
Measuring Association Between Labels and Free-Text Rationales

Sarah Wiegreffe♣ Ana Marasović†3 Noah A. Smith†3

♣School of Interactive Computing, Georgia Institute of Technology
†Allen Institute for Artificial Intelligence

3Paul G. Allen School of Computer Science and Engineering, University of Washington
saw@gatech.edu, {anam,noah}@allenai.org

Abstract

In interpretable NLP, we require faithful ratio-
nales that reflect the model’s decision-making
process for an explained instance. While prior
work focuses on extractive rationales (a subset
of the input words), we investigate their less-
studied counterpart: free-text natural language
rationales. We demonstrate that pipelines, mod-
els for faithful rationalization on information-
extraction style tasks, do not work as well on
“reasoning” tasks requiring free-text rationales.
We turn to models that jointly predict and ratio-
nalize, a class of widely used high-performance
models for free-text rationalization. We inves-
tigate the extent to which the labels and ratio-
nales predicted by these models are associated,
a necessary property of faithful explanation.
Via two tests, robustness equivalence and fea-
ture importance agreement, we find that state-
of-the-art T5-based joint models exhibit desir-
able properties for explaining commonsense
question-answering and natural language infer-
ence, indicating their potential for producing
faithful free-text rationales.1

1 Introduction

Interpretable NLP aims to better understand pre-
dictive models’ internals for purposes such as de-
bugging, validating safety before deployment, or
revealing unintended biases and behavior (Molnar,
2019). These objectives require faithful rationales—
explanations of the model’s behavior that are accu-
rate representations of its decision process (Melis
and Jaakkola, 2018).

One way towards faithfulness is to introduce
architectural modifications or constraints that pro-
duce rationales with desirable properties (Andreas
et al., 2016; Schwartz et al., 2018; Jiang et al., 2019,
inter alia). For example, pipeline models (Figure 2)
were designed for information extraction (IE) tasks
for which a rationale can be extracted as a subset of

1Our code is available at https://github.com/
allenai/label_rationale_association.

Figure 1: A categorization of interpretable NLP on an
illustrative faithfulness spectrum. Two predominant
forms of explanation exist that align with two predomi-
nant classes of NLP tasks. Unlike models for IE tasks,
the desirable properties of interpretable models for rea-
soning tasks have not been explored. We investigate
architectures and tests for explaining reasoning tasks.

the input and is sufficient to make a prediction on its
own, without the rest of the input (Lei et al., 2016).
Such models approach faithfulness by construction
(Jain et al., 2020).

There is a growing interest in tasks that require
world and commonsense “knowledge” and “rea-
soning”, such as commonsense question-answering
(CommonsenseQA; Talmor et al., 2019) and nat-
ural language inference (SNLI; Bowman et al.,
2015). Here, extractive rationales necessarily fall
short—rationales must instead take the form of
free-text natural language to fill in the reasoning or
knowledge gap (Camburu et al., 2018; Rajani et al.,
2019).2 In Table 1, for example, the highlighted ex-
tractive rationale of the first problem instance lacks
at least one reasoning step to adequately justify the
answer; the natural language rationale (which is
not extractive) fills in the gap.

We study two distinct model classes: self-

2We use “free-text” and “natural language” rationales
interchangeably. We additionally use the term “rationale” to
also mean “explanation”; for a more detailed discussion of
terminology see Jacovi and Goldberg (2021); Wiegreffe and
Marasović (2021).

https://github.com/allenai/label_rationale_association
https://github.com/allenai/label_rationale_association


Commonsense
QA (CoS-E)

Question: While eating a hamburger with friends , what are people trying to do?
Answer choices: have fun, tasty, or indigestion
Natural language rationale: Usually a hamburger with friends indicates a good time.

Natural
Language
Inference
(E-SNLI)

Premise: A child in a yellow plastic safety swing is laughing as a dark-haired woman stands behind her.
Hypothesis: A young mother is playing with her daughter in a swing.
Label choices: neutral, entailment, or contradiction
Natural language rationale: Child does not imply daughter and woman does not imply mother.

Table 1: Examples from the CoS-E v1.0 and E-SNLI datasets (§2). Extractive rationales annotated by humans are
highlighted, while human-written free-text rationales are presented underneath the answer/label choices. These
examples illustrate that the extractive rationales fail to adequately explain the correct (underlined) label.

rationalizing models, which are fully differentiable
and jointly predict the task output with the ratio-
nale; and pipelines, which rationalize first and then
predict task output with a separate model. We first
show that, for CommonsenseQA and SNLI, a self-
rationalizing model provides rationales that better
indicate the correct label than a pipeline (§3.1).
Next, we show that sufficiency is not universally
applicable: a natural language rationale on its own
does not generally provide enough information to
arrive at the correct answer (§3.2). These findings
suggest that a faithful-by-construction pipeline is
not an ideal approach for reasoning tasks, leading
us to ask: is there is a way to achieve faithful free-
text rationalization with self-rationalizing models?

We note that there is currently no way to assess
the relationship between a prediction and a free-
text rationale within the same fully differentiable
model. Jacovi and Goldberg (2020) argue for the
development of evaluations that measure the extent
and likelihood that a rationale is faithful in practice
(illustrated in Figure 1). To do so, we propose two
measurements to initiate testing the extent to which
predicted labels and explanations are associated
within the model that produces them.

The first experiment, robustness equivalence
(§4.1), analyzes whether a predicted label and gen-
erated rationale are similarly robust to noise. The
second, feature importance agreement (§4.2), ana-
lyzes whether the gradient-attributions of the input
with respect to the predicted label are similar to
those with respect to the predicted rationale. We
show that a self-rationalizing finetuned variant of
T5 (Raffel et al., 2020; Narang et al., 2020) demon-
strates good robustness equivalence and feature
importance agreement on the datasets investigated.
This result motivates future work on more measure-
ments for testing label-rationale association.

