
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 92–106
November 7–11, 2021. c©2021 Association for Computational Linguistics

92

Controllable Neural Dialogue Summarization with
Personal Named Entity Planning

Zhengyuan Liu, Nancy F. Chen
Institute for Infocomm Research, A*STAR, Singapore

{liu_zhengyuan,nfychen}@i2r.a-star.edu.sg

Abstract

In this paper, we propose a controllable neural
generation framework that can flexibly guide
dialogue summarization with personal named
entity planning. The conditional sequences are
modulated to decide what types of information
or what perspective to focus on when form-
ing summaries to tackle the under-constrained
problem in summarization tasks. This frame-
work supports two types of use cases: (1) Com-
prehensive Perspective, which is a general-
purpose case with no user-preference specified,
considering summary points from all conver-
sational interlocutors and all mentioned per-
sons; (2) Focus Perspective, positioning the
summary based on a user-specified personal
named entity, which could be one of the in-
terlocutors or one of the persons mentioned in
the conversation. During training, we exploit
occurrence planning of personal named enti-
ties and coreference information to improve
temporal coherence and to minimize halluci-
nation in neural generation. Experimental re-
sults show that our proposed framework gener-
ates fluent and factually consistent summaries
under various planning controls using both ob-
jective metrics and human evaluations.

1 Introduction

Automatic summarization is the task of compress-
ing a lengthy piece of text to a more concise ver-
sion while preserving the information of the source
content. Extractive approaches select and concate-
nate salient words, phrases, and sentences from
the source to form the summary (Lin and Bilmes,
2011; Kedzie et al., 2018; Liu et al., 2020). On
the other hand, abstractive approaches generate
the summary either from scratch or by paraphras-
ing important parts of the original text (Jing and
McKeown, 2000; Gehrmann et al., 2018). For ab-
stractive summarization to be practically usable, it
would require more in-depth comprehension, bet-
ter generalization, reasoning, and incorporation of

Figure 1: Dialogue summary examples generated by
personal named entity planning: some examples focus
on perspectives from distinct personal named entities
(e.g., John, Tony); comprehensive planning includes all
personal named entities in the dialogue. Note that the
content of the ground-truth summary depends on which
personal named entity’s perspective the focus is during
summary formation.

real-world knowledge (Hovy et al., 1999; See et al.,
2017). While extractive models could suffice for
document summarization, abstractive approaches
are essential for dialogue summarization to be more
easily accessible to users.

Most benchmarked summarization datasets fo-
cus on the news domain, such as NYT (Sandhaus,
2008) and CNN/Daily Mail (Hermann et al., 2015)
as material for large-scale corpus construction is
readily available online. Neural approaches have
achieved favorable improvements in both extrac-
tive and abstractive paradigms (Paulus et al., 2017;
Liu and Lapata, 2019). Neural dialogue summa-
rization is an emerging research area (e.g., Goo
and Chen (2018), Liu et al. (2019)). While the
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available data collections are much smaller than
those for documents (Carletta et al., 2005; Gliwa
et al., 2019), neural models have shown potential to
generate fluent sentences via fine-tuning on large
scale contextualized language models (Chen and
Yang, 2020; Feng et al., 2021). Unfortunately, most
summary generation tasks are constructed in an
under-constrained fashion (Kryscinski et al., 2019):
in their corpus construction process, only one refer-
ence summary is annotated. Models trained via su-
pervised learning on such datasets provide general-
purpose summaries, but are suboptimal for certain
applications and use cases (Fan et al., 2018; Good-
win et al., 2020). For instance, as shown in Fig-
ure 1, a human can write summaries from John
or Tony’s perspective. However, a neural model
with a general summarizing purpose may overlook
information that is important to a specific person’s
perspective. On the other hand, if someone wants
to collect as much information from the source
content, the summary should be written in a com-
prehensive manner, taking into consideration all
personal named entities. Such needs are not met
with models providing only one possible output.

Furthermore, different from passages, human-to-
human conversations are a dynamic and interactive
flow of information exchange (Sacks et al., 1978),
which are often informal, verbose, and repetitive.
Since important information is scattered across
speakers and dialogue turns, and is often embodied
in incomplete sentences. Therefore, generating a
fluent summary by utterance extraction is imprac-
tical, thus requiring models capable of generating
abstractive summaries. However, neural abstractive
models often suffer from hallucinations that affect
their reliability (Zhao et al., 2020), involving im-
proper gendered pronouns and misassigned speaker
associations (Chen and Yang, 2020). For example,
as shown in Figure 2, the model makes an incorrect
description that “she texted Larry last time at the
park” (in red). While this sentence achieves a high
score in word-overlapping metrics, the semantic
meaning it conveys is incorrect: in the context of
the generated summary, she refers to Amanda, yet
in reality it is Larry that called (not texted) Betty.
Such factual inconsistency, the inability to adhere
to facts from the source, is a prevalent and unsolved
problem in neural text generation.

