sk...
sk

i...i−tk...
tk

Sk↓ Tk

H
Sk↓
i−tk,j−sk (Case 2)

Figure 2: Illustration of two cases of Eq 8.

We formally define HS
i,j as follows:

HS
i,j = {LSTM(z, h0) | z ∈ S=(x1:j) ∧ LENz = i} (6)

By definition, the base case H∅
0,0 = {0d}.

Example 4.1. Let x = “to the movie”. Then,
H
{(Tdel,1)}
1,2 = {LSTM(“the”, h0), LSTM(“to”, h0)}.

These states result from deleting the first and sec-
ond words of the prefix “to the”, respectively. We
also have H∅

2,2 = {LSTM(“to the”, h0)}.
The set of final states of strings in S=(x) is⋃

i≥0

HS
i,LENx

. (7)

Memoizing equation. We now demonstrate how
to rewrite Eq 6 by explicitly applying the trans-
formations defining the perturbation space S. No-
tice that each HS

i,j comes from two sets of strings:
(1) strings whose suffix (the last character) is not
perturbed by any transformations (the first line of
Eq 8), and (2) strings whose suffix is perturbed by
Tk = (ϕk, fk) (the second line of Eq 8), as illus-
trated in Fig 2. Thus, we derive the final equation
and then immediately show an example:

HS
i,j = {LSTM(xj , h) | h ∈ HS

i−1,j−1}∪⋃
16k6|S|

ϕk(xa:b)=1

{LSTM(z, h) | z ∈ fk(xa:b), h ∈ H
Sk↓
i−tk,j−sk}

(8)

where a=j−sk + 1 and b=j.
We compute Eq 8 in a bottom-up fashion, start-

ing from H∅
0,0 = {0d} and increasing i, j and con-

sidering every possible perturbation space in the
decomposition of S, DECS .

Lemma 4.1. Eq 8 and Eq 6 are equivalent.

Example 4.2. Consider computing H{(Tdel,1)}
1,2 . We

demonstrate how to derive states from Eq 8:

H
{(Tdel,1)}
1,2 ={LSTM(“the”, h) | h ∈ H{(Tdel,1)}

0,1 }∪

{LSTM(z, h) | z ∈ fdel(“the”), h ∈ H∅
1,1}

(9)

Assume H∅
1,1 = {LSTM(“to”, h0)} and

H
{(Tdel,1)}
0,1 = {h0} are computed in advance. The

first line of Eq 9 evaluates to {LSTM(“the”, h0)},
which corresponds to deleting the first word of
the prefix “to the”. Because z can only be an
empty string, the second line of Eq 9 evaluates to
{LSTM(“to”, h0)}, which corresponds to deleting
the second word of “to the”. The dashed green
line in Fig. 1(b) shows the computation of Eq 9.

Defining Final States using Prefixes. Finally, we
compute the set of final states, F , by considering
all perturbation spaces in the decomposition of S.

F =
⋃

S′∈DECS

⋃
i≥0

HS′
i,LENx

(10)

Theorem 4.1. Eq 10 is equivalent to Eq 5.

Example 4.3. Let S = {(Tdel, 1), (Tsub, 1)} and
x =“to the movie”. F is the union of four fi-
nal states, H∅

3,3 (no transformations), H{(Tdel,1)}
2,3

(exactly 1 deletion), H{(Tsub,1)}
3,3 (exactly 1 substitu-

tion), and H{(Tdel,1),(Tsub,1)}
2,3 (exactly 1 deletion and

1 substitution).

4.2 Abstract Memoizing Equations
Memoization avoids recomputing hidden states, but
it still incurs a combinatorial explosion. We employ
abstract interpretation (Cousot and Cousot, 1977)
to solve the equations efficiently by overapprox-
imating the set F . See Albarghouthi (2021) for
details on abstractly interpreting neural networks.

Abstract Interpretation. The interval domain, or
interval bound propagation, allows us to evaluate
a function on an infinite set of inputs represented
as a hyperrectangle in Rn.

Interval domain. We define the interval domain
over scalars—the extension to vectors is standard.
We will use an interval [l, u] ⊂ R, where l, u ∈ R
and l 6 u, to denote the set of all real numbers
between l and u, inclusive.

For a finite set X ⊂ R, the abstraction operator
gives the tightest interval containing X , as follows:
α(X) = [min(X),max(X)]. Abstraction allows
us to compactly represent a large set of strings.

1073

Example 4.4. Suppose the words x1 = “movie”
and x2 = “film” have the 1D embedding 0.1
and 0.15, respectively. Then, α({x1, x2}) =
[0.1, 0.15]. For n-dimensional embeddings, we
simply compute an abstraction of every dimension,
producing a vector of intervals.

The join operation, t, produces the smallest in-
terval containing two intervals: [l, u] t [l′, u′] =
[min(l, l′),max(u, u′)]. We will use joins to merge
hidden states resulting from different strings in the
perturbation space (recall Fig. 1(b)).

Example 4.5. Say we have two sets of 1D LSTM
states represented as intervals, [1, 2] and [10, 12].
Then [1, 2] t [10, 12] = [1, 12]. Note that t is an
overapproximation of ∪, introducing elements in
neither interval.

Interval transformers. To evaluate a neural net-
work on intervals, we lift neural-network opera-
tions to interval arithmetic—abstract transformers.
For a function g, we use ĝ to denote its abstract
transformer. We use the transformers proposed by
Gehr et al. (2018); Jia et al. (2019). We illustrate
transformers for addition and any monotonically
increasing function g : R→ R (e.g., ReLU, tanh).

[l, u]+̂[l′, u′] = [l + l′, u+ u′], ĝ([l, u]) = [g(l), g(u)]

Note how, for monotonic functions g, the abstract
transformer ĝ simply applies g to the lower and
upper bounds.

Example 4.6. When applying to the ReLU function,
r̂elu([−1, 2]) = [relu(−1), relu(2)] = [0, 2].