2 Tasks, Datasets, and Models

Before we turn to our analyses we introduce
datasets and models used for our experiments.

Tasks and Datasets We explore two large-scale
datasets for textual reasoning tasks that contain
human-written natural language rationales: E-
SNLI (Camburu et al., 2018), an extension of SNLI
(Bowman et al., 2015); and CoS-E (Rajani et al.,
2019), an extension of CommonsenseQA (Talmor
et al., 2019) (both in English). For the former, the
task is to infer whether a given hypothesis sentence
entails, contradicts, or is neutral towards a premise
sentence. For the latter, the task is to select the
correct answer from 3 (v1.0) or 5 (v1.11) answer
choices for a question. We use both versions of
CoS-E in our experiments (see Appendix A.2). Ta-
ble 1 contains examples and Table 7 (Appendix
A.2) data statistics.3

T5 Models All of the models in this work are
based on T5, though our methods can in principle
be applied to any architecture. The base version
of T5 is a 220M-parameter transformer encoder-
decoder (Vaswani et al., 2017). To carry out su-
pervised finetuning, T5 is trained by maximizing
the conditional likelihood of the correct text output
(from annotated data), given the text input.

We finetune five T5-Base models for each
dataset, supervising with ground-truth labels and
rationales (further details in Appendix A.3-A.4):

• I→R, which maps task inputs to rationales,
without ever being exposed to task outputs.

• R→O, which maps rationales to task outputs.
The only input elements this model is exposed
to are answer choices (for CoS-E).

• I→OR, which maps inputs to outputs and ra-
tionales.

3CoS-E does not contain test set rationale annotations, so
we report performance values on the validation set.



Source CQA SNLI SST AgNews Evidence Movie MultiRC LGD 20 News Amazon Beer BoolQ FEVERInference Reviews Reviews Reviews

True Pipelines (no gradient flow)
Camburu et al. (2018) E + NL
Kumar and Talukdar (2020) NL
Rajani et al. (2019) E + NL
Jain et al. (2020) E E E E E
Jacovi and Goldberg (2021) E E E E E E E E E
DeYoung et al. (2020) E E E E E E E
Lehman et al. (2019) E

Discrete Optimization Variants
Lei et al. (2016) E
Bastings et al. (2019) E E E
Latcinnik and Berant (2020) NL
Paranjape et al. (2020) E E E E E E

Table 2: An overview of text-only datasets and rationale types (E for extractive, NL for natural language rationales)
used in prior work on pipeline architectures. We focus on the two tasks we believe require a more complex notion
of “reasoning” to solve: CommonsenseQA (CQA) and NLI. Unlike the other tasks in the table, prior work for
rationalizing these two tasks lacks consensus on (1) the type of rationales best-suited, and (2) the form of the model
for these tasks. We argue for natural language rationales, and demonstrate that pipeline models are poorly-suited for
CQA and SNLI given this choice. Dataset citations: Appendix A.1.

Figure 2: An illustration of a pipeline model (composed of I→R and R→O; §2) for CoS-E v1.0 with a human-written
rationale. The dotted line indicates two separate models with no gradient flow.

• IR→O, which maps pairs of inputs and ratio-
nales to outputs.

• I→O, which maps inputs to outputs.
We provide input-output formatting in Table 8

(Appendix A.3). Using these building blocks, we
can instantiate two important approaches.

Pipeline Model (I→R;R→O) This architecture
composes I→R with R→O, each of which is
trained entirely separately, for a total of 440M pa-
rameters. It is illustrated in Figure 2 and is faithful-
by-construction (with caveats; see Jacovi and Gold-
berg, 2021). The vast majority of prior work using
pipelines has focused only on extractive rationales
(see Table 2).

Self-Rationalizing Model (I→OR) A joint, self-
rationalizing model (Melis and Jaakkola, 2018),
illustrated in Figure 3, predicts both a label and
rationale. This is the most common approach to
free-text rationalization (Hendricks et al., 2016;
Kim et al., 2018; Hancock et al., 2018; Camburu
et al., 2018; Ehsan et al., 2018; Liu et al., 2019a;
Wu and Mooney, 2019; Narang et al., 2020; Do
et al., 2020; Tang et al., 2020), but little is under-
stood about model internals. I→OR models are

desirable for their ease-of-use, task-effectiveness,
parameter efficiency, and their ability to generate
fluent and plausible rationales. We expect models
of this kind to play an important role in continuing
research on explainable AI for these reasons.

We use the I→OR variant of T5 (Narang et al.,
2020). Because only one instance of T5 is used to
instantiate it, the total number of parameters is half
that of the pipeline. We replicate two prior findings
(Tables 9–10 in Appendix B): the T5 pipeline does
not perform as well as the self-rationalizing model
(despite having double the parameters), and T5-
Base outperforms pretrained models used in prior
work.

Evaluation We do not report BLEU scores (Pap-
ineni et al., 2002), because BLEU and related met-
rics do not measure plausibility (Camburu et al.,
2018; Kayser et al., 2021; Clinciu et al., 2021) or
faithfulness (Jacovi and Goldberg, 2020). In addi-
tion to low correlation with human scores, there
can be many valid rationales for a given instance
(Miller, 2019); metrics that compare generated ra-
tionales to a single ground-truth do not address this
and are thus a poor measure of quality.



Human simulatability (Doshi-Velez and Kim,
2017) has a rich history in machine learning inter-
pretability as a reliable measure of rationale qual-
ity from the lens of utility to an end-user (Kim
et al., 2016; Chandrasekaran et al., 2018; Hase
and Bansal, 2020; Yeung et al., 2020; Poursabzi-
Sangdeh et al., 2021; Rajagopal et al., 2021, i.a.).
Rather than computing word-level overlap with a
ground-truth explanation, simulatability measures
the additional predictive ability towards the pre-
dicted label a rationale provides over the input,
computed as the difference between task perfor-
mance when a rationale is given as input vs. when
it is not (IR→Ô minus I→Ô).4 Historically, hu-
mans have served as the predictors, but recent work
has shown that the computation of simulatability
can be automated using trained models. Hase et al.
(2020) demonstrate that automated metrics for sim-
ulatability have moderate to high correlation with
human scores in both an expert and a crowdsourced
setting. In our experiments, model predictions are
often unable to be simulated because they degener-
ate under high values of noise (§4, A.5). We thus
use a variant of this metric that relies on predicting
the gold labels as our measure of rationale quality:
IR→O minus I→O.5 We discuss the effects of this
difference in Appendix A.6.