In this work, we introduce a controllable dia-
logue summarization framework. As the aim of di-
alogue summaries often focuses on “who did what”

Figure 2: One dialogue summarization example: each
coreference chain is highlighted with the same color.
The generated sentence in red is factually incorrect.

and the narrative flow usually starts with a subject
(often persons), we propose to modulate the gener-
ation process with personal named entity plannings.
More specifically, as shown in Figure 1, a set of
personal named entities1 (in color) are extracted
from the source dialogue, and used in a generation
model as a conditional signal. We postulate that
such conditional anchoring enables the model to
support flexible generation. It could be especially
useful to address certain demands such as target-
ing specific client needs for customizing marketing
strategies or drilling down customer dissatisfac-
tion at call centers to educate customer agents. In
addition, to improve the quality of conditional gen-
eration outputs, we integrate coreference resolution
information into the contextual representation by
a graph-based neural component to further reduce
incorrect reasoning (Liu et al., 2021).

We conduct extensive experiments on the repre-
sentative dialogue summarization corpus SAMSum
(Gliwa et al., 2019), which consists of multi-turn di-
alogues and human-written summaries. Empirical
results show that our model can achieve state-of-
the-art performance, and is able to generate fluent
and accurate summaries with different personal
named entity plans. Moreover, factual correctness
assessment also shows that the output from our
model obtains quality improvement on both auto-
matic measures and human evaluation.

1A complete named entity set includes personal names,
locations, organizations, time expressions, etc.
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Figure 3: Overview of the proposed conditional generation framework with entity planning and coreference inte-
gration. Colored lines with arrows in the Fusing Coreference Layer denote the coreference links.

2 Related Work

Text summarization has received extensive research
attention, and is mainly studied in abstractive and
extractive paradigms (Gehrmann et al., 2018). For
extractive summarization, non-neural approaches
study various linguistic and statistical features via
lexical (Kupiec et al., 1995) and graph-based mod-
eling (Erkan and Radev, 2004). Much progress has
been made by recent neural approaches (Nallap-
ati et al., 2017; Kedzie et al., 2018). Compared
with extractive methods, abstractive approaches are
expected to generate more concise and fluent sum-
maries. While it is a challenging task, with large-
scale datasets (Hermann et al., 2015) and sophisti-
cated neural architectures, the performance of ab-
stractive models have achieved substantial improve-
ments in the news domain: sequence-to-sequence
models are first introduced by Rush et al. (2015)
for abstractive summarization; pointer-generator
network (See et al., 2017) elegantly handled out-
of-vocabulary issues by copying words directly
from the source content; Gehrmann et al. (2018)
combines the two paradigms by integrating sen-
tence rewriting into content selection; large-scale
pre-trained language models also bring further im-
provement on summarization performance (Liu and
Lapata, 2019; Lewis et al., 2020).

Recently, neural summarization for conversa-
tions has become an emerging research area. Cor-
pora are constructed from meetings (Carletta et al.,
2005) or daily chats (Gliwa et al., 2019). Based on
the characteristics of the dialogues, many studies
pay attention to utilizing conversational analysis
for dialogue summarization, such as leveraging di-
alogue acts (Goo and Chen, 2018), multi-modal
features (Li et al., 2019), topic information (Liu

et al., 2019), and fine-grained view segmentation
with hierarchical modeling (Chen and Yang, 2020).

Controllable text generation introduces auxiliary
signals to obtain diverse or task-specific outputs. It
has been studied in various domains such as style
transferring (Shen et al., 2017) and paraphrasing
(Iyyer et al., 2018). The conditional input can be
in the form of pre-defined categorical labels (Hu
et al., 2017), latent representations, semantic or
syntactic exemplars (Gupta et al., 2020), and key-
word planning (Hua and Wang, 2020). Recently,
He et al. (2020) and Dou et al. (2021) proposed
two generic frameworks for length-controllable and
question/entity-guided document summarization,
and we proposed personal named entity planning
upon the characteristics of dialogue summarization.

3 Controllable Generation with Personal
Named Entity Planning

In this section, we introduce the proposed condi-
tional generation framework, elaborate on how we
construct personal named entity planning, and de-
lineate the steps for training and generation.

3.1 Task Definition

Controllable dialogue summarization with personal
named entity planning is defined as follows:
Input: The input consists of two entries: (1) the
source content D, which is a multi-turn dialogue;
(2) a customized conditional sequence C, which is
the proposed personal named entity planning.
Output: The output is a natural language sequence
Y , which represents the summarized information
from the source content D with the pre-defined
personal named entity plan C. Given one instance
of D, Y can be manifested as various summaries
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conditioned on different choices of C. The output
summaries are expected to be fluent and factually
correct, covering the indicated entities in the speci-
fied conditional signal C.

3.2 Personal Named Entity Planning

Personal named entities are used to form a plan-
ning sequence. A customized plan represents what
the summary includes, covering specific personal
named entities that appear in the dialogue. These
named entities are not limited to the speaker roles,
but include all persons mentioned in the conversa-
tion (e.g., “Betty” and “Larry” in Figure 2).

