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Abstract
Natural languages display a trade-off among
different strategies to convey syntactic struc-
ture, such as word order or inflection. This
trade-off, however, has not appeared in re-
cent simulations of iterated language learning
with neural network agents (Chaabouni et al.,
2019b). We re-evaluate this result in light of
three factors that play an important role in
comparable experiments from the Language
Evolution field: (i) speaker bias towards effi-
cient messaging, (ii) non systematic input lan-
guages, and (iii) learning bottleneck. Our sim-
ulations show that neural agents mainly strive
to maintain the utterance type distribution ob-
served during learning, instead of developing
a more efficient or systematic language.

1 Introduction

The world’s languages show immense variety, but
linguistic patterns also show important universal
tendencies (Greenberg, 1963). It has been argued
that these common design features are shaped by
human cognitive constraints and pressures dur-
ing communication and transmission (Kirby et al.,
2014). A well-known example of these tendencies
is the trade-off between case marking and word
order as redundant strategies to encode the role
of sentence constituents (Sinnemäki, 2008; Futrell
et al., 2015): flexible order typically correlates with
the presence of case marking (e.g. in Russian),
while fixed order is often observed in languages
with little or no case marking (e.g. English).

Researchers interested in language universals
and their origins have extensively used agent-based
modeling techniques to study the impact of social
processes on the emergence of linguistic structures
(de Boer, 2006). Besides the horizontal transmis-
sion that is often modeled in the referential game
setup, the process of iterated learning, where sig-
nals are transmitted vertically from generation to
generation, has been identified to shape language
(Kirby, 2001; Kirby et al., 2014).

Recently, the advent of deep learning based NLP
has triggered a renewed interest in agent-based sim-
ulations of language emergence. Most existing
studies simulate the emergence of language by let-
ting neural network agents play referential games
and studying the signals they use (Kottur et al.,
2017; Havrylov and Titov, 2017; Lazaridou et al.,
2018; Chaabouni et al., 2019a; Dagan et al., 2021).
By contrast, Chaabouni et al. (2019b) expose their
agents to a pre-defined language, which is then
learned and reproduced iteratively by a chain of
agents. They analyze how specific properties of
the initial languages affect learnability, and further
investigate how agent biases affect the evolution
across generations. Among others, they studied
whether neural agents tend to avoid redundant cod-
ing strategies as natural languages do. However, the
case-marking/word-order trade-off did not clearly
appear in their iterated learning experiments.

In this work, we re-evaluate this finding in light
of three factors that play an important role in com-
parable experiments from the Language Evolution
field: (i) speaker bias towards efficient messaging
(i Cancho and Solé, 2003), (ii) unpredictable varia-
tion in the initial languages (Smith and Wonnacott,
2010; Fedzechkina et al., 2017), (iii) exposure to a
limited set of example utterances, known as ‘learn-
ing bottleneck’ (Kirby et al., 2014). We follow the
iterated learning setup of Chaabouni et al. (2019b)
where neural agents are trained to communicate
about trajectories in a simple gridworld, exchang-
ing instructions in miniature languages (Fig. 1).1

2 Miniature Languages

Word order and case marking are two different
mechanisms to convey sentence constituent roles,
both widely attested among world languages. Both

1The original implementation is taken from https:
//github.com/facebookresearch/brica. Our re-
vised code and data are available at https://github.
com/Yuchen-Lian/neural_agent_trade-off.

https://github.com/ facebookresearch/brica
https://github.com/ facebookresearch/brica
https://github.com/Yuchen-Lian/neural_agent_trade-off
https://github.com/Yuchen-Lian/neural_agent_trade-off
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Type Utterance
Fix+Marker m1 up 2 m2 left 3 m3 down 1
Fix up 2 left 3 down 1

m1 up 2 m3 down 1 m2 left 3
Free-order m2 left 3 m1 up 2 m3 down 1
+Marker m3 down 1 m1 up 2 m2 left 3

...