3 Shortcomings of Free-Text Pipelines

We first analyze “faithful-by-construction” pipeline
models (I→R;R→O) for free-text rationalization
with respect to two properties: quality of gener-
ated rationales (§3.1) and appropriateness of the
sufficiency assumption (§3.2).

3.1 Joint Model Rationales are More
Indicative of Labels

Rationales should be a function of the input and the
predicted label. To demonstrate why this is the case,
consider training an I→R model on a dataset with
multiple annotation layers, e.g., OntoNotes, that
contains word sense, predicate structure, and coref-
erence (Pradhan et al., 2007). Without additional
task-specific input, this model would produce the

4The predicted label is from the same system that pro-
duced the predicted rationale.

5Given the large scale of our analysis (>250K instances
evaluated), an automated metric provides coverage, repro-
ducibility and consistency not achievable with human anno-
tation. An author of this paper annotated 60 instances from
both E-SNLI and CoS-E v1.11, and found 82.5% agreement
between their rationale quality score and the automated metric.

Source of Rationales R∗ I→R I→OR

E-SNLI 97.67 89.11 90.52
CoS-E v1.0 84.84 53.47 62.00
CoS-E v1.11 68.63 45.45 53.15

Table 3: Accuracy of the trained R→O model evalu-
ated on ground-truth natural language rationales (R∗)
and rationales generated from two model architectures:
I→OR and I→R (see §2 for model descriptions).

Source of Rationales R∗ I→R I→OR

E-SNLI 7.77 -1.63 -0.86
CoS-E v1.0 21.26 -12.11 -6.21
CoS-E v1.11 19.09 -12.77 -6.06

Table 4: Rationale quality scores (§2; higher is better)
of ground-truth rationales (R∗) and rationales generated
from two model architectures: I→OR and I→R. These
results demonstrate that rationales generated as a func-
tion of the input and the predicted label (I→OR) are
higher quality than those generated as a function of the
input alone (I→R) across datasets (§3.1).

same rationale, regardless of the task being ratio-
nalized. Prior work has also critiqued I→R;R→O
models because it is counter-intuitive to generate
a rationale before deciding the label to explain
(Kumar and Talukdar, 2020; Jacovi and Goldberg,
2021). Therefore, the I→R model will first need to
implicitly predict a label. But can I→R infer the
label well, when it is trained without label signal?

To address this question, we study whether
I→OR rationales are better at predicting the gold
labels than I→R rationales. We train a R→O model
on ground-truth rationales (R∗), and evaluate on the
following inputs:

• test set ground-truth R∗ rationales,
• test set rationales generated by I→OR, and
• test set rationales generated by I→R.
In Table 2, we show that I→OR rationales re-

cover 8–9% more ground-truth (R∗) performance
than R→O rationales on both versions of CoS-E,
and 1% on E-SNLI. A smaller improvement for
E-SNLI could be explained by the fact that E-SNLI
has substantially more training examples for each
label than CoS-E, which helps a pipeline model
learn features predictive of each label.6 We addi-
tionally demonstrate I→OR rationales are higher
quality than R→O’s, as measured by our ratio-

6E-SNLI has 549,357 training examples and only 3 labels.
In contrast, the number of answer options across all instances
in CoS-E v1.0 (v1.11) is 6,387 (12,992), but the training set
size is 7,610 (9,741), i.e., ∼56 (72) times smaller than E-SNLI.



Figure 3: An example of a joint architecture (I→OR; §2) for CoS-E v1.0 with a human-written rationale. Trained
on both task signal and human rationales, these models are effective at generating fluent rationales while retaining
good task performance (Table 9-10 in Appendix B).

Model R→O with R∗ IR→O with R∗ ∆

E-SNLI 97.67 98.72 +1.05
CoS-E v1.0 84.84 90.42 +5.58
CoS-E v1.11 68.63 80.84 +12.21

Table 5: A comparison of the IR→O and R→O mod-
els (§2) evaluated with ground-truth natural language
rationales (R∗). In some cases accuracy improves sub-
stantially with the addition of the input, indicating that
rationales are not always sufficient and pipelines are not
always effective.

nale quality metric (Table 4). The fact that the
pipeline’s strong performance does not generalize
to a complex prediction task such as CoS-E empiri-
cally demonstrates that training on label signal O is
important to generate good-quality rationales and
avoid cascading errors.

3.2 Sufficiency is not Universally Valid
“Faithful-by-construction” pipelines rely on the suf-
ficiency assumption: the selected rationale must
be sufficient to make the prediction without the
remaining input. This assumption is suitable for
IE tasks for which a subset of the input tokens is
predictive of the label. Indeed, humans can serve
as R→O models on certain IE tasks and make ac-
curate predictions, validating that rationales are
sufficient for these tasks (Jain et al., 2020).

To illustrate why sufficiency might not be justi-
fied for reasoning tasks, consider the example in
Figure 2. The task of the R→O model is to select
between the answer choices “have fun”, “tasty”,
and “indigestion” given the rationale “Usually a
hamburger with friends indicates a good time”. The
rationale is designed to complement the input ques-
tion, but the R→O model does not see the question,
changing the fundamental nature of the task it is
solving. We thus wonder: does task obfuscation
hurt pipelines’ ability to perform the task?