3.2.1 Training with Occurrence Planning
Ground-truth samples for conditional training are
built on gold summaries. First, given one dialogue
sample and its reference summary, two entity sets
are obtained by extracting all personal named enti-
ties from the source content and the gold summary
respectively. Then, we take the intersection of the
two sets, which represent the content coverage of
the summary. For instance, given the example in
Figure 2, the intersection is {Larry, Amanda, Han-
nah, Betty}. Next, in order to align the plan with
gold summaries written in a certain perspective and
narrative flow, we define Occurrence Planning,
which reflects the order of personal named entities
occurring in the gold summary. To this end, the
entity set is re-ordered to {Hannah, Betty, Amanda,
Larry}, and converted to a conditional sequence for
training the controllable generation framework.

3.2.2 Inference: Comprehensive and Focus
Planning Summarization Options

Once the model is trained on personal entity plan-
ning, one could customize the input conditional
signal as a sequence of personal named entities
based on downstream application needs. While
our framework supports any combination and or-
der of personal named entities that occurred in the
given dialogue, here we focus on two conditional
inputs during inference: (1) Comprehensive Plan-
ning, which includes all personal named entities
in a source dialogue (they are ordered according
to the occurrence order in the source) and aims
to maximize information coverage. This type of
summary supports general purpose use cases. (2)
Focus Planning only targets one specific personal
entity in the dialogue. Focus planning could be
viewed as a subset of comprehensive planning and
can be useful in more targeted applications.

3.3 Controllable Neural Generation

In our framework, a neural sequence-to-sequence
network is used for conditional training and gen-
eration. As shown in Figure 3, the base architec-
ture is a Transformer-based auto-regressive lan-
guage model, since the Transformer (Vaswani et al.,
2017) is widely adopted in various natural language
processing tasks, and shows strong capabilities of
contextual modeling (Devlin et al., 2019; Lewis
et al., 2020). The input comprises a source dia-
logue with n tokens D = {w0, w1, ..., wn} and a
pre-defined personal named entity planning with
m tokens C = {c0, c1, ..., cm}.
Encoder: The encoder consists of a stack of Trans-
former layers. Each layer has two sub-components:
a multi-head layer with self-attention mechanism,
and a position-wise feed-forward layer (Equation
1). A residual connection is employed between
each pair of the two sub-components, followed by
layer normalization (Equation 2).

h̃l = LayerNorm(hl−1 +MHAtt(hl−1)) (1)

hl = LayerNorm(h̃l + FFN(h̃l)) (2)

where l represents the depth of the stacked layers,
and h0 is the embedded input sequence. MHAtt,
FNN, LayerNorm are multi-head attention, feed-
forward and layer normalization components, re-
spectively. Moreover, the additional linguistic fea-
ture (e.g., coreference information) is added in the
encoded representations.
Decoder: The decoder also consists of a stack of
Transformer layers. In addition to the two sub-
components in the encoding layers, the decoder in-
serts another component that performs multi-head
attention over hidden representations from the last
encoding layer. Then, the decoder generates tokens
from left to right in an auto-regressive manner. The
architecture and formula details are described in
(Vaswani et al., 2017).

During training (see Figure 3), the planning se-
quence C under Occurrence Planning is concate-
nated with the source dialogue content D as the
input with a special token. The segmentation to-
kens are pre-defined in different Transformer-based
models, such as ‘[SEP]’ in BERT and ‘</s>’ in
BART. The model learns to generate the ground
truth Y = {y0, y1, ..., yt} (where t is the token
number) by summarizing the information from the
dialogue context conditioned on the planning se-
quence. The loss of maximizing the log-likelihood



96

on the training data is formulated as:

l(θ) = −
T∑
t=1

logp(yt|D,C, y<t, θ) (3)

During inference, we first specify one condi-
tion sequence based on the planning schemes de-
scribed in Section 3.2. Specifically, one can as-
sess the model’s learning capability by generating
summaries guided by Occurrence Planning. For
simulating the real-world controllable generation
scenario, Comprehensive Planning and Focus Plan-
ning can be applied. The model then creates a
summary that is based on the specific condition
which is coherent with the context of the input con-
versation.

4 Improving Factual Correctness

While current neural abstractive systems are able
to generate fluent summaries, factual inconsistency
remains an unsolved problem (Zhang et al., 2020).
Neural models tend to produce statements that are
not supported by the source content. These hal-
lucinations are challenging to eradicate in neural
modeling due to the implicit nature of learning
representations. In document summarization, it
has been demonstrated that a certain proportion of
abstractive summaries contain hallucinated state-
ments (Kryscinski et al., 2020), as is observed in
dialogue summarization (Chen and Yang, 2020).
Such hallucinations raise concerns about the use-
fulness and reliability of abstractive summarization,
as summaries that perform well in traditional word-
overlap metrics may fall short of human evaluation
standards (Zhao et al., 2020).

4.1 Factual Inconsistency Detection
To evaluate and optimize the summarization qual-
ity regarding factual correctness, we first build a
model to assess the accuracy of generated state-
ments. Negative samples for classification are built
via text manipulation, as is done in prior work
(Zhao et al., 2020; Kryscinski et al., 2020). Since
we focus on conditional personal named entities in
this work, we aim to detect the inconsistency issues
of person names between the source content and
the generated summaries.