Figure 1: Utterances corresponding to ‘UP UP LEFT
LEFT LEFT DOWN’, in three basic languages.

have been shown to serve as equally valuable cues
to learn grammatical roles during language learning
by children (Slobin and Bever, 1982), and by sim-
ple recurrent neural networks (Lupyan and Chris-
tiansen, 2002). To model these mechanisms we
use simple artificial languages based on Chaabouni
et al. (2019b). The meaning space is composed
of trajectories defined by random combinations of
four oriented actions {LEFT, RIGHT, UP, DOWN}.
Each utterance or sentence (S) consists of several
phrases (P), which in turn are composed of a com-
mand (C) and a quantifier (Q):

S → PiPjPk... (1)

Pi|Pj |Pk|... → CQ (2)

C → (left|right|up|down) (3)

Q → (1|2|3) (4)

where left, right, up, down, 1, 2, 3 are spoken
words which are atomic elements of the language.
We consider three basic language types: Fixed-
order with marker (redundant), Fixed-order with-
out marker (non-redundant), and Free-order with
marker (non-redundant). See examples in Fig. 1.

Fixed-order vs. Free-order This concerns
Rule 1: In a fixed-order language, the order of
phrases strictly corresponds to the temporal order
of instructions in the trajectory.2 Free-order lan-
guages, instead, allow any permutation of phrases.
For instance, there are in total six possible free-
order utterances for a 3-phrase trajectory (Fig. 1).

Case Marking In a case-marking language, each
phrase is preceded by a temporal marker indicating
its role. Thus, Rule 2 changes to: Pi → mi C Q
with the marker mi indicating that CQ is the ith ac-
tion segment. Note that a fully free-order language
is unintelligible without markers.

2This is the ‘forward-iconic’ language of Chaabouni et al.
(2019b). We do not consider other fixed orders in this work,
as we are mostly interested in the contrast between redundant
and non-redundant languages.

3 Neural-Agents Iterated Learning

We strictly follow the iterated learning setup of
Chaabouni et al. (2019b) unless explicitly noted.

Agent architecture Agents are implemented as
1-layer attentional Seq2Seq (Sutskever et al., 2014;
Bahdanau et al., 2015) LSTM (Hochreiter and
Schmidhuber, 1997) networks. Each agent acts
as both speaker (receiving trajectories and describ-
ing them with utterances) and listener (receiving
utterances and trying to induce the corresponding
trajectories). The vocabulary contains both actions
and words; embeddings of the encoder input and
decoder output are tied (Press and Wolf, 2017).

Individual and iterated learning Given
trajectory-utterance pairs, agents are trained
by teacher forcing (Salakhutdinov, 2014) in
both listening and speaking mode, using the
early-stopping and optimizer settings of Chaabouni
et al. (2019b).3 Iterated learning (Kirby, 2001) is
implemented by letting a trained adult agent teach
a randomly initialized child agent, and repeating
this process for a number of generations. At
each generation, two steps are performed: (1) a
trained adult agent receives a batch of trajectories
and generates utterances by sampling from its
own decoder outputs; (2) a randomly initialized
child agent is trained on these agent-specific
trajectory-utterance pairs. As an exception, the
generation-0 agent is directly trained on the corpus
generated by a given miniature grammar.

Evaluation In both speaking and listening mode,
sequences are generated by greedy decoding and
evaluated by sentence-level accuracy. Listener eval-
uation is standard as the true meaning of an utter-
ance is unique. For speakers in the first generation,
instead, we consider all acceptable utterances ac-
cording to the grammar as candidate targets; for
later generations, we take k = i! utterances sam-
pled from the parent’s speaking network as targets
(i is the maximum number of phrases per trajec-
tory). Validation for early stopping is performed
similarly. These evaluation procedures allow a
child agent’s language to deviate from the parent
language, even while achieving perfect accuracy.

3To handle 1-to-N trajectory-to-utterance mappings in free-
order languages, Chaabouni et al. (2019b) used a modified
training loss for the Speaker direction. Empirically, we find
that sampling multiple free-order utterances in the initial train-
ing corpus leads to very similar results, so we do not use the
modified training loss. This allows us to support more complex
languages without major changes to the training procedure.
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For each experiment, we report speaking accu-
racy, listening accuracy, as well as average utter-
ance length across generations. To get more insight
into language changes, we plot the distribution of
utterance types in the adult speaking agents across
generations. Specifically, we count how often an ut-
terance belongs to one of the basic language types
(fix, fix_marker, free, free_marker), and how of-
ten markers are dropped for some of the phrases
(fix_drop, free_drop). Utterances that do not fall
into any of these categories are labeled as ‘other’.

For more technical details on the agents and eval-
uation, see Appendix A. Example utterances at var-
ious generations are shown in Appendix B.