An abstract transformer ĝ must be sound: for
any interval [l, u] and x ∈ [l, u], we have g(x) ∈
ĝ([l, u]). We use L̂STM to denote an abstract trans-
former of an LSTM cell. It takes an interval of sym-
bol embeddings and an interval of states. We use
the definition of L̂STM given by Jia et al. (2019).

Abstract Memoizing Equations. We now show
how to solve Eq 8 and Eq 10 using abstract interpre-
tation. We do this by rewriting the equations using
operations over intervals. Let Ĥ∅

0,0 = α({0d}),
then

ĤS
i,j = L̂STM(α({xj}), ĤS

i−1,j−1) t⊔
16k6|S|
ϕk(xa:b)=1

L̂STM(α(fk(xa:b)), Ĥ
Sk↓
i−tk,j−sk)

F̂ =
⊔

S′∈DECS

⊔
i≥0

ĤS′
i,LENx

where a and b are the same in Eq 8.
The two key ideas are (1) representing sets of

possible LSTM inputs abstractly as intervals, us-
ing α; and (2) joining intervals of states, using t.
These two ideas ensure that we efficiently solve the
system of equations, producing an overapproxima-
tion F̂ .

The above abstract equations give us a compact
overapproximation of F that can be computed with
a number of steps that is linear in the length of the
input. Even though we can have O(LEN2

x) num-
ber of HS

i,j for a given S, only O(LENx) number
of HS

i,j are non-empty. This property is used in
Theorem 4.2 and will be proved in the appendix.

Theorem 4.2. (Soundness & Complexity) F ⊆ F̂
and the number of LSTM cell evaluations needed
to compute F̂ is O(LENx · n ·

∏n
i=1 δi).

For practical perturbations spaces (see Sec-
tion 5), the quantity n

∏n
i=1 δi is typically small

and can be considered constant.

Extension to Bi-LSTMs and Tree-LSTMs. A Bi-
LSTM performs a forward and a backward pass
on the input. The forward pass is the same as
the forward pass in the original LSTM. For the
backward pass, we reverse the input string x, the
input of the match function ϕi and the input/output
of the replace function fi of each transformation.

A Tree-LSTM takes trees as input. We can define
the programmable perturbation space over trees in
the same form of Eq 4, where Ti is a tree trans-
formation. We show some examples of tree trans-
formations in Fig 3. TDelStop (Fig 3(a)) removes a
leaf node with a stop word in the tree. After re-
moving, the sibling of the removed node becomes
the new parent node. TDup (Fig 3(b)) duplicates
a word in a leaf node by first removing the word
and expanding the leaf node with two children,
each of which contains the previous word. TSubSyn

(Fig 3(c)) substitutes a word in the leaf node with
one of its synonyms.

We provide the formalization of ARC on Bi-
LSTMs and Tree-LSTMs in the appendix.

5 Evaluation

We implemented ARC in PyTorch. The source
code is available online1 and provided in the sup-
plementary materials.

1https://github.com/ForeverZyh/certif
ied_lstms

https://github.com/ForeverZyh/certified_lstms
https://github.com/ForeverZyh/certified_lstms

1074

... ...

the movie

movieTDelStop

(a) TDelStop: remove the.

to
...

TDup

to to

...

(b) TDup: duplicate to.
movie

... TSubSyn
film

...

(c) TSubSyn: substitute movie
with film

Figure 3: Examples of tree transformations.

Table 2: String transformations.

Trans Description

TDelStop delete a stop word, e.g., and, the, a, to, of,...
TDup duplicate a word
TSubSyn substitute a word with one of its synonyms

Datasets. We use three datasets: IMDB (Maas
et al., 2011), Stanford Sentiment Treebank
(SST) (Socher et al., 2013), and SST2, a two-way
class split of SST. IMDB and SST2 have reviews in
sentence form and binary labels. SST has reviews
in the constituency parse tree form and five labels.

Perturbation Spaces. Following Zhang et al.
(2020), we create perturbation spaces by com-
bining the transformations in Table 2, e.g.,
{(TDelStop, 2), (TSubSyn, 2)} removes up to two stop
words and replaces up to two words with syn-
onyms. We also design a domain-specific pertur-
bation space Sreview for movie reviews; e.g., one
transformation in Sreview can duplicate question or
exclamation marks because they usually appear re-
peatedly in movie reviews. We provide the detailed
definition and evaluation of Sreview in the appendix.

For Tree-LSTMs, we consider the tree transfor-
mations exemplified in Fig 3 and described in Sec-
tion 4.2.

Evaluation metrics. (1) Accuracy (Acc.) is the
vanilla test accuracy. (2) HotFlip accuracy (HF
Acc.) is the adversarial accuracy with respect to
the HotFlip attack (Ebrahimi et al., 2018): for each
point in the test set, we use HotFlip to generate the
top-5 perturbed examples and test if the classifi-
cations are correct on all the 5 examples and the
original example. (3) Certified accuracy (CF Acc.)
is the percentage of points in the test set certified
as S-robust (Eq 1) using ARC. (4) Exhaustive ac-

Table 3: Qualitative examples. The vanilla model incor-
rectly classifies the perturbed samples.

Original sample in SST2 dataset
i was perplexed to watch it unfold with an aston-
ishing lack of passion or uniqueness .

-ve

Perturbed sample in {(TDelStop, 2), (TSubSyn, 2)}
i was perplexed to watch it unfold with an astound-
ing absence of passion or uniqueness .

+ve

Original sample in SST2 dataset
this is pretty dicey material . -ve

Perturbed sample in {(TDup, 2), (TSubSyn, 2)}
this becomes pretty pretty dicey material . . +ve

curacy (EX Acc.) is the percentage of points in the
test set that is S-robust (Eq 1). HotFlip accuracy
is an upper bound of exhaustive accuracy; certified
accuracy is a lower bound of exhaustive accuracy.

Baselines. For training certifiable models against
arbitrary string transformations, we compare ARC
to (1) Normal training that minimizes the cross
entropy. (2) Data augmentation that augments the
dataset with random samples from the perturbation
space. (3) HotFlip (Ebrahimi et al., 2018) adver-
sarial training. And (4) A3T (Zhang et al., 2020)
that trains robust CNNs.