As shown in Figure 4, we construct a binary
classifier by reading the dialogue and a summary.
The classifier output evaluates if the two input en-
tries are factually consistent. A reference summary
in the original dataset is labeled as ‘correct’. To

Figure 4: Factual inconsistency detection: a binary
classification model that determines whether an input
summary is altered with named entity replacement.

generate versions of this summary with label ‘in-
correct’, we adopt three strategies to build negative
samples: (1) Swapping the positions of where one
pair of personal named entities are located in the
gold summary with each other. The entities that are
connected with word “and” and “or” in one sen-
tence are excluded; (2) Replacing one name (e.g.,
John) in summaries with another randomly selected
name of the same gender (e.g., Peter) in the source
content; (3) Replacing one name with another from
a person name collection built on the training data.
With these samples, a ‘BERT-base-uncased’ (De-
vlin et al., 2019) model was fine-tuned to classify
whether the summary has been altered. The factual
error detector achieved 91% F1 score on a hold-
out validation set. To identify all personal named
entities in both the conversation and the summary,
Stanza Named Entity Recognition (NER) tagger
(Qi et al., 2020) was used.

4.2 Exploiting Coreference Information

In conversations, speakers refer to themselves and
each other and mention other objects/persons, re-
sulting in various coreference links and chains
across dialogue turns and speakers. We empirically
observed that a sizable amount of errors stem from
incorrect pronoun assignments in the generation
process. Recent language models are also inca-
pable of capturing coreference information without
sufficient supervision (Dasigi et al., 2019). Thus,
we exploit dialogue coreference resolution in a
more explicit manner to enhance the model design
as in (Liu et al., 2021).

To this end, we first use the AllenNLP toolkit
(Gardner et al., 2017) for coreference resolution on
the dialogue samples.2 With the analyzed corefer-
ence mentions and clusters, we build a graph by
connecting all nodes in each cluster. Here, we add
bi-directional edges between each word/span and
its neighboring referring mentions. Following (Liu

2allennlp-public-models/coref-spanbert-large-2021.03.10
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et al., 2021), we incorporate the coreference in-
formation into the Transformer-based sequence-to-
sequence model. Given a graph with n nodes, we
represent the connected structure with an adjacency
matrix A where Aij = 1 if node i and node j are
connected. For feature integration: (1) to model the
linked information with a graph-based method, the
multi-layer Graph Convolutional Network (GCN)
is applied (Kipf and Welling, 2017). As shown in
Figure 3, we feed hidden states from the last layer
of the language encoder to the graph modeling com-
ponent, then implicit features are computed and
exchanged among tokens in the same coreference
cluster, and we add them to the contextualized rep-
resentation;3 (2) we also conduct coreference infor-
mation integration by adding self-attention layers
and adopting head manipulation (Liu et al., 2021)
which are parameter-efficient, and they can provide
the same performance.

4.3 Data Augmentation via Entity Exchange

In addition to the data synthesis strategies in Sec-
tion 4.1, we further propose an entity-based data
augmentation to robustify the model, reducing in-
correct correlations that might be made by the
model due to data sparsity or imbalance classes.
The augmented data is created by two steps: (1)
a personal named entity pair with the same gen-
der attribution is extracted; (2) we exchange them
in both source content and reference summary to
form new samples. For the data used in this paper,
each conversation is independent from one another
and each interlocutor from a particular dialogue
is not an interlocutor in any other dialogue, nor is
s/he mentioned in any other dialogue. Therefore,
we postulate that this entity-based augmentation is
helpful to reduce unnecessary inductive bias from
the training data. In our experiment, the sample
number of Data Augmentation (DA) is 4k.

5 Experimental Results and Analysis

5.1 Dataset Description

We conduct experiments with the proposed frame-
work on SAMSum (Gliwa et al., 2019), a dialogue
summarization dataset. It contains multi-turn daily
conversations with human-written summaries. The
data statistics are shown in Table 1. We retain the
original text content of conversations such as cased

3Interested readers can refer to the Appendix for dialogue
examples with coreference resolution information.

Type Number
Training Set (14732 Samples)
Mean/Std. of Dialogue Turns 11.7 (6.45)
Mean/Std. of Dialogue Length 124.5 (94.2)
Mean/Std. of Summary Length 23.44 (12.72)
Validation Set (818 Samples)
Mean/Std. of Dialogue Turns 10.83 (6.37)
Mean/Std. of Dialogue Length 121.6 (94.6)
Mean/Std. of Summary Length 23.42 (12.71)
Testing Set (819 Samples)
Mean/Std. of Dialogue Turns 11.25 (6.35)
Mean/Std. of Dialogue Length 126.7 (95.7)
Mean/Std. of Summary Length 23.12 (12.20)

Table 1: Details of the dialogue summarization dataset.

words, emoticons, and special tokens, and pre-
process them using sub-word tokenization (Lewis
et al., 2020). Since the positional embedding of the
Transformer-based model can support 1,024 input
length, none of the samples are truncated.