We report the accuracy difference between a
R→O model and a model that receives both the
input and rationale (IR→O), both trained on R∗.
We evaluate on test set R∗.7 In Table 5, the IR→O

7Evaluating on R∗ instead of generated rationales serves

models on CoS-E have a 5–12% increase in accu-
racy over R→O, indicating that the rationales are
not sufficient. The difference is much smaller for
E-SNLI (1%), likely due to the fact that E-SNLI
was collected by instructing annotators to provide
self-contained rationales. However, using dataset-
collection to explicitly collect sufficient rationales
does not address the unnaturalness of such a task
formulation (Wiegreffe and Marasović, 2021).8 Ta-
ble 5 indicates that (especially) in the case of CoS-
E, sufficiency is not a valid assumption, and the
use of I→R;R→O models is sub-optimal in these
cases.

So far, we have highlighted shortcomings of
pipelines for reasoning tasks:

• cascading errors caused by low-quality ratio-
nales that are not indicative of labels (§3.1),

• missing information due to rationales not be-
ing sufficient (§3.2),

• double the number of parameters and more
manual labor needed to reach comparable per-
formance to an end-to-end (I→O) model; still
often performing worse (§2).

We next turn our focus to self-rationalizing
(I→OR) models currently in widespread use, which
in contrast to pipelines are high-performing, easy
to implement via a multi-task loss, and more
parameter-efficient (§2).

4 Analyzing Necessary Properties of Joint
Models

Despite their popularity and widespread use, the ex-
tent to which self-rationalizing models exhibit faith-
ful rationalization has not been studied. To illus-
trate this point, we reference Narang et al. (2020):

. . . Much like humans, our approach does not guar-
antee that the produced explanation actually ex-
plains the specific reasons why a model generated
its prediction. In other words, the model could
potentially just make up a reasonable-sounding

as an upper-bound on pipeline performance, removing the
confounding factor that I→R rationales can be poor (§3.1).

8Camburu et al. (2018) give an example: the rationale “A
woman is not a person” could predict either a contradiction or
entailment label depending on the input.



Figure 4: Results of the label portion of the robustness
equivalence test for CoS-E v1.0.

Figure 5: Results of the rationale portion of the robust-
ness equivalence test for both CoS-E datasets.

explanation instead of providing a truly accurate
description of its causal decision-making process.

It is not infeasible that a large, overparameterized
model trained on both gold-rationale emulation and
a labelling task can learn to do both equally well,
without having to rely on shared information in
its parameters. Therefore, rationales from I→OR
models cannot be treated as faithful explanations
without further investigation.

At minimum, rationales must be implicitly or ex-
plicitly tied to the model’s prediction. We present
two metrics to analyze the association between
the mechanisms that produce labels and rationales
in a multi-task, I→OR model: robustness equiv-
alence (§4.1) and feature importance agreement
(§4.2). These experiments serve as a necessary
sanity check for the reliability of I→OR models’
explanations.

4.1 Robustness Equivalence
We aim to analyze whether predicted labels and
rationales are similarly or dissimilarly robust to
noise applied to the input. The former indicates
predicted labels and rationales are strongly as-
sociated, while the latter indicates the opposite.
Given some amount of noise, there are four possi-

ble cases for a model’s output: {lstable, lunstable} ×
{rstable, runstable}, where l is a label and r is a ratio-
nale.

The case where l and r are both stable or both
unstable indicates that both tasks are similarly af-
fected by noise. The case where l is unstable but
r is stable (or vice versa) is a failure case—if only
one output is stable, we conclude the two gener-
ation mechanisms cannot be strongly associated
within the model.

Method Following related work (Wang et al.,
2019; Lakshmi Narayan et al., 2019; Liu et al.,
2019b), we add zero-mean Gaussian noise
N (0, σ2) to each input embedding in the I→OR
encoder at inference time. We measure changes
in label prediction as the number of predicted test
set labels that flip, i.e., change from their original
prediction to something else, alongside changes in
accuracy of the I→OR model. We measure changes
in rationale quality using our rationale quality met-
ric (§2), with details of the metric calculation illus-
trated in Figure 6a. We report metrics on rationales
generated by I→OR under different levels of noise,
controlled by σ2.

An example of noisy outputs for the running
CoS-E v1.0 example is presented in Table 6.

Results We present results on the effect of noise
on labels in Figure 4 (E-SNLI and CoS-E v1.11
in Figure 8 of Appendix B). As expected, the
accuracy of the I→OR model (red line) and the
percent of labels in the I→OR model which have
not flipped (black line) are almost identical for all
three datasets. We present results on the effect of
noise on rationales in Figure 5 for CoS-E (E-SNLI
in Figure 9 of Appendix B).

By examining the regions of largest slope, we
gain insights into model behavior. On the ratio-
nale quality measure, both versions of CoS-E’s
rationales reach a minimum contribution to task ac-
curacy at σ2 = 20 (Figure 5). We similarly observe
the largest drop in task accuracy (Figure 4) for CoS-
E v1.0 between σ2 = 15 to σ2 = 20.9 Thus, at
lower noise levels (0–15), the model exhibits both
stable labels and rationales, and at higher levels
(20+), both unstable, indicating robustness equiv-
alence. Similar conclusions can be reached for
E-SNLI and CoS-E v1.11; we conclude that the
I→OR model demonstrates high label-rationale as-

9See Appendix A.5 for a note on why the I→OR models
achieve worse-than-random accuracy at high values of σ2.