For training certifiable models against word
substitution, we compare ARC to (1) Jia et al.
(2019) that trains certifiably robust (Bi)LSTMs. We
call this CertSub in the rest of this section. (2)
ASCC (Dong et al., 2021) that trains empirically ro-
bust (Bi)LSTMs. And (3) Huang et al. (2019) that
trains certifiably robust CNNs (comparison results
are in the appendix).

For certification, we compare ARC to (1)
POPQORN (Ko et al., 2019a), the state-of-the-art
approach for certifying LSTMs. (2) SAFER (Ye
et al., 2020) that provides probabilistic certificates
to word substitution.

Xu et al. (2020) is a special case of ARC where
the perturbation space only contains substitution.
We provide theoretical comparison in the appendix.

5.1 Arbitrary Perturbation Spaces

Comparison to Data Augmentation & HotFlip.
We use the three perturbation spaces in Table 4 and
the domain-specific perturbation space Sreview in
Table 5.

ARC outperforms data augmentation and Hot-
Flip in terms of EX Acc. and CF Acc. Ta-
ble 4 shows the results of LSTM, Tree-LSTM,
and Bi-LSTM models on the tree perturbation

1075

Table 4: Results of LSTM (on SST2), Tree-LSTM (on SST), and Bi-LSTM (on SST2) for three perturbation spaces.

{(TDelStop, 2), (TSubSyn, 2)} {(TDup, 2), (TSubSyn, 2)} {(TDelStop, 2), (TDup, 2)}
Train Acc. HF Acc. CF Acc. EX Acc. Acc. HF Acc. CF Acc. EX Acc. Acc. HF Acc. CF Acc. EX Acc.

L
S

T
M

Normal 84.6 71.9 4.6 68.9 84.6 64.0 0.5 55.1 84.6 73.7 1.2 65.2
Data Aug. 84.0 77.0 5.5 74.4 84.7 70.2 0.3 61.5 84.5 75.4 0.4 68.3
HotFlip 84.0 78.7 4.3 74.6 82.5 75.9 0.0 62.0 84.4 80.6 0.0 68.7
ARC 82.5 77.8 72.5 77.0 80.2 70.0 55.4 64.0 82.6 78.6 69.4 74.6

T
R

E
E

-L
S

T
M Normal 50.3 39.9 4.1 33.8 50.3 33.4 0.0 17.9 50.3 40.1 0.0 25.7

Data Aug. 47.5 40.8 1.4 36.4 48.1 37.1 0.0 23.0 47.6 40.6 0.0 29.0
HotFlip 49.5 43.4 1.6 38.4 48.7 39.5 0.0 29.0 49.5 42.7 0.0 32.1
ARC 46.4 43.4 30.9 41.9 46.1 39.0 17.1 37.6 46.5 43.8 19.2 40.0

B
I-

L
S

T
M Normal 83.0 71.1 8.2 68.0 83.0 63.4 2.1 56.1 83.0 72.5 6.4 65.5

Data Aug. 83.2 75.1 8.7 72.9 83.5 66.8 1.3 59.1 84.6 75.0 4.6 68.6
HotFlip 83.6 79.2 9.2 73.4 82.8 76.6 0.1 55.5 83.5 79.1 0.0 55.7
ARC 83.5 78.7 70.9 77.5 80.2 71.4 59.8 66.4 82.6 76.2 66.2 71.8

Table 5: Results of LSTM on SST2 dataset for Sreview.

Sreview

Train Acc. HF Acc. CF Acc. EX Acc.

Normal 83.9 72.4 21.0 71.0
Data Aug. 79.2 72.5 30.5 71.7
HotFlip 79.6 74.3 34.5 72.9
ARC 82.3 78.1 74.2 77.1

spaces. Table 5 shows the results of LSTM models
on the domain-specific perturbation space Sreview.
ARC has significantly higher EX Acc. than nor-
mal training (+8.1,+14.0,+8.7 on average), data
augmentation (+4.2,+10.4,+5.0), and HotFlip
(+3.6,+6.7,+10.4) for LSTM, Tree-LSTM, and
Bi-LSTM respectively.

Models trained with ARC have a relatively high
CF Acc. (53.6 on average). Data augmentation
and HotFlip result in models not amenable to
certification—in some cases, almost nothing in the
test set can be certified.

ARC produces more robust models at the ex-
pense of accuracy. Other robust training ap-
proaches like CertSub and A3T also exhibit this
trade-off. However, as we will show next, ARC
retains higher accuracy than these approaches.

Comparison to A3T. A3T degenerates to HotFlip
training on {(TDelStop, 2), (TDup, 2)}, so we do not
use this perturbation space.

The LSTMs trained using ARC are more ro-
bust than the CNNs trained by A3T for both per-
turbation spaces; ARC can certify the robustness
of models while A3T cannot. Table 6 shows that
ARC results in models with higher accuracy (+2.3
and +0.3), HF Acc. (+5.9 and +1.7), and EX
Acc. (+6.8 and +6.3) than those produced by A3T.
ARC can certify the trained models while A3T can-
not.

5.2 Experiments on Word Substitution

We compare to works limited to word substitution.

Comparison to CertSub and ASCC. We choose
two perturbation spaces, {(TSubSyn, 1)} and
{(TSubSyn, 2)}. We train one model per perturba-
tion space using ARC under the same experimental
setup of CertSub, BiLSTM on the IMDB dataset.
By definition, CertSub and ASCC train for an arbi-
trary number of substitutions. CF Acc. is computed
using ARC. Note that CertSub can only certify for
{(TSubSyn,∞)} and ASCC cannot certify.

ARC trains more robust models than CertSub
for two perturbation spaces with word substitu-
tion. Table 7 shows that ARC achieves higher ac-
curacy, CF Acc., and EX Acc. than CertSub on the
two perturbation spaces.

ARC trains a more robust model than ASCC
for {(TSubSyn, 1)}, but ASCC’s model is more ro-
bust for {(TSubSyn, 2)}. Table 7 shows that the
ARC-trained models have higher accuracy and CF
Acc.