5.2 Model Configurations
To leverage the large-scale language models which
provide semantically-rich contextualized represen-
tation to improve downstream tasks such as BERT
(Devlin et al., 2019), we use the implementation of
BART that is specially pre-trained for sequence-to-
sequence language generation (Lewis et al., 2020),4

to initialize parameters of the Transformer layers
in Section 3.3, and fine-tune it to boost the perfor-
mance on our dialogue summarization task.

The number of encoder layers, decoder lay-
ers, graph modeling layers, input and hidden di-
mension are 6/6/2/768 for the ‘BART-Base’ and
12/12/3/1024 for the ‘BART-Large’, respectively.
The learning rate of Transformer layers was set at
3e−5, and that of the graph layers was set at 1e−3.
AdamW optimizer (Loshchilov and Hutter, 2019)
was used with weight decay of 1e−3 and a linear
learning rate scheduler. Batch size was set to 8.
Drop-out (Srivastava et al., 2014) of rate = 0.1
was applied as in the original BART configura-
tion. The backbone parameter size is 139M for the

‘BART-Base’ and 406M for for the ‘BART-Large’.
For the data augmentation described in Section
4.3, we excluded samples that contain less than
two personal named entities in their summaries.
Best checkpoints were selected based on valida-
tion results of ROUGE-2 value. Tesla A100 with
40G memory was used for training and we used
the Pytorch 1.7.1 as the computational framework
(Paszke et al., 2019).

4https://huggingface.co/facebook/bart-{base,large}
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ROUGE-1 ROUGE-2 ROUGE-L
F P R F P R F P R

Pointer Generator* 40.1 - - 15.3 - - 36.6 - -
DynamicConv + GPT-2* 41.8 - - 16.4 - - 37.6 - -
Fast Abs RL Enhanced* 42.0 - - 18.1 - - 39.2 - -
Multi-View BART-Large* 49.3 51.1 52.2 25.6 26.5 27.4 47.7 49.3 49.9
BART w/o Cond. (Base) 50.1 56.4 49.5 25.1 28.5 24.7 47.2 51.6 46.3
BART w/o Cond. (Large) 52.9 56.8 53.6 27.7 29.9 27.6 49.1 52.3 49.3

Generation with Occurrence Planning
CTRLsum BART-Large (CNN/DM) 36.2 37.1 41.4 10.9 11.4 12.7 33.8 34.2 37.6
CTRLsum BART-Large (Fine-tuned) 54.0 58.7 54.9 30.1 31.7 30.5 51.9 55.7 53.1
Generation with Occurrence Planning (ours)
Ctrl-DiaSumm (BART-Base) 52.3 57.0 52.6 27.6 30.2 27.6 50.2 53.1 50.1
Ctrl-DiaSumm+Coref 53.5 57.7 54.3 28.9 30.9 28.7 50.4 53.2 50.5
Ctrl-DiaSumm+Coref+DA 53.8 58.0 55.0 29.3 31.4 29.3 51.1 53.9 51.3
Generation with Occurrence Planning (ours)
Ctrl-DiaSumm (BART-Large) 54.9 56.3 57.1 30.3 31.8 32.2 52.8 54.0 54.4
Ctrl-DiaSumm+Coref 55.3 57.5 57.9 31.3 32.9 32.8 53.2 55.0 55.2
Ctrl-DiaSumm+Coref+DA 56.0 59.8 57.6 31.7 34.4 32.2 54.1 57.8 55.3

Table 2: ROUGE scores on the SAMSum test set from baseline models and proposed methods. Ctrl, Coref and DA
denote controllable, coreference modeling and data augmentation, respectively. F, P, R are F1 measure, precision,
and recall. * denotes the reported results from (Chen and Yang, 2020). BART w/o Cond. is the baseline without
entity planning conditional training. CTRLsum is the generic controllable summarizer proposed in (He et al., 2020),
and we further fine-tuned it on the dialogue corpus with our entity planning scheme.

Rouge-1
Recall

Rouge-2
Recall

Rouge-L
Recall

BART w/o Cond. 53.6 27.6 49.3
Generation with Comprehensive Planning
CTRLsum* 55.7 28.2 50.8
Ctrl-DiaSumm 56.3 28.2 51.4
Ctrl+Coref 58.1 28.4 52.5
Ctrl+Coref+DA 58.4 29.1 52.9

Table 3: ROUGE Recall scores under Comprehensive
Planning. * CTRLsum model is fine-tuned on the dia-
logue dataset. See complete result table in Appendix.

5.3 Quantitative Evaluation

We first conducted two evaluations with automatic
metrics to assess the summarizers.

5.3.1 ROUGE Evaluation
We adopt ROUGE-1, ROUGE-2, and ROUGE-L,
as ROUGE (Lin, 2004) is customary in summariza-
tion tasks to assess the output quality with gold
summaries via counting n-gram overlap. We em-
ploy Py-rouge package to evaluate the models
following (Gliwa et al., 2019; Feng et al., 2021).