σ2 Predicted Output

0 have fun explanation: having fun is the only thing that people are trying to do.
5 have fun explanation: having fun is the only thing that people are trying to do.
10 have fun explanation: eating a hamburger with friends is fun.
15 have fun explanation: having fun is the only thing people are trying to do while eating a hamburger with friends.
20 <extra_id_0> a hamburger with friends<extra_id_1> are people trying to do? explanation: a hamburger is a hamburger. . .
25 "" is the only thing that is """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
30 a indigestion: a indigestion: a indigestion: a indigestion: a indigestion: a indigestion: a indigestion: a indigestion: a indigestion:. . .
35 a ”””””””””””””””””””””””””””””””””""""""""""""""""""""""""""""""

Table 6: Output of the I→OR model for the running CoS-E v1.0 example under differing noise levels. While the
rationale changes from variance 0-15, it is still valid for the given (correct) predicted label. At a variance of 20 and
beyond, the model fails to generate both the correct label and a valid rationale. The model’s predictions for this
instance exhibit robustness equivalence.

(a) In §4.1. ϵσ is the noise.

(b) In §4.2. Ia are input tokens selected by an
attribution method.

Figure 6: An illustration of how rationale quality is
calculated in §4.

sociation for all 3 datasets as measured by robust-
ness equivalence.

We expect that rationale quality in Figure 5 does
not monotonically decrease because as rationales
continue to worsen in quality (see the example in
Table 6), the IR→O model may ignore them com-
pletely and more closely emulate the I→O model.
For example, in Table 6, at σ2 = 30, the rationale
provides signal for an incorrect answer choice (“in-
digestion”) that does not exist at σ2 = 35. There-
fore, we consider rationales produced with σ larger
than the value at which the metric reaches the min-
imum as unstable (see further examples corroborat-
ing this in Appendix B, Tables 11–13).

4.2 Feature Importance Agreement

If label prediction and rationale generation are asso-
ciated, input tokens important for label prediction
should be important for rationale generation and
vice versa. We refer to this property as feature
importance agreement. To measure to what ex-

tent I→OR models exhibit this property, we use
gradient-based attribution (Baehrens et al., 2010;
Simonyan et al., 2014) to identify tokens important
for label prediction, and the Remove and Retrain
(ROAR) occlusion method (Hooker et al., 2019)
to analyze their impact on rationale generation (or
vice versa).

Gradient Attribution For a predicted class p,
gradient attribution is a function of the gradient of
the predicted class’ logit lp with respect to an input
token embedding x(i) ∈ Rd:

a(x(i); lp) = f(∇x(i) lp) ∈ R, (1)

where the function f reduces the gradient to a
scalar. Choices for f include L1 or L2 norm
(Atanasova et al., 2020), or an element-wise sum
(Wallace et al., 2019). Intuitively, the gradient mea-
sures how much an infinitesimally small change
in the input changes the predicted class’ logit, us-
ing a first-order Taylor series approximation of the
logit function. Such methods have been extended
to sequence-output models such as neural machine
translation (He et al., 2019; Ding et al., 2019; Li
et al., 2020) by computing the sum of m decoded
logits {l(k)p }mk=1 with respect to the input:

a(x(i); {l(k)p }k) =
∑m

k=1 a(x
(i); l

(k)
p ) ∈ R. (2)

The attribution of a sequence of n input token
embeddings, X ∈ Rn×d, is a vector a(X) =
[a(x(1)), . . . , a(x(n))] ∈ Rn, where a(x(i)) is
shorthand for the value defined in Equation 2.

By decomposing the term in Equation 2 into two
parts, we obtain two attribution vectors over the
input tokens; one for the predicted label logits L,
and one for the predicted rationale logits R in the
decoded output:



a(x(i); {l(k)p }k) =
∑
k∈L

a(x(i); l(k)p ) +
∑
k∈R

a(x(i); l(k)p ),

a(X) = a(X)L + a(X)R. (3)

Reliability of Gradient Attribution Before we
measure feature importance agreement, it is crit-
ical to evaluate whether the gradient-attribution
scores truly capture token importance, since these
methods can be unreliable for certain datasets or
architectures (Kindermans et al., 2019). To vali-
date that our attributions are reliable, we perform
the ROAR test (Hooker et al., 2019). Using at-
tribution scores, we obtain the top-k% attributed
tokens for every instance and occlude them follow-
ing T5’s pretraining procedure and mask tokens.
We retrain a model on the occluded training set and
evaluate on the occluded test set. We repeat this
procedure for k ∈ {10%, 20%, 30%}, and com-
pare the drop in performance as k increases to a
baseline in which k% random tokens are dropped.
To the extent that the occluded model fails to match
the random model’s performance, we can attribute
such degradation to the removal of tokens that the
original model finds informative. A large drop
in performance indicates that gradient attributions
successfully identify important tokens in the input.

We first use this method to select an optimal
gradient-attribution method and f function (Fig-
ure 11 in Appendix B). We find the L1 norm
of the embedding vector as f to outperform the
element-wise sum (which may suffer from damp-
ened magnitudes). Unlike prior work in computer
vision (Hooker et al., 2019), we find raw gradients
to perform comparably to the input*gradient vari-
ant (Shrikumar et al., 2017). Thus, we compute
attributions in subsequent experiments following
Equation 1 with f equal to the L1 norm.

We validate that attributions from the label log-
its, a(X)L, degrade label accuracy when compared
to random occlusion (orange vs. blue line in Fig-
ure 7, left). The two rationale quality lines (Fig-
ure 7, right) for CoS-E v1.0 have an inflection point.
We illustrate how the metric is calculated in Fig-
ure 6b. Similar to §4.1, we expect this is due to
rationales so noisy that IR→O ignores them and
behaves like I→O. If an input attribution degrades
rationale quality more than a random attribution,
then the line corresponding to that attribution (for
values of k for which neither that attribution nor
the random attribution have reached the inflection
point) has to be below the “random” line. For val-

ues of k for which both attributions have passed
the inflection point, the “random” line should be
below the attribution line, assuming that after this
point, a noisier rationale is more similar is IR→O
to I→O and hence the score is closer to 0. Both
criteria hold for attributions from the rationale log-
its, a(X)R (green vs. blue line in Figure 7, right)
for CoS-E v1.0 and other datasets (see Figure 12
in Appendix B). This reliability check confirms
that gradient-attribution works well in our setting.