Comparison to POPQORN. We compare the cer-
tification of an ARC-trained model and a normal
model against {(TSubSyn, 3)} on the first 100 ex-
amples in SST2 dataset. Because POPQORN can
only certify the lp norm ball, we overapproximate
the radius of the ball as the maximum l1 distance
between the original word and its synonyms.

ARC runs much faster than POPQORN. ARC
is more accurate than POPQORN on the ARC-
trained model, while POPQORN is more accu-
rate on the normal model. ARC certification
takes 0.17sec/example on average for both models,
while POPQORN certification takes 12.7min/ex-
ample. ARC achieves 67% and 5% CF Acc. on
ARC-trained model and normal model, respec-

1076

Table 6: ARC vs A3T (CNN) on SST2 dataset.

{(TDelStop, 2), (TSubSyn, 2)} {(TDup, 2), (TSubSyn, 2)}
Train Model Acc. HF Acc. CF Acc. EX Acc. Acc. HF Acc. CF Acc. EX Acc.

A3T (HotFlip) CNN 80.2 71.9 N/A 70.2 79.9 68.3 N/A 57.7
ARC LSTM 82.5 77.8 72.5 77.0 80.2 70.0 55.4 64.0

Table 7: ARC vs CertSub and ASCC on IMDB dataset.

{(TSubSyn, 1)} {(TSubSyn, 2)}
Train Acc. CF Acc. EX Acc. Acc. CF Acc. EX Acc.

CertSub 76.8 67.0 71.0 76.8 64.8 68.3
ACSS 82.8 0.0 81.5 82.8 0.0 80.8
ARC 87.7 77.8 82.6 86.3 71.0 78.2

tively, while POPQORN achieves 22% and 28%
CF Acc., but crashes on 45% and 1% of examples
for two models.

Comparison to SAFER (Ye et al., 2020). SAFER
is a post-processing technique for certifying ro-
bustness via randomized smoothing. We train a
Bi-LSTM model using ARC following SAFER’s
experimental setup on the IMDB dataset and
SAFER’s synonym set, which is different from
CertSub’s. We consider the perturbation spaces
{(TSubSyn, 1)} and {(TSubSyn, 2)}. We use both
ARC and SAFER to certify the robustness. The
significance level of SAFER is set to 1%.

SAFER has a higher certified accuracy than
ARC. However, its certificates are statistical, tied
to word substitution only, and are slower to com-
pute. Considering {(TSubSyn, 2)}, ARC results in
a certified accuracy of 79.6 and SAFER results
in a certified accuracy of 86.7 (see appendix).
Note that certified accuracies are incomparable be-
cause SAFER computes certificates that only pro-
vide statistical guarantees. Also, note that ARC
uses O(n

∏n
i=1 δi) forward passes for each sample,

while SAFER needs to randomly sample thousands
of times. In the future, it would be interesting to
explore extensions of SAFER to ARC’s rich pertur-
bation spaces.

5.3 Effects of Perturbation Space Size

We fix the LSTM model (Table 4) trained using
ARC on {(TDup, 2), (TSubSyn, 2)} and SST2. Then,
we test this model’s CF Acc. and HotFlip accuracy
on {(TDup, δ), (TSubSyn, δ)} by varying δ from 1 to
5. We evaluate the EX Acc. only for δ = 1, 2, 3,
due to the combinatorial explosion.

ARC maintains a reasonable CF Acc. for in-

1 2 3 4 5
δ

20

30

40

50

60

70

80

A
cc

ur
ac

y

71.2 70.0 68.9 67.9 67.667.3
64.0

61.963.7

55.4

49.5
45.0

41.7

HF Acc
EX Acc

CF Acc
Max Pertb Size

104

106

108

1010

S
iz

e
of

pe
rt

ur
ba

tio
n

sp
ac

e

Figure 4: Accuracy metrics and the maximum per-
turbation space size as δ varies from 1 to 5 for
{(TDup, δ), (TSubSyn, δ)}.

creasingly larger spaces. Fig 4 shows the results,
along with the maximum perturbation space size
in the test set. ARC can certify 41.7% of the test
set even when the perturbation space size grows to
about 1010. For δ = 1, 2, 3, the CF Acc. is lower
than the EX Acc. (8.2 on average), while the HF
Acc. is higher than the EX Acc. (5.6 on average).
Note that ARC uses a small amount of time to cer-
tify the entire test set, 3.6min on average, using a
single V100 GPU, making it incredibly efficient
compared to brute-force enumeration.

6 Conclusion

We present ARC, which uses memoization and
abstract interpretation to certify robustness to pro-
grammable perturbations for LSTMs. ARC can
be used to train models that are more robust than
those trained using existing techniques and han-
dle more complex perturbation spaces. Last, the
models trained with ARC have high certification
accuracy, which can be certified using ARC itself.

Acknowledgements

We thank Nick Giannarakis and the anonymous
reviewers for commenting on earlier drafts. This
work is supported by the National Science Founda-
tion grants CCF-1420866, CCF-1704117, CCF-
1750965, CCF-1763871, CCF-1918211, CCF-
1652140, the Microsoft Faculty Fellowship, and
gifts and awards from Facebook.

1077

References
Aws Albarghouthi. 2021. Introduction to Neural Net-

work Verification. verifieddeeplearning.com. http:
//verifieddeeplearning.com.

Nicholas Carlini and David A. Wagner. 2017. Adver-
sarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Secu-
rity, AISec@CCS 2017, Dallas, TX, USA, November
3, 2017, pages 3–14.

Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter.
2019. Certified adversarial robustness via random-
ized smoothing. In Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Re-
search, pages 1310–1320. PMLR.