Matched Training and Testing Conditions:
We obtained summaries by conditioning the out-
put generation with the personal named entities in
the order they occur in the gold summary (i.e., Oc-

Rouge-1
Precision

Rouge-2
Precision

Rouge-L
Precision

BART w/o Cond. 56.8 29.9 52.3
Generation with Focus Planning
CTRLsum* 52.9 27.1 49.3
Ctrl-DiaSumm 52.4 27.0 49.7
Ctrl+Coref 53.1 27.2 49.9
Ctrl+Coref+DA 53.4 27.3 50.0

Table 4: ROUGE Precision scores under Focus Plan-
ning. * CTRLsum model is fine-tuned on the dialogue
dataset. See complete result table in Appendix.

currence Planning). Since Occurrence Planning
is extracted from the gold summaries, it serves as
the upper-bound performance for the proposed con-
ditional generation. As Comprehensive Planning
and Focus Planning are mismatched testing condi-
tions from the training process, we use Occurrence
Planning to conduct a sanity check to ensure the
proposed model performance meets expectations
in idealistic scenarios where training and test con-
ditions are matched: Table 2 shows that the condi-
tional training in Section 3.2.1 is indeed effective.
Moreover, the model with ‘BART-Large’ backbone
significantly performs better than that of ‘BART-
Base’, thus we use it for the following generation
evaluations. We also select a generic controllable
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Accuracy
BART w/o Cond. 77.4
Occurrence Planning
CTRLsum (fine-tuned) 80.1
Ctrl-DiaSumm 79.9
Ctrl+Coref 81.5
Ctrl+Coref+DA 82.8
Comprehensive Planning
CTRLsum (fine-tuned) 79.5
Ctrl-DiaSumm 79.0
Ctrl+Coref 80.8
Ctrl+Coref+DA 81.9
Focus Planning
CTRLsum (fine-tuned) 74.9
Ctrl-DiaSumm 74.3
Ctrl+Coref 75.5
Ctrl+Coref+DA 76.2

Table 5: Automatic factual correctness evaluation on
samples from baselines and our models.

model CTRLsum (He et al., 2020) for comparison.
We observed that the original CTRLsum trained
on the news domain cannot generalize well on the
dialogue corpus, and the performance can benefit
from further fine-tuning.
Mismatched Training & Testing Conditions:
As Comprehensive Planning covers the maximum
number of personal entities in the dialogue, recall
(a sensitivity measure) is more suitable in assess-
ing its performance. Similarly, as Focus Planning
only concerns a specific personal entity, precision
(a specificity measure) is adopted. For evaluating
Focus Planning, we randomly selected one speaker
entity from each dialogue as condition input. While
the aim of conditional summary generation (be it
Comprehensive Planning or Focus Planning) is not
to generate a summary that emulates the gold sum-
mary, we nonetheless provide comparison results
with the unconditional baseline ‘BART w/o Cond.’
for analysis purposes (see Appendix for complete
ROUGE results and the generated summary exam-
ples). Results in Table 3 - 4 suggest: (1) Increas-
ing the information coverage on personal named
entities in dialogues improves general-purpose dia-
logue summarization; (2) Obtaining a reasonably
accurate summary focused on a specified personal
named entity is feasible; (3) Integrating corefer-
ence information and data augmentation improve
performance consistently.

5.3.2 Factual Correctness Evaluation
We applied the factual consistency classifier built in
Section 4.1 to assess the generated summaries us-
ing the accuracy metric (the proportion of samples

Consistency Informative
BART w/o Cond. 0.71 0.70
Occurrence Planning
Ctrl-DiaSumm 0.78 0.79
Ctrl+Coref+DA 0.79 0.81
Comprehensive Planning
Ctrl-DiaSumm 0.74 0.83
Ctrl+Coref+DA 0.78 0.85
Focus Planning
Ctrl-DiaSumm 0.68 0.70
Ctrl+Coref+DA 0.75 0.77

Table 6: Quality scoring on generated samples from
models. Scores are normalized in the range of [0, 1.0].

that are predicted as true). As shown in Table 5, ex-
plicitly incorporating coreference information im-
proves the accuracy of generated summaries guided
with all conditional plannings, and data augmenta-
tion brings further improvements. Results of Com-
prehensive Planning is close to the upper-bound of
Occurrence Planning. The difference is potentially
due to the relatively longer generated summaries
and the use of more novel words. Specifically, we
observed that the novel word rate (See et al., 2017)
of Ctrl+Coref under Occurrence and Comprehen-
sive plannings are 0.28 and 0.33 respectively. The
overall accuracy under Focus Planning is relatively
lower, which is not unexpected, as more paraphras-
ing is needed for summarizing from a specified per-
sonal entity’s perspective. Moreover, the fine-tuned
CTRLsum performs similarly to the Ctrl-DiaSumm
model, since both of them use ‘BART-Large’ as
the language backbone. However, here we did not
pre-trained our models on out-of-domain summa-
rization data.