Agreement Method and Results To measure
feature importance agreement—whether tokens im-
portant for label prediction are important for ra-
tionale generation (and vice versa)—we repeat the
same experiment, but measure performance with re-
spect to the other output’s metric. For attributions
computed from label logits, a(X)L, we measure
the effect of their occlusion on rationale quality us-
ing the rationale quality score. For attributions with
respect to rationale logits, a(X)R, we measure the
effect of their occlusion on label accuracy. If at
least one of these values is notably different from
random, we can conclude that the I→OR model
displays feature-importance similarity in a given
direction.

Results for CoS-E v1.0 are once again in Figure 7
(and for other datasets in Figure 12 in Appendix B).
In Figure 7 (left), we find that removing top-k%
tokens by a(X)R magnitude degrades label perfor-
mance compared to the baseline (green vs. blue
line). Intuitively, this drop is less than token attri-
butions by a(X)L magnitude (orange line). In Fig-
ure 7 (right), we observe that removing top-k% to-
kens by a(X)L consistently degrades rationale per-
formance more than random according to the two
criteria for comparing the rationale quality lines
(orange vs. blue line). This also holds for E-SNLI
and CoS-E v1.11 (Figure 12). We conclude that the
I→OR model demonstrates label-rationale associa-
tion as measured by feature importance agreement
for the datasets studied.

5 Related Work

Analysis of NLP Models Structural tests for an-
alyzing models’ internals include probing (Tenney
et al., 2019) and attention analysis (Jain and Wal-
lace, 2019; Serrano and Smith, 2019; Wiegreffe
and Pinter, 2019; Tutek and Snajder, 2020). These,
along with behavioral tests such as challenge sets
(McCoy et al., 2019) and checklists (Ribeiro et al.,
2020), are conceptually similar to our experiments,



Figure 7: Performance of I→OR models trained with the ROAR method on CoS-E v1.0. Left: Impact of occlusion
by source of attribution on label accuracy. Right: Impact of occlusion by source of attribution on rationale quality.

but study different model properties.
Although gradient-attribution has been exten-

sively studied in NLP, its interplay with free-text
rationalization has not. Wu and Mooney (2019)
use feature importance agreement to train the ex-
planation module of a VQA model. To the best of
our knowledge, we are the first to evaluate gradient-
attribution reliability for NLP tasks with the ROAR
test (Hooker et al., 2019).

Robustness Analysis Robustness of post-hoc ex-
tractive interpretability methods has been studied
(Kindermans et al., 2019; Ghorbani et al., 2019;
Heo et al., 2019; Zheng et al., 2019; Slack et al.,
2020). Zhang et al. (2020) show that saliency maps
and model predictions can be independently adver-
sarially attacked in vision and clinical tasks, and
conclude this is due to a misalignment between the
saliency map generator and model predictor. Such
methods have not been tested for models produc-
ing natural language (NL) rationales. Future work
could include expanding robustness equivalence
(§4.1) to model discrete edits of input words.

Analyzing Faithfulness The aim of our work is
to initiate placing models that provide NL ratio-
nales on the faithfulness spectrum conceptualized
by Jacovi and Goldberg (2020). Prior work propos-
ing models (Jain et al., 2020; Schuff et al., 2020;
Jacovi and Goldberg, 2021) and evaluations (DeY-
oung et al., 2020) of faithful explanation focus on
extractive rationales and generally rely on the suffi-
ciency assumption. Schuff et al. (2020) propose a
regularization term to couple answers and extrac-
tive explanations on HotPotQA.

Turning to exceptions that focus on natural lan-
guage rationales, Latcinnik and Berant (2020) train
a differentiable I→R;IR→O pipeline for Common-
senseQA, controlling the complexity of the IR→O

model to increase the likelihood that the model
is faithful to the rationale. Kumar and Talukdar
(2020) propose an IO→R;IR→O pipeline that gen-
erates an explanation for every possible NLI label
using label-specific explanation generators—an al-
ternative solution to the problem raised in §3.1 for
datasets with a small number of shared labels.

6 Conclusion

After demonstrating the weaknesses that pipeline
models exhibit for free-text rationalization tasks,
we propose two measurements of label-rationale
association in self-rationalizing models. We find
that on three free-text rationalization datasets for
CommonsenseQA and SNLI, models based on T5
exhibit high robustness equivalence and feature im-
portance agreement, demonstrating that they pass
a necessary sanity check for generating faithful
free-text rationales.

Future work can expand analysis to more proper-
ties. We believe this research direction to be impor-
tant moving forward due to the advantages of large
multi-task explanation models, and as a comple-
ment to development of interpretable architectures
that can be fickle and task-specific. Although our
measurements address only necessary and not suffi-
cient properties, by viewing faithful interpretability
as a spectrum, we make a step to quantitatively
situate common models on it.
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A Additional Information

A.1 Overview of Prior Work on Pipelines
In Table 2, we overview the datasets and types of
rationales used in prior work on pipelines. The
sources of datasets are: CommonsenseQA (Tal-
mor et al., 2019), SNLI (Bowman et al., 2015),
SST (Socher et al., 2013), AgNews (Del Corso
et al., 2005), Evidence Inference (Lehman et al.,
2019), Movie Reviews (Zaidan and Eisner, 2008),
MultiRC (Khashabi et al., 2018), LGD (Linzen
et al., 2016), 20 News (Lang, 1995), Amazon Re-
views (McAuley and Leskovec, 2013), Beer Re-
views (McAuley et al., 2012), BoolQ (Clark et al.,
2019), FEVER (Thorne et al., 2018).

A.2 Details of Datasets
We summarize dataset statistics in Table 7. The
two versions (v1.0, v1.11) of CoS-E correspond
to the first and second versions of the Common-
senseQA dataset. CoS-E v1.11 has some noise in
its annotations (Narang et al., 2020).10 This is our
primary motivation for reporting on v1.0 as well,
which we observe does not have these issues.