Patrick Cousot and Radhia Cousot. 1977. Abstract inter-
pretation: A unified lattice model for static analysis
of programs by construction or approximation of
fixpoints. In Conference Record of the 4th ACM Sym-
posium on Principles of Programming Languages,
POPL 1977, Los Angeles, California, USA, January
1977, pages 238–252.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong
Liu. 2021. Towards robustness against natural lan-
guage word substitutions. In International Confer-
ence on Learning Representations.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31–36,
Melbourne, Australia. Association for Computational
Linguistics.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen,
Petar Tsankov, Swarat Chaudhuri, and Martin T.
Vechev. 2018. AI2: safety and robustness certifi-
cation of neural networks with abstract interpretation.
In 2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings, 21-23 May 2018, San Fran-
cisco, California, USA, pages 3–18.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stan-
forth, Rudy Bunel, Chongli Qin, Jonathan Uesato,
Relja Arandjelovic, Timothy Arthur Mann, and Push-
meet Kohli. 2019. Scalable verified training for prov-
ably robust image classification. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November
2, 2019, pages 4841–4850. IEEE.

Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris
Dyer, Dani Yogatama, Sven Gowal, Krishnamurthy
Dvijotham, and Pushmeet Kohli. 2019. Achieving
verified robustness to symbol substitutions via in-
terval bound propagation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4083–4093, Hong Kong,
China. Association for Computational Linguistics.

Yuval Jacoby, Clark W. Barrett, and Guy Katz. 2020.
Verifying recurrent neural networks using invariant
inference. In Automated Technology for Verification
and Analysis - 18th International Symposium, ATVA
2020, Hanoi, Vietnam, October 19-23, 2020, Pro-
ceedings, pages 57–74.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy
Liang. 2019. Certified robustness to adversarial word
substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4129–4142, Hong Kong, China. Association
for Computational Linguistics.

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel,
Ngai Wong, and Dahua Lin. 2019a. POPQORN:
quantifying robustness of recurrent neural networks.
In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages 3468–
3477. PMLR.

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel,
Ngai Wong, and Dahua Lin. 2019b. POPQORN:
quantifying robustness of recurrent neural networks.
In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages 3468–
3477. PMLR.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial
text against real-world applications. In 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February
24-27, 2019.

Linyi Li, Xiangyu Qi, Tao Xie, and Bo Li. 2020. Sok:
Certified robustness for deep neural networks. CoRR,
abs/2009.04131.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversarial
attacks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

http://verifieddeeplearning.com
http://verifieddeeplearning.com
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3128572.3140444
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://openreview.net/forum?id=ks5nebunVn_
https://openreview.net/forum?id=ks5nebunVn_
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.18653/v1/D19-1423
http://proceedings.mlr.press/v97/ko19a.html
http://proceedings.mlr.press/v97/ko19a.html
http://proceedings.mlr.press/v97/ko19a.html
http://proceedings.mlr.press/v97/ko19a.html
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
http://arxiv.org/abs/2009.04131
http://arxiv.org/abs/2009.04131
https://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

1078

Paul Michel, Xian Li, Graham Neubig, and Juan Pino.
2019. On evaluation of adversarial perturbations for
sequence-to-sequence models. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3103–3114, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Matthew Mirman, Timon Gehr, and Martin T. Vechev.
2018. Differentiable abstract interpretation for prov-
ably robust neural networks. In Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 3575–3583. PMLR.

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie
Huang, and Cho-Jui Hsieh. 2020. Robustness verifi-
cation for transformers. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings.

Johannes Welbl, Po-Sen Huang, Robert Stanforth,
Sven Gowal, Krishnamurthy (Dj) Dvijotham, Mar-
tin Szummer, and Pushmeet Kohli. 2020. Towards
verified robustness under text deletion interventions.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang,
Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura,
Xue Lin, and Cho-Jui Hsieh. 2020. Automatic per-
turbation analysis for scalable certified robustness
and beyond. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Mao Ye, Chengyue Gong, and Qiang Liu. 2020.
SAFER: A structure-free approach for certified ro-
bustness to adversarial word substitutions. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3465–
3475, Online. Association for Computational Lin-
guistics.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui
Hsieh, and Luca Daniel. 2018. Efficient neural net-
work robustness certification with general activation
functions. In Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 4944–
4953.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5564–5569, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yuhao Zhang, Aws Albarghouthi, and Loris D’Antoni.
2020. Robustness to programmable string transfor-
mations via augmented abstract training. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, pages 11023–11032.

https://doi.org/10.18653/v1/N19-1314
https://doi.org/10.18653/v1/N19-1314
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
https://openreview.net/forum?id=BJxwPJHFwS
https://openreview.net/forum?id=BJxwPJHFwS
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=SyxhVkrYvr
https://openreview.net/forum?id=SyxhVkrYvr
https://proceedings.neurips.cc/paper/2020/hash/0cbc5671ae26f67871cb914d81ef8fc1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0cbc5671ae26f67871cb914d81ef8fc1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0cbc5671ae26f67871cb914d81ef8fc1-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.317
https://doi.org/10.18653/v1/2020.acl-main.317
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/P19-1559
http://proceedings.mlr.press/v119/zhang20b.html
http://proceedings.mlr.press/v119/zhang20b.html

1079

A Appendix

A.1 Proof of Lemmas and Theorems
Lemma 4.1

Proof. We prove Lemma 4.1 by induction on i, j
and S.

Base case: H∅
0,0 = h0 is defined by both Eq 6

and Eq 8.
Inductive step for HS

i,j: Suppose the lemma
holds for HS′

i′,j′ , where (0 ≤ i′ ≤ i ∧ 0 ≤ j′ ≤
j ∧ S′ ⊆ S) ∧ (i′ 6= i ∨ j′ 6= j ∨ S′ 6= S).
S′ ⊆ S denotes that for all (Tk, δ

′
k) ∈ S′, we

have (Tk, δk) ∈ S and δ′k ≤ δk.
HS
i,j in Eq 6 comes from two cases illustrated

in Fig 2. These two cases are captured by the first
line and the second line in Eq 8, respectively. The
inductive hypothesis shows that the lemma holds on
states HS

i−1,j−1 and HSk↓
i−tk,j−sk . Thus, the lemma

also holds on HS
i,j .