5.4 Human Evaluation

5.4.1 Quality Scoring
We randomly sampled 50 dialogues with generated
summaries for two linguistic evaluators to conduct
quality scoring (Paulus et al., 2017). Since abstrac-
tive models fine-tuned on contextualized language
backbones are able to generate fluent sentences
(Lewis et al., 2020; Chen and Yang, 2020), we
excluded fluency in the scoring criteria. Instead,
factual consistency and informativeness were used
to measure how accurate and comprehensive the ex-
tracted information is according to the source con-
tent. Summaries were scored of [−1, 0, 1], where
−1 means a summary was not factually consistent
or failed to extract relevant information, 1 means it
could be regarded as a human-written output, and
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Comprehensive Planning Focus Planning
BART w/o Cond. Ctrl-DiaSumm Ctrl+Coref+DA Ctrl-DiaSumm Ctrl+Coref+DA

Average/Std. Length 21.3 (12.2) 26.52 (13.3) 27.05 (13.9) 15.44 (8.5) 15.87 (8.7)
Missing Information 17 6 4 [33% ↓] 16 12 [25% ↓]
Wrong References 11 11 8 [27% ↓] 14 11 [21% ↓]
Incorrect Reasoning 10 12 9 [25% ↓] 13 10 [23% ↓]
Improper Gender 2 2 1 [50% ↓] 5 3 [40% ↓]

Table 7: Error analysis on 50 samples. Values in round brackets denote standard deviations of length. Numbers
are counted if one error is labeled in generated summaries. Values in square brackets denote the relative decrease.

0 means it extracted some relevant information or
made minor mistakes. We averaged the normalized
scores from evaluators. As shown in Table 6, Com-
prehensive Planning obtains slightly lower scores
in consistency (related to ROUGE precision score)
than the training scheme Occurrence Planning, but
it achieves higher informativeness scores, which
is consistent with the improvement on ROUGE
recall scores in Table 3. Moreover, the proposed
model (Ctrl+Coref+DA) outperforms base model
significantly under Focus Planning.

5.4.2 Error Analysis
Similar to previous work (Chen and Yang, 2020),
we conducted error analysis by checking the follow-
ing 4 error types: (1) Missing information: content
mentioned in references is missing in generated
summaries; (2) Wrong references: generated sum-
maries contain information that is not faithful to the
original dialogue, or associate actions with wrong
named entities; (3) Incorrect reasoning: the model
learned incorrect associations leading to wrong con-
clusions in the generated summary; (4) Improper
gendered pronouns. Linguistic analysts were given
50 dialogues randomly chosen from the test set
and their corresponding summaries from baselines
and our models. They were asked to read the di-
alogue content and summaries and judge if the 4
error types occurred. For each evaluator, the se-
quence of presentation was randomized differently.
As shown in Table 7, summaries under both plan-
ning schemes make significantly fewer errors at all
fronts. Under Comprehensive Planning, models
with conference information and data augmenta-
tion (Ctrl+Coref+DA) outperform the base model
especially in consistency-related classes. Under
Focus Planning, both models produce more fac-
tual incorrectness due to more paraphrasing from
various personal perspectives, this matches the re-
sult from automatic factual consistency evaluation
in Section 5.3.2, and the Ctrl+Coref+DA model
achieves significant quality improvement.

6 Conclusion

In this work, we proposed a controllable neural
framework for abstractive dialogue summarization.
In particular, a set of personal named entities were
used to condition summary generation. This frame-
work could efficiently tailor to different user pref-
erences and application needs, via modulating en-
tity planning. Moreover, the experimental results
demonstrated that the abstractive model could ben-
efit from explicitly integrating coreference resolu-
tion information, achieving better performance on
factual consistency and standard metrics of word-
overlap with gold summaries.
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ROUGE-1 ROUGE-2 ROUGE-L
F P R F P R F P R

Generation with Comprehensive Planning on Subset-A
CtrlSum (fine-tuned) (He et al., 2020) 54.1 56.1 55.3 27.1 29.3 27.8 48.7 50.8 48.5
Ctrl-DiaSumm 53.7 54.3 55.9 25.7 26.9 27.9 48.6 49.9 49.4
Ctrl+Coref 53.9 55.7 56.9 27.1 28.1 28.0 49.0 50.1 51.0
Ctrl+Coref+DA 54.6 56.5 57.4 27.6 29.1 28.6 49.7 51.0 51.5
Generation with Comprehensive Planning on Subset-B
CtrlSum (fine-tuned) (He et al., 2020) 46.7 47.2 56.1 24.0 23.1 28.3 44.6 43.7 51.5
Ctrl-DiaSumm 47.3 43.8 57.6 23.5 21.7 29.1 43.3 40.8 51.7
Ctrl+Coref 47.9 44.3 59.1 23.7 22.1 29.4 44.0 41.2 53.2
Ctrl+Coref+DA 48.4 44.7 59.7 24.4 22.4 30.8 45.2 41.7 54.0

Table 8: ROUGE scores on summaries under the Comprehensive Planning. Ctrl, Coref and DA denote control-
lable, coreference modeling and data augmentation, respectively. F, P, R are F1 measure, precision, and recall. For
fair comparison with ground-truth summaries, we split the test set into two subsets: Subset-A (461 of 819 test
samples) contains the samples that personal entity set extracted from gold summaries and that of Comprehensive
Planning is the same, and the rest 358 samples are included in Subset-B.