4 Effect of Least-Effort Bias

A bias towards efficient messaging has been pro-
posed as explaining factor for several tendencies
observed in natural languages (i Cancho and Solé,
2003; Kanwal et al., 2017; Fedzechkina et al.,
2017). Could the lack of such a bias in neural net-
works explain the survival of redundant languages?
To verify this, we design a simple mechanism sim-
ulating an agent’s preference to minimize utter-
ance length, based on Chaabouni et al. (2019b)’s
framework: To teach the next generation, given
a trajectory t, an adult agent generates n (possi-
bly identical) utterances {û} = {û1, û2, ...ûn} by
sampling from its trained network. Instead of mod-
ifying the training process, we exploit the diversity
occurring in the sampled utterances and hard-code
a shorter-sentence selection bias into this adult lan-
guage generation. As shown in Algorithm 1, the
sampling function is called n times to generate n
samples. In turn, at each iteration, we ask the adult
speaker to generate ` sentences and select each
time the shortest one. Thus, we can control the bias
strength by varying the number of generated sam-
ples (`) in each of the n iterations. As ` increases,
the chances of sampling a shorter sentence increase,
resulting in a stronger pressure; ` = 1 means no
bias. We expect this least-effort bias will cause the
redundant disambiguation mechanism to gradually
disappear, and the fixed-order strategy to dominate
as that always leads to shorter utterances.

Results Fig. 2 shows the iterated learning re-
sults of the Fixed+Marker language with various
levels of least-effort bias ` = {1, 3, 5, 8}, which
represent no pressure, low- , medium- and high-
level pressure towards shorter utterances, respec-
tively. The experiment without least-effort pressure

Algorithm 1: Shorter-sentence selection
Input: Trajectory t
Output: n sampled utterances {û}

1 for j = 1 : n do
2 if shorter_selection then
3 uttrs = Adult.speaker(t).sample(`)
4 uttr_select = uttrs[0]
5 for i = 1 : ` do
6 u = uttrs[i]
7 if len(u) ≤ len(uttr_select) then
8 uttr_select = u
9 else

10 uttr_select = Adult.speaker(t).sample(1)
11 {û}.append(uttr_select)

(` = 1) corresponds to the setup of Chaabouni
et al. (2019b), in which the redundant language
was found to remain stable across generations.

We find that, while speaking accuracy remains
stable (2a), our least-effort pressure leads to a se-
vere drop in listening accuracy (2b) and a dramatic
increase of other types in the speaking adult agent
starting from the fifth generation (2d). Stronger
levels of pressure lead to a faster decrease of av-
erage utterance length (2c), which was expected.
However, manual inspection of the utterances (Ap-
pendix B) reveals that agents start dropping entire
phrases, thereby losing information, instead of ei-
ther dropping markers or changing the word order.

5 Effect of Input Language Variability

In the languages of Chaabouni et al. (2019b), mark-
ers are either present and fully systematic, or not
present at all. If there is no marker example in the
initial language, it is unlikely an agent would sud-
denly invent it. Conversely, a fully systematic use
of markers may be perfectly learnable by the agent,
unlikely to change or disappear over generations.
Unpredictable variation, instead, is a common fea-
ture of the artificial languages used in human learn-
ing studies. For example Fedzechkina et al. (2017)
combine optional case marking with either fixed
or free word order, while Smith and Wonnacott
(2010) use two plural markers with different distri-
butions over nouns. Inspired by this, we experiment
with unpredictable variations in the use of markers,
namely: (i) variability among utterances, where
each utterance is consistent with one of the basic
language types chosen at random, and (ii) variabil-
ity within utterances, where the use of markers is
also unpredictable within a single utterance.

5.1 Variability Among Utterances
For every trajectory in the initial training set, two
utterances are generated for each of the three basic
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(a) Speaking accuracy (b) Listening accuracy (c) Average utterance length (d) Utterance types (` = 3)

Figure 2: Iterated learning of the Fixed+Marker language with least-effort pressure of varying strength (`), over
10 generations. Results in (a,b,c) are averaged over three random-seed initializations. (d) shows the distribution of
utterance types of the speaking adult agents with ` = 3 (one seed only).

language types: (i) Fixed-order+Marker, (ii) Fixed-
order without markers and (iii) Free-order+Marker.
Our goal here is to find out whether the agents will
tend to prefer any of the three language types over
generations, according to their inherent biases.