10https://github.com/salesforce/cos-e/
issues/2

A.3 Details of T5

The T5 model (Raffel et al., 2020) is pretrained on a
multi-task mixture of unsupervised and supervised
tasks, including machine translation, question an-
swering, abstractive summarization, and text classi-
fication. Its inputs and outputs to every task are text
sequences; we provide the input-output formatting
for training and decoding of our T5 models in Ta-
ble 8. T5 can provide any word in the vocabulary
as an answer.

A.4 Implementation Details

We use Huggingface Datasets11 to access all
datasets, and Huggingface Transformers (Wolf
et al., 2020) to access pretrained T5 weights and to-
kenizer. To optimize, we use Adam with ϵ = 1e-8,
β1 = 0.9, and β2 = 0.99. We use gradient clipping
to a maximum norm of 1.0 and a dropout rate of
0.1. We train each model on a NVIDIA RTX 8000
GPU (48GB memory) for maximum 200 epochs
with a batch size of 64 and a learning rate linearly
decaying from 5e-5. Training ends if the validation
set loss has not decreased for 10 epochs. Early
stopping occurs within 15 epochs for most mod-
els. Most CoS-E models train in less than 1 hour
and most E-SNLI models in around 30. At infer-
ence time, we greedy-decode until an EOS token
is generated (or for 200 tokens). Approximating
the 64-batch model with a batch-size of 16 and 4
gradient accumulation steps on 8GB memory cloud
GPUs, we sweep starting learning rates of 1e-2, 1e-
3, 1e-4, 5e-5, and 1e-5. The two largest learning
rates never result in good performance. Among the
smallest three rates, performance across all model
variants (I→R, I→OR, R→O, I→O, and IR→O)
on E-SNLI and CoS-E v1.0 never varies by more
than 1.58% accuracy or 0.34 BLEU.

A.5 Note on Robustness Equivalence
Convergence

Worst-case model performance under large noise
values in the Robustness Equivalence experiments
(Figures 4 and 8) reaches 0 rather than random
accuracy due to structure of the models’ output.
The I→OR model is trained to produce a delimiter
to distinguish the label from the rationale in a long
string of output tokens. When it fails to produce
the delimiter under high noise, we cannot delineate
the label from the rationale in the output where

11https://huggingface.co/docs/datasets/
master/#
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multiple answer choices are often mentioned, so
we mark the label as incorrect.

A.6 Further Discussion of Rationale Quality
Metric

Traditional simulatability is often considered to be
lower-bounded at 0, assuming model-predicted ex-
planations are consistent with model-predicted la-
bels, because a model-predicted explanation should
not provide negative utility when given as input to
a simulator predicting that label, unless the expla-
nation is inconsistent (i.e., it explains a different
label). Our rationale quality metric does not have
this property, since model-predicted explanations
that explain an incorrect label may provide neg-
ative utility toward predicting the gold label. As
reported in the paper, it is commonly negative in
our experiments.

The limitation of our rationale quality metric
is that low scores may be due to poor-quality ra-
tionales (what we aim to measure) or poor label
prediction performance of the model generating
the rationales, assuming consistent predicted la-
bels and rationales. Future work may focus on a
robust version of simulatability that can both sep-
arate these confounders and be computed when
model predictions are noisy or ill-defined.

B Additional Results

We provide additional results that supplement the
main body of the paper:

• Table 9 presents results comparing the self-
rationalizing T5 model to baselines.

• Table 10 presents results comparing the self-
rationalizing T5 model to its pipeline variant
(from §2).

• Figure 8 presents robustness equivalence label
results for E-SNLI and CoS-E v1.11 (§4.1).

• Figure 9 presents robustness equivalence ra-
tionale results for E-SNLI (§4.1). CoS-E v1.0
and v1.11 rationale results are included in Fig-
ure 5 in main paper.

• Figure 10 presents an example of L1-
normalized gradient attributions for a single
instance (§4.2).

• Figure 11 presents a comparison of attribution
methods on the ROAR reliability check (§4.2)
for CoS-E v1.0.

• Figure 12 presents results of the ROAR fea-
ture importance agreement measure (§4.2) for
CoS-E v1.11 and E-SNLI.

• Tables 11-13 contain additional validation set
examples (non-cherry-picked) of noised in-
puts for CoS-E v1.0 (§4.1).



Dataset Num. Instances Input Length Extractive Rationale Natural Language Rationale

Train-Val-Test # Tokens # Tokens % of doc. # Tokens % of doc.

E-SNLI 549,367-9,842-9,824 20.27 +/– 6.95 4.01 +/– 3.01 21.30 +/– 15.82 12.39 +/– 6.43 65.67 +/– 35.46
CoS-E v1.0 7,610-950-none 13.69 +/– 5.97 4.57 +/– 4.16 35.36 +/– 27.22 12.74 +/– 6.99 108.18 +/– 77.26
CoS-E v1.11 9,741-1,221-none 13.40 +/– 5.77 6.80 +/– 5.79 53.24 +/– 36.05 6.97 +/– 4.14 58.01 +/– 39.60

Table 7: Statistics on datasets with ground-truth rationales. Results are presented as mean (one standard deviation)
on the training set. CoS-E does not contain test set rationale annotations.

The I→OR and I→R;R→O rationale generator’s inputs:
explain cos_e question: [question] choice: [choice_0] choice: [choice_1] choice: [choice_2]
explain nli hypothesis: [hypothesis] premise: [premise].

The I→R;R→O pipeline label predictor’s input:
cos_e choice: [choice_0] choice: [choice_1] choice: [choice_2] explanation: [free-text rationale]
nli explanation: [free-text rationale]

The I→OR models’ outputs are trained and decoded as:
[label] explanation: [free-text rationale]

Table 8: T5 input-output formatting.