ROUGE-1 ROUGE-2 ROUGE-L
F P R F P R F P R

Generation with Focus Planning
CtrlSum (fine-tuned) (He et al., 2020) 47.0 52.9 45.7 23.3 27.1 23.1 44.5 49.3 43.7
Ctrl-DiaSumm 47.0 52.4 46.8 23.0 27.0 22.8 44.8 49.7 44.1
Ctrl+Coref 47.1 53.1 47.0 23.4 27.2 23.3 45.1 49.9 44.6
Ctrl+Coref+DA 47.4 53.4 47.9 23.8 27.3 23.9 45.3 50.0 45.0

Table 9: ROUGE scores on summaries under the Focus Planning. Ctrl, Coref and DA denote controllable, coref-
erence modeling and data augmentation, respectively. F, P, R are F1 measure, precision, and recall. For the Focus
Planning, we randomly selected one speaker entity from each dialogue as condition input. Worth-mentioned that
the average length of generation under Focus Planning is smaller than that of Comprehensive Planning, resulting in
some decrease of recall performance. Moreover, more paraphrasing is needed for generated difference summaries
from different personal perspectives, as the examples shown in Table 11.

Occurrence Planning Comprehensive Planning
BART w/o Cond. Ctrl-DiaSumm Ctrl+Coref+DA Ctrl-DiaSumm Ctrl+Coref+DA

Average/Std. Length 21.3 (12.2) 20.96 (9.75) 19.82 (9.47) 26.52 (13.3) 27.05 (13.9)
Missing Information 17 6 4 [33% ↓] 6 4 [33% ↓]
Wrong References 11 7 6 [14% ↓] 11 8 [27% ↓]
Incorrect Reasoning 10 9 8 [11% ↓] 12 9 [25% ↓]
Improper Gender 2 1 1 [0% ↓] 2 1 [50% ↓]

Table 10: Error analysis on 50 samples from the baseline and our models. Here we compare the Comprehensive
Planning with the training scheme Occurrence Planning. Values in round brackets are the standard deviation of
summary length. Numbers are counted if there is an error labeled in the generated summary. Values in square
brackets are the relative decrease.
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Conversation Reference Summary Focus Planning

(i) <Natalie>: Well well weeeeeell, I see somethings going on
here at last. <Martin>: (Y). Adam: any confirmed data? <Anna>:
Hello everyone!!! Id love to invite everybody to my bday. I would
be extremaly happy if you could come 6th of November at 19:30.
<Martin>: (smile)] <Margot>: (smile) <Mia>: (Y)

Anna organises a birth-
day’s party on the 6th of
November at 19:30.

Adam will come to
Anna’s birthday party on
6th November at 19:30.
——————————
Anna invites everyone
to her birthday on 6th
November at 19:30.

(ii) <Anne>: You were right, he was lying to me :/ <Irene>: Oh no,
what happened? <Jane>: who? that Mark guy? <Anne>: yeah, he
told me he’s 30, today I saw his passport - he’s 40 <Irene>: You
sure it’s so important? <Anne>: he lied to me Irene.

Mark lied to Anne about
his age. Mark is 40.

Anne saw a man’s pass-
port today. He’s 40.
——————————
Jane’s friend lied to her
about him being 30 years
old.

(iii) <Josh>: Stephen, I think you’ve accidentaly taken my notebook
home <Stephen>: wait lemme check. <Stephen>: nope, I don’t
see it anywhere <Jack>: oh xxx, I’ve got it xDDD I don’t even
know why. <Josh>: xDDD ok, no problem, cool I know where it
is. <Jack>: I’ll bring it tomorrow.

Josh thinks Stephen ac-
cidentally took his note-
book. Jack has it and will
bring it tomorrow.

Jack has taken Stephen’s
notebook and will bring it
tomorrow.
——————————
Stephen has left his note-
book at home. He can’t
find it.

(iv) <George>: What have you gotten for Christmas? <Jacob>: I
got a punchbag. <Jenny>: I got training shoes. <George>: Sporty
team :P <Jenny>: What did you get? <George>: A cooking pot
:-) <Jacob>: Your wife wants you to help her in the kitchen?
<George>: It’s me who is normally cooking. <George>: I really
like it :P <George>: Jenny gave me this pot, it’s amazing and has
life long guarantee. <Jacob>: Cool <Jenny>: I wish my Michael
was a better cook. <Jenny>: I think it’s really sexy when a guy can
cook well.

Jacob, Jenny and George
are telling each other
what they have gotten for
Christmas.

George got a cooking pot
for Christmas. His wife
wants him to help her in
the kitchen.
——————————
Jenny got a sports bag for
Christmas, a cooking pot
and training shoes.

Table 11: Examples of generated summaries with Focus Planning. Speaker roles are bracketed, and the focused
personal named entity is highlighted.
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Figure 5: Dialogue examples with summaries from a baseline model and our controllable generation.
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Figure 6: Dialogue examples with coreference resolution information. Words/Spans in one coreference cluster are
labeled with the same color. Noted that this is the original output from AllenNLP (Gardner et al., 2017) coreference
resolution tool.