Theorem 4.1

Proof. We can expand Eq 5 using the decomposi-
tion of the perturbation space as

F

=
⋃

S′∈DECS

{LSTM(z, h0) | z ∈ S′=(x)}

=
⋃

S′∈DECS

⋃
i≥0

{LSTM(z, h0) | z ∈ S′=(x) ∧ LENz = i}

(11)

Eq 11 and Eq 10 are equivalent, leading to the
equivalence of Eq 5 and Eq 10.

Theorem 4.2 Theorem 4.2

Proof. We first show that Eq 7 is equivalent to⋃
0≤i≤MAXLENx

HS
i,LENx

, where

MAXLENx = LENx +
∑

(Tk,δk)∈S

max(tk−sk, 0)δk

where fk : Σsk → 2Σtk . As we will prove later,
MAXLENx is the upper bound of the length of the
perturbed strings. Because tk, sk, δk are typically
small constants, we can regard MAXLENx as a term
that is linear in the length of the original string
LENx, i.e., MAXLENx = O(LENx).

Now, we prove that MAXLENx is the upper
bound of the length of the perturbed string. The
upper bound MAXLENx can be achieved by ap-
plying all string transformations that increase the

perturbed string’s length and not applying any
string transformations that decrease the perturbed
string’s length. Suppose a string transformation
Tk = (fk, ϕk), fk : Σsk → 2Σtk can be applied
up to δk times, then we can apply it δk times to in-
crease the perturbed string’s length by (tk − sk)δk.

The proof of soundness follows immediately
from the fact that α, t, and L̂STM overapproximate
their inputs, resulting in an overapproximation F .

The proof of complexity follows the property
that the number of non-empty hyperrectangles ĤS

i,j

is O(LENx ·
∏n
i=1 δi). This property follows the

definition of the string transformations and the tight
perturbation space S=. ĤS

i,j can be non-empty iff

i = j +
∑

(Tk,δk)∈S

(tk − sk)δk, where fk : Σsk → 2Σtk

For each ĤS
i,j , we need to enumerate through all

transformations, so the complexity is O(LENx ·
n
∏n
i=1 δi) in terms of the number of LSTM cell

evaluations. The interval bound propagation needs
only two forward passes for computing the lower
bound and upper bound of the hyperrectangles, so it
only contributes constant time to complexity. In all,
the total number of LSTM cell evaluations needed
is O(LENx · n

∏n
i=1 δi).

A.1.1 Comparison to Xu et al. (2020)
The dynamic programming approach proposed in
Xu et al. (2020) is a special case of ARC where the
perturbation space only contains substitutions. The
abstract state gi,j in their paper (Page 6, Theorem

2) is equivalent to Ĥ{(TSubSyn,j)}
i,i in our paper.

A.2 Handling Attention
We have introduced the memoization and abstrac-
tion of final states in Section 4. Moreover, for
LSTM architectures that compute attention of each
state hi, we would like to compute the interval ab-
straction of each state at the ith time step, denoted
as Ĥi.

It is tempting to compute Hi as

Hi =
⋃

S′∈DEC

⋃
0≤j≤LENx

HS′
i,j (12)

Unfortunately, Eq 12 does not contain states that
are in the middle of a string transformation (see
next example).

Example A.1. Consider the string transforma-
tion Tswap that swaps two adjacent words and
suppose x = “to the”, S = {(Tswap, 1)}, then

1080

H1 = {LSTM(“to”, h0), LSTM(“the”, h0)}. How-
ever, the only non-empty state with i = 1 is H∅

1,1 =
{LSTM(“to”, h0)}. The state LSTM(“the”, h0) is
missing because it is in the middle of transforma-
tion Tswap.

But Eq 12 is correct for i = 2 because the trans-
formation Tswap completes at time step 2.

Think of the set of all strings in a perturbation
space as a tree, like in Fig. 1(b), where strings
that share prefixes share LSTM states. We want
to characterize a subset GSi,j of LSTM states at the
ith layer where the perturbed prefixes have had all
transformations in a space S applied on the original
prefix x1:j and are in the middle of transformation
Tk. Intuitively, GSi,j is a super set of HS

i,j defined
in Section 4.

We formally define GSi,j as follows:

GSi,j = {LSTM(z1:i, h0) | z ∈ S=(x1:j) ∧ Lz ≥ i} (13)

We rewrite Eq 13 by explicitly applying the trans-
formations defining the perturbation space S, thus
deriving our final equations:

GSi,j =
⋃

16k6n

⋃
16l6tj

ϕk(xa:b)=1

{
LSTM(c, h) |h ∈ GSk↓

i−l,j−sk

c ∈ fk,:l(xa:b)

}

∪ {LSTM(xj , h) | h ∈ GSi−1,j−1} (14)

where a = j−sk+1 and b = j. Notation fk,:l(xa:b)
collects the first l symbols for each z in fk(xa:b),
i.e.,

fk,:l(xa:b) = {z1:l | z ∈ fk(xa:b)}

GSi,j contains (1) strings whose suffix is per-
turbed by Tk = (ϕk, fk) and the last symbol of
z is the lth symbol of the output of Tk (the first
line of Eq 14), and (2) strings whose suffix (the last
character) is not perturbed by any transformations
(the second line of Eq 14).

Then, Hi can be defined as

Hi =
⋃

S′∈DEC

⋃
0≤j≤LENx

GS
′

i,j

Lemma A.1. Eq 13 and Eq 14 are equivalent.

The above lemma can be proved similarly to
Lemma 4.1.

We use interval abstraction to abstract Eq 14
similarity as we did in Section 4.2. The to-
tal number of LSTM cell evaluation needed is
O(LENx ·maxni=1(ti) · n

∏n
i=1 δi) .

A.3 Handling Bi-LSTMs
Formally, We denote xR as the reversed string x.
Suppose a transformation T has a match function
ϕ and a replace function f , the reversed transfor-
mation T R = (ϕR, fR) is defined as

ϕR(x) = ϕ(xR), fR(x) = {zR | z ∈ f(xR)} ∀x ∈ Σ∗

A.4 Handling Tree-LSTMs
Intuitively, we replace substrings in the formaliza-
tion of LSTM with subtrees in the Tree-LSTM case.
We denote the subtree rooted at node u as tu and
the size of tu as SIZEtu . The state HS

u denotes the
Tree-LSTM state that reads subtree tu generated
by a tight perturbation space S. The initial states
are the states at leaf node u

H∅
u = {LSTM(xu, h0)}

and the final state is HS
root.