Results Results are shown in Fig. 3 (blue lines).
The overall high speaking accuracy suggests that
the agents can learn to imitate their parents’ lan-
guage very well. We observe a slow, but steady,
loss in listening accuracy, which we attribute to the
random sampling errors from the parent speaker
and the natural presence of errors in the neural net-
work learning process. Besides a steady increase of
uncategorizable utterances (other) in Fig. 3d, the
distribution of the three language types remains
relatively stable even after 20 generations. We
looked for sentences where only some of the mark-
ers are dropped (free_drop/fix_drop) but found al-
most none. See examples in Appendix B. These
results show that mixing language types in the ini-
tial training set is not sufficient to induce the loss of
redundant encoding with agent learners, as opposed
to human learners (Fedzechkina et al., 2017).

Results with Least-Effort Bias We also study
the combination of the two factors (Mix+pressure)
using medium pressure (` = 3). This setup (Fig. 3,
green lines) leads to a more efficient language dur-
ing the first five generations, as shown by the ini-
tially stable speaking and listening accuracy and
a decrease of average length. This phase corre-
sponds to a proliferation of fixed-order no-marker
sentences and the disappearance of the other lan-
guage types (3e). In only two generations, this
language has reached the shortest possible overall
length while remaining intelligible. After a while,
however, child agents start to receive shorter but
incorrect utterances, resulting in a drop of listening
accuracy and, finally, an unintelligible language.

5.2 Variability Within Utterances

We design a more unpredictable language where
each phrase marker is randomly dropped according
to a given probability (10%). Half of the utterances
are fixed- and half are free-order. See examples
in Appendix B. This language is closely inspired
by those of Fedzechkina et al. (2017). We expect
agents will either stop using markers completely
over generations, or use them more consistently.

Results Despite the relatively small probability
of dropping a marker, speaking and listening accu-
racies drop rapidly (3a and 3b, grey lines) and other
utterances become dominant (Fig. 3f). This lan-
guage becomes unintelligible before regularization
is observed, again challenging our expectations.

6 Effect of Learning Bottleneck

Although real languages support the production of
enormous sets of utterances, human learners master
them by exposure to a limited number of examples.
This learning bottleneck acts as a pressure forcing
languages to regularize during cultural transmis-
sion (Smith et al., 2003; Brighton et al., 2005).
Human-based experiments and computational sim-
ulations have found that this pressure can lead to
increased structure in emerging language systems
(Kirby et al., 2014). We apply a learning bottleneck
to our mixed language experiment (Sect. 5.1) by
randomly sub-sampling, at each iteration, 50% of
the data used to train the next generation. Evalua-
tion and training details are the same as in Sect. 5.1.

Results We find that training data sub-sampling
leads to a slightly steeper drop in listening accuracy
(yellow vs. blue line in Fig. 3b), but the respective
distributions of utterance types (Fig. 3g vs. 3d)
remain very similar, suggesting the learning bottle-
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(a) Speaking accuracy (b) Listening accuracy (c) Average utterance length

(d) Utterance types (Mix) (e) Utter. types (Mix+pressure) (f) Utter. types (Mix_drop) (g) Utter. types (Bottleneck)

Figure 3: Mixed language learning without and with least-effort pressure, drop-marker language without least-
effort pressure, and mixed language with learning bottleneck. Results in (a,b,c) are averaged over three random
seeds. (d,e,f,g) show the respective distributions of utterance types in the speaking adult agents (one seed only).4

neck does not result in a more structured language.

7 Discussion and Conclusions

Neural-agent iterating learning is a promising
framework to study the impact of social processes
on the emergence of patterns and language uni-
versals, like the word order/case marking trade-
off. However, previous work with LSTM-based
agents (Chaabouni et al., 2019b) has failed to repli-
cate this human-like pattern. We re-evaluated this
finding by (i) hard-coding a least-effort bias into
our agents, (ii) designing less systematic input lan-
guages, and (iii) introducing a learning bottleneck.
In all cases, our agents proved to be accurate learn-
ers, but the patterns of language change over gener-
ations did not match our expectations. Specifically,
least-effort bias (§4) and highly unpredictable in-
put language (§5.2) led to communication failure,
whereas moderate input language variability (§5.1)
and learning bottleneck (§6) led to a stable lan-
guage distribution, confirming previous observa-
tions on the survival of redundant coding strategies
in neural-agent iterated learning (Chaabouni et al.,
2019b). Only combining least-effort bias with mod-
erate language variability (§5.1) led to a temporary
optimization of the language, but that was again
followed by communication failure.