Random Majority-Vote
Dataset Accuracy Accuracy I→O (T5) I→OR ∆

E-SNLI 33.33 33.39 90.95 (84.01‡) 90.81 (83.96‡, 90.9†) –0.14 (–0.05‡)
CoS-E v1.0 33.33 33.75 69.16 (63.8§) 64.84 –4.32
CoS-E v1.11 20.0 20.31 61.75 55.61 (59.4†) –6.14

Table 9: Label accuracy on baseline I→O T5 models versus their rationalizing I→OR variants fine-tuned for each
dataset. We observe that adding rationalization results in some loss in accuracy. We also validate that T5-Base
models outperform other architectures. Source of prior results in parentheses: † Narang et al. (2020) using T5, ‡
Camburu et al. (2018) using a bi-directional LSTM, and § Rajani et al. (2019) using BERT.

Dataset I→OR I→R;R→O ∆

E-SNLI 90.81 (83.96‡) 89.11 (81.71‡) –1.70 (–2.25‡)
CoS-E v1.0 64.84 53.47 –11.37
CoS-E v1.11 55.61 45.45 –10.16

Table 10: Label accuracy on the joint self-rationalizing model I→OR compared to a pipeline using natural language
rationales. We observe that I→OR models have stronger task performance. Source of prior results in parentheses: ‡
Camburu et al. (2018) using bi-directional LSTMs.

σ2 Predicted Output

0 house explanation: a house is the only place that would have air conditioning.
5 house explanation: a house is the only place that would have air conditioning.
10 house explanation: a house is the only place that would have air conditioning.
15 <extra_id_0> house explanation: a house is the only place that will have air conditioning.
20 <extra_id_0> movie theatre explanation: movie theatre is the only option that is not a movie. 911 911 911. . .
25 <extra_id_0> explain<extra_id_1> explain<extra_id_2> explain<extra_id_3> explain<extra_id_4> explain<extra_id_5> movie theatre<extra_id_6>. . .
30 house of house of house of house of house of house of house of house of house of house of house of house of house . . .
35 house of house of office office office office office office office office office office office office office office office office office office. . .

Table 11: Noised output of the I→OR model for the CoS-E v1.0 example “A man wants air conditioning while we
watches the game on Saturday, where will it likely be installed?” The correct answer is “house”.



σ2 Predicted Output

0 stress explanation: a computer is used to communicate with a granddaughter.
5 stress explanation: a computer is used to communicate with a granddaughter.
10 stress explanation: a computer is used to talk to people.
15 stress explanation: a computer is used to talk to people.
20 <extra_id_0> is using a computer to<extra_id_1> to talk to<extra_id_2> is using a computer to talk to a person is using a computer to talk to a person. . .
25 <extra_id_0> answer: answer: answer: answer: answer: answer: answer: answer: answer: answer: answer: answer: answer:. . .
30 <extra_id_0> answer: answer: answer: answer: answer: answer: answer: answer: answer: answer: answer: answer: answer:. . .
35 office of the office of the office of the office of the office of the office of the office of the office of the office of the office of the office . . .

Table 12: Noised output of the I→OR model for the CoS-E v1.0 example “If a person is using a computer to talk to
their granddaughter, what might the computer cause for them?” The correct answer is “happiness”.

σ2 Predicted Output

0 transfer of information explanation: transfer of information is the only option that would be appropriate when communicating with a boss.
5 transfer of information explanation: transfer of information is the only option that would be appropriate when communicating with a boss.
10 transfer of information explanation: transfer of information is the only option that would be appropriate when communicating with a boss.
15 transfer of information explanation: transfer of information is the only option that would be appropriate when communicating with my boss.
20 transfer of information: transfer of information is the only thing that is transfer of information. transfer of information is the only thing that is. . .
25 transfer of information: transfer of information is information. transfer of information is information. transfer of information is information.. . .
30 i believe that is the answer of the question. argument is the answer of the question. argument is the answer of the question. argument is the answer of the question.. . .
35 i can’t handle the argument argument argument is the answer of the argument argument is the answer of the argument. . .

Table 13: Noised output of the I→OR model for the CoS-E v1.0 example “When communicating with my boss,
what should I do?”. The correct answer is “transfer of information”.

Figure 8: Results of the label portion of the robustness equivalence test for E-SNLI (left) and CoS-E v1.11 (right).
Accuracy of the I→OR model (red) and % stable labels in the I→OR model (black) show that most changes take
place in the 10-20 σ2 range for CoS-E and 15-30 σ2 for E-SNLI. See §4.1.

Figure 9: Results of the rationale portion of the robustness equivalence test for E-SNLI.



Figure 10: Normalized attributions for the running CoS-E v1.0 example in Figures 2–3. The decoded label is “have
fun” and generated rationale “having fun is the only thing that people are trying to do”. Important input terms vary
across the two loss terms. For example, the predicted label term assigns high importance to the predicted answer
choice, “have fun”, while the explanation attends more uniformly over the input with peaks on relevant entities and
verbs such as “trying”. In this example, the explanation- and label-attribution vectors are each L1-normalized in
order to compare the relative importance of tokens (irrespective of gradient magnitudes).

Figure 11: Effect of various gradient attribution methods on the ROAR test at k = 10 − 30% occlusion for the
CoS-E v1.0 validation set. We compute attributions with respect to the label logit and measure label accuracy of the
resulting model after masking and re-training (see §4.2 for details). The largest drop in performance comes from the
L1 norm embedding-combination method, and raw gradients are not significantly different from input*gradient. On
average, input*gradient and raw gradients share 17% of tokens in the top 10%, 24% of tokens in the top 20%, and
31% of tokens in the top 30%.



(a) Impact of occlusion by source of attribution on label accuracy.

(b) Impact of occlusion by source of attribution on rationale quality.

Figure 12: ROAR Feature Importance Agreement results on E-SNLI (left) and CoS-E v1.11 (right). Figure 12a
shows label accuracy of the I→OR model. Figure 12b shows quality of generated rationales from the I→OR model.