We provide transition equations for three specific
tree transformations Fig 3.

A.4.1 Merge states
For a non-leaf node v, we will merge two states,
each from a child of v.

HS
v =

⋃
S′∈DECS

{TRLSTM(h, g) | h ∈ HS′
v1 ∧ g ∈ H

S−S′
v2 }

(15)

where v1 and v2 are children of v, and TRLSTM

denotes the Tree-LSTM cell that takes two states
as inputs. Notation S − S′ computes a tight pertur-
bation space by subtracting S′ from S. Formally,
suppose

S = {(T1, δ1), (T2, δ2), . . . , (Tn, δn)}
S′ = {(T1, δ

′
1), (T2, δ

′
2), . . . , (Tn, δ

′
n)}

then

S − S′ = {(T1, δ1 − δ′1), (T2, δ2 − δ′1), . . . , (Tn, δn − δ′n)}

Notice that Eq 15 is general to any tight perturba-
tion space S containing these three tree transforma-
tions.

A.4.2 TSubSyn

We first show the computation of HS
u for a leaf

node u. The substitution only happens in the leaf
nodes because only the leaf nodes correspond to
words.

H
{TSubSyn,1}
u = {LSTM(c, h0) | c ∈ fsub(xu)}

1081

Table 8: String transformations for Sreview.

Trans Description

Treview1 substitute a phrase in the set A with another phrase in A.
Treview2 substitute a phrase in the set B with another phrase in B or substitute a phrase in C with another phrase in C.
Treview3 delete a phrase “one of” from “one of the most ...” or from “one of the ...est”.
Treview4 duplicate a question mark “?” or an exclamation mark “!”.

A.4.3 TDup

TDup can be seen as a subtree substitution at leaf
node u.

H
{TDup,1}
u = {TRLSTM(h, h)},

where h = LSTM(xu, h0).

A.4.4 TDelStop

Things get tricky for TDelStop because
{(TDelStop, δ)} can delete a whole subtree tv
if (1) the subtree only contains stop words and (2)
SIZEtv ≤ δ. We call such subtree tu deletable if
both (1) and (2) are true.

Besides the merging equation Eq 15, we pro-
vide another transition equation for HS

v , where v
is any non-leaf node with two children v1, v2 and a
perturbation space S = {. . . , (TDelStop, δ), . . .}

HS
v =

⋃
S′∈DECS

{TRLSTM(h, g) | h ∈ HS′
v1 ∧ g ∈ H

S−S′
v2 }

∪


H
S−S(1)

del
v2 (1) tv1 is deletable

H
S−S(2)

del
v1 (2) tv2 is deletable

H
S−S(1)

del
v2 ∪HS−S(2)

del
v1 both (1) and (2)

∅ otherwise
(16)

where

S
(1)
del = {(TDelStop, SIZEtv1

)}, S(2)
del = {(TDelStop, SIZEtv2

)}

A.4.5 Soundness and Complexity
We use interval abstraction to abstract the tran-
sition equations for Tree-LSTM similarity as
we did in Section 4.2. The total number of
LSTM/Tree-LSTM cell evaluations needed is
O(SIZEt(

∏n
i=1 δi)

2). The term (
∏n
i=1 δi)

2 comes
from Eq 15, as we need to enumerate S′ for each
S in the decomposition set.

A.5 Experimental Setup

We conduct all experiments on a server running
Ubuntu 18.04.5 LTS with V100 32GB GPUs and
Intel Xeon Gold 5115 CPUs running at 2.40GHz.

A.5.1 Definition for Sreview

We design Sreview by inspecting highly frequent
n-grams in the movie review training set. Formally,

Sreview = {(Treview1, 1), (Treview2, 1),

(Treview3, 1), (Treview4, 1), (TSubSyn, 2)}

where Treview1, Treview2, Treview3, and Treview4 are
defined in Table 8 with

A = {“this is”, “this ’s”, “it is”, “it ’s”}
B = {“the movie”, “the film”, “this movie”,

“this film”, “a movie”, “a film”}
C = {“the movies”, “the films”, “these movies”,

“these films”}

A.5.2 Implementation of ARC
We provide a general implementation of ARC on
LSTM against arbitrary user-defined string trans-
formations. We also provide specific implemen-
tations of ARC on LSTM, Tree-LSTM, and Bi-
LSTM against three transformations in Table 2 and
Fig 3. Specific transformations allow us to opti-
mize the specific implementations to utilize the full
power of parallelism on GPU so that the specific
implementations are faster than the general imple-
mentation. We conduct all our experiments on the
specific implementations except for Sreview.

A.5.3 Details of Training
A3T: A3T has two instantiations, A3T (HotFlip)
and A3T (Enum). The difference between the
two instantiations is the way it explores the aug-
mentation space in A3T. We choose to show A3T
(HotFlip) for comparison, but ARC wins over A3T
(Enum) as well.

ASCC: ASCC updates the word embedding dur-
ing training by defaults. In our experiments, we fix
the word embedding for ASCC.

ARC: All the models trained by ARC have hid-
den state and cell state dimensions set to 100. We
adopt a curriculum-based training method (Gowal
et al., 2019; Huang et al., 2019; Jia et al., 2019;

1082

Table 9: ARC vs SAFER on IMDB dataset.

{(TSubSyn, 1)} {(TSubSyn, 2)}
Train CF Acc. RS Acc. CF Acc. RS Acc.

Data Aug. 0.2 90.0 0.1 89.7
ARC 82.0 87.2 79.6 86.7

Zhang et al., 2020) for training ARC by using a hy-
perparameter λ to weigh between the normal loss
and the abstract loss and using a hyperparameter ε
to gradually increasing the radius of synonym sets.
We gradually change two hyperparameters from 0
to their maximum values by T1 epochs and keep
training with their maximum values by T2 epochs.