In real language use, the pressure to reduce effort
is balanced with communicative needs (Kirby et al.,
2015; Regier et al., 2015) and does normally not

4Speaking accuracies of Mix+pressure, Mix+bottleneck,
Drop in 3a are hidden behind the accuracy of Mix (blue line).

lead to severe language degradation. Future work
should design subtler least-effort biases, for in-
stance considering efficiency in terms of grammat-
ical structure and cognitive effort. Moreover, our
results with non fully systematic languages show
that agents strive to preserve the initial utterance
type distribution. In human learning, this behavior
is called probability matching and is affected by
task complexity: more difficult tasks tend to regu-
larization or over-matching (Ferdinand et al., 2019;
Kam and Newport, 2009), where the more frequent
variant is chosen more often than it appeared in the
input. Over many generations, even a slight over-
matching can lead to the emergence of linguistic
regularities (Smith and Wonnacott, 2010) like the
word order/case marking trade-off observed in hu-
man learners by Fedzechkina et al. (2017). We con-
clude that the current neural-agent iterated learning
framework is not yet ready to simulate language
evolution processes in a human-like way. More nat-
ural cognitive biases supporting efficiency should
be modeled, while the speaker objective should be
balanced with a measure of communicative success,
such as the likelihood of a message to be under-
stood by the listener (Goodman and Frank, 2016;
Scontras et al., 2021).
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A Training details

Following Chaabouni et al. (2019b) we limit the
maximum number of segments per trajectory, i, to
5 and at most 3 steps per phrase, resulting in a to-
tal of 89k possible trajectories. Subsequently, the
number of candidate target utterances during evalu-
ation is set to k = i! = 120. As an exception, for
the drop-marker language (Section 5.2) we limit i
to 4 instead of 5 due to the computational cost of
enumerating all correct utterances for a trajectory
in this language during validation (accordingly, k
is reduced to 24). The trajectory-utterance pairs
are randomly split into training, validation and test
sets with a proportion of 80%, 10% and 10% re-
spectively.

We fix the hidden layer size (20) and batch size
(16) for all experiments. Similar to Chaabouni et al.
(2019b), we use the Amsgrad optimizer (Reddi
et al., 2018). For each generation, the maximum
number of training epochs is set to 100 and we stop
the training if both speaking and listening accuracy
on development set have no improvement over 5
epochs. To ensure the reliability of our results, we
repeat each experiment with 3 different random
seeds and observe trends over 20 generations (un-
less trends are already very clear after 10, as in
Fig. 2).

B Example utterances at various
generations

We let each agent generate six utterances corre-
sponding to the trajectory ‘RIGHT UP UP DOWN

RIGHT RIGHT RIGHT’. As some of these utterances
are identical, we remove the duplicates and only
list unique ones in Tab. 3.
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Fix+Marker with pressure (` = 3) Mix Mix with pressure (` = 3)
Input M1 right 1 M2 up 2 M3 down 1 M4 right 3 right 1 up 2 down 1 right 3 right 1 up 2 down 1 right 3

M1 right 1 M2 up 2 M3 down 1 M4 right 3 M1 right 1 M2 up 2 M3 down 1 M4 right 3
M1 right 1 M2 up 2 M4 right 3 M3 down 1 M2 up 2 M4 right 3 M3 down 1 M1 right 1
M3 down 1 M1 right 1 M4 right 3 M2 up 2 M4 right 3 M2 up 2 M3 down 1 M1 right 1

Iter_0 M1 right 1 M2 up 2 M3 down 1 M4 right 3 right 1 up 2 down 1 right 3 right 1 up 2 down 1 right 3
M1 right 1 M2 up 2 M3 down 1 M4 right 3 M1 right 1 M2 up 2 M3 down 1 M4 right 3
M1 right 1 M2 up 2 M4 right 3 M3 down 1 M1 right 1 M2 up 2 M4 right 3 M3 down 1

Iter_1 M1 right 1 M2 up 2 M3 down 1 M4 right 3 right 1 up 2 down 1 right 3 right 1 up 2 down 1 right 3
M1 right 1 M2 up 2 M3 down 1 M4 right 3 M1 right 1 M2 up 2 M3 down 1 M4 right 3
M2 up 2 M1 right 1 M4 right 3 M3 down 1 M3 down 1 M2 up 2 M4 right 3 M1 right 1
M3 down 1 M2 up 2 M4 right 3 M1 right 1