Maximum values of hyperparameters λ and
ε. For the experiments in Table 4, we tune the
maximum of λ during training from 0.5 to 1.0 (with
span 0.1) for LSTM and Bi-LSTM models and
from 0.05 to 0.10 (with span 0.01) for Tree-LSTM
models. For other experiments, which only use
word substitutions, we fix the maximum of λ to be
0.8 following Jia et al. (2019).

For every experiment, the maximum of ε dur-
ing training is defined by the size of word sub-
stitutions in the perturbation space. For example,
{(TDelStop, 2), (TSubSyn, 2)} defines the maximum
of ε as 2 and {(TDelStop, 2), (TDup, 2)} defines the
maximum of ε as 0.

Epoch numbers T1 and T2. For LSTM and
Bi-LSTM models on SST2 dataset, we set T1 =
16, T2 = 8. For other models (Tree-LSTM models
on SST dataset and Bi-LSTM models on IMDB
dataset), we set T1 = 20, T2 = 10.

We use early stopping for other training methods
and step the early stopping epoch as 5.

We provide the training scripts and all trained
models in supplementary materials.

A.6 Evaluation Results
The full results of comparison to SAFER are shown
in Table 9.

Comparison to Huang et al. (2019). We use
{(TSubSyn, 3)} on SST2 dataset for comparison be-
tween ARC and Huang et al. (2019). We directly
quote the results in their paper.

ARC trains more robust LSTMs than CNNs
trained by Huang et al. (2019). Table 10 shows
that ARC results in models with higher accuracy
(+1.6), HF Acc. (+1.1), CF Acc. (+28.8), and EX
Acc. (+3.4) than those produced by Huang et al.
(2019).

Table 10: ARC vs Huang et al. (2019) (CNN) on SST2
dataset.

{(TSubSyn, 3)}
Train Model Acc. HF Acc. CF Acc. EX Acc.

Huang et al. CNN 81.7 77.2 44.5 76.5
ARC LSTM 83.3 78.3 73.3 77.9

Table 11: Results of different instantiations of ARC-
A3T on SST2 dataset.

{(TDelStop, 2), (TSubSyn, 2)} {(TDup, 2), (TSubSyn, 2)}

Train Acc. CF Acc. EX Acc. Acc. CF Acc. EX Acc.

Abs-fir 83.2 15.1 68.6 82.6 15.9 66.7
Abs-sec 81.4 71.1 75.8 83.0 48.8 65.4
ARC 82.5 72.5 77.0 80.2 55.4 64.0

Effectiveness of ARC-A3T. We can apply the idea
of A3T to ARC, extending ARC to abstract any sub-
set of the given perturbation space and to augment
the remaining perturbation space. We show the
effectiveness of this extension in the appendix.

We evaluate ARC-A3T on the same perturba-
tion spaces as we do for A3T. For each pertur-
bation space, ARC-A3T has four instantiations:
abstracting the whole perturbation space (down-
graded to ARC), abstracting the first perturbation
space ({(TDelStop, 2)} or {(TDup, 2)}), abstracting
the second perturbation space ({(TSubSyn, 2)}), and
augmenting the whole perturbation space. We use
enumeration for augmenting. We do not test the
last instantiation because enumeration the whole
perturbation space is infeasible for training. We
further evaluate the trained models on different per-
turbation sizes, i.e., {(TDelStop, δ), (TSubSyn, δ)} and
{(TDup, δ), (TSubSyn, δ)} with δ = 1, 2, 3.

Different instantiations of ARC-A3T win for
different perturbation spaces. Table 11 shows the
results of different instantiations of ARC-A3T. For
{(TDelStop, 2), (TSubSyn, 2)}, abstracting the first
perturbation space ({(TDelStop, 2)}) achieves the
best accuracy and abstracting the whole perturba-
tion space (ARC) achieves the best CF Acc. and
EX Acc. For {(TDup, 2), (TSubSyn, 2)}, abstracting
the first perturbation space ({(TDup, 2)}) achieves
the best EX Acc., abstracting the second perturba-
tion space ({(TSubSyn, 2)}) achieves the best accu-
racy, and abstracting the whole perturbation space
(ARC) achieves the best CF Acc.

Figures 5 and 6 show the EX Acc. and
CF Acc. for {(TDelStop, δ), (TSubSyn, δ)} and
{(TDup, δ), (TSubSyn, δ)}, as δ varies from 1 to 3.

1083

1 2 3

{(TDelStop, δ), (TSubsyn, δ)}

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0
E

X
A

C
C

.

72.7

68.6

66.9

77.3

75.8 75.3

77.6
77.0

76.0

Abs-fir
Abs-sec

ARC

1 2 3

{(TDup, δ), (TSubsyn, δ)}

71.4

66.7

64.9

70.5

65.4

62.7

67.3

64.0

61.9

Figure 5: EX Acc. as δ varies from 1 to 3 for
{(TDelStop, δ), (TSubSyn, δ)} and {(TDup, δ), (TSubSyn, δ)}.

1 2 3

{(TDelStop, δ), (TSubsyn, δ)}

10

20

30

40

50

60

70

80

C
F

A
C

C
.

25.0

15.1 13.6

73.8
71.1 69.9

75.2
72.5 72.2

Abs-fir
Abs-sec

ARC

1 2 3

{(TDup, δ), (TSubsyn, δ)}

28.8

15.9
12.7

62.4

48.8

39.7

63.7

55.4

49.5

Figure 6: CF Acc. as δ varies from 1 to 3 for
{(TDelStop, δ), (TSubSyn, δ)} and {(TDup, δ), (TSubSyn, δ)}.

ARC achieves the best EX Acc. and CF Acc. for
{(TDelStop, δ), (TSubSyn, δ)} and the best CF Acc.
for {(TDup, δ), (TSubSyn, δ)}. Abstracting the first
perturbation space ({(TDup, δ)}) achieves the best
EX Acc. for {(TDup, δ), (TSubSyn, δ)}. Notice that
the abstraction approach proposed by ARC enables
the abstracting of {(TDup, δ)}.