Iter_5 M1 right 1 M2 up 2 M3 down 1 M4 right 3 M5 right 3 M3 down 1 M4 right 3 M2 up 2 M1 right 1 right 1 up 2 down 1 right 3
M1 right 1 M2 up 2 M3 down 1 M4 right 3 M2 up 2 M3 down 1 M4 right 3 M1 right 1
M1 right 1 M2 up M3 down 1 M4 right 3 M5 3 right 1 up 2 down 1 right 3

M1 right 1 M4 right 3 M3 down 1 M2 up 2
M1 right 1 M2 up 2 M3 down 1 M4 right 3
M4 right 3 M3 down 1 M1 right 1 M2 up 2

Iter_10 M1 right 1 M2 up 2 M3 down 1 right 1 up 2 down 1 right 3 right 1 up 2 down 1 right 3
M1 right 1 M2 up 2 M2 up 2 M3 down 1 M4 right 3 M1 right 1 right 1 up 2
M1 right 1 M1 right 1 M3 down 1 M4 right 3 M2 up 2 right 1

M1 right 1 M3 down 1 M4 right 3 M2 up 2
right 1 up 2 down 1 right 3

Mix_drop Mix with learning bottleneck
Input M1 right 1 M2 up 2 M3 down 1 M4 right 3 right 1 up 2 down 1 right 3

M1 right 1 M2 up 2 down 1 M4 right 3 M1 right 1 M2 up 2 M3 down 1 M4 right 3
M2 up 2 right 1 M4 right 3 M3 down 1 M3 down 1 M1 right 1 M2 up 2 M4 right 3
down 1 M1 right 1 up 2 M4 right 3 M4 right 3 M2 up 2 M3 down 1 M1 right 1
M1 right 1 M4 right 3 M2 up 2 M3 down 1

Iter_0 right 3 M2 up 2 M3 down 1 M4 right 3 right 1 up 2 down 1 right 3
M1 right 1 up 1 M3 down 1 M2 up 2 M4 right 3 M3 down 1 M1 right 1 M2 up 2 M4 right 3
M1 right 1 M4 right 3 M3 down 1 M2 up 2 M1 right 1 M2 up 2 M3 down 1 M4 right 3
M1 right 1 M2 up 2 M3 down 1 M4 right 3
M3 down 1 M1 right 1 M4 right 3 M2 up 2

Iter_1 M3 down 1 M1 right 1 M2 up 2 M4 right 3 M3 down 1 M4 right 3 M2 up 2 M1 right 1
M2 up 2 M4 right 3 M1 right 1 M3 down 1 M4 right 3 M3 down 1 M2 up 2 M1 right 1
M2 up 2 M1 right 1 M3 down 1 M4 right 3 M4 right 3 M3 down 1 M1 right 1 M2 up 2
M1 right 1 M2 up 2 M3 down 1 M4 right 3 right 1 up 2 down 1 right 3

M1 right 1 M2 up 2 M3 down 1 M4 right 3
Iter_5 M3 down 1 right 3 M1 right 1 M2 up 2 M2 up 2 M4 right 3 M1 right 1 M5 right 3

M2 up 2 M1 right 1 M3 down 1 M4 right 3 M2 up 2 M3 down 1 M4 right 3 M1 right 1
right 2 M2 up 2 M3 down 1 M4 right 3 right 1 up 2 down 1 right 3
M1 right 1 M2 up 3 M3 down 1 M4 right 3 M1 right 1 M3 down 1 M4 right 3 M2 up 2
M1 right 1 M2 up 2 M3 down 1 M4 right 3
M3 down 1 right 3 M4 right 3 M1 right 1

Iter_10 M1 right 1 M3 down 1 M4 right 3 M1 right 1 M1 right 1 M2 up 2 M3 down 1 M4 right 3
M4 right 3 down 1 M1 right 1 M2 down 1 down 1
M4 right 3 M2 up 2 M4 right 3
M1 right 2 M2 up 3 M3 down 1 M4 right 3
M3 down 1 M1 right 2 M4 right 3 M2 up 1
M1 right 1 M3 down 2 M4 right 3 M3 down 1

Table 3: Utterances sampled from the agents’ speaking network given the trajectory ‘RIGHT UP UP DOWN
RIGHT RIGHT RIGHT’ in Fix+Marker language learning with pressure (§4), Mix language learning without and
with pressure (§5.1), Mix_drop language learning (§5.2) and Mix language with learning bottleneck (§6). For each
experiment and each generation, we show six randomly sampled utterances (duplicates are omitted for clarity).


