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Abstract

Sentence embedding refers to a set of effec-
tive and versatile techniques for converting
raw text into numerical vector representations
that can be used in a wide range of natural lan-
guage processing (NLP) applications. The ma-
jority of these techniques are either supervised
or unsupervised. Compared to the unsuper-
vised methods, the supervised ones make less
assumptions about optimization objectives and
usually achieve better results. However, the
training requires a large amount of labeled sen-
tence pairs, which is not available in many in-
dustrial scenarios. To that end, we propose
a generic and end-to-end approach — PAUSE
(Positive and Annealed Unlabeled Sentence
Embedding), capable of learning high-quality
sentence embeddings from a partially labeled
dataset. We experimentally show that PAUSE
achieves, and sometimes surpasses, state-of-
the-art results using only a small fraction of
labeled sentence pairs on various benchmark
tasks. When applied to a real industrial use
case where labeled samples are scarce, PAUSE
encourages us to extend our dataset without
the burden of extensive manual annotation
work.

1 Introduction

A sentence embedding is a numerical represen-
tation used to describe the meaning of an entire
sentence. Embeddings of this type are becoming
increasingly important for many downstream tasks
in the language understanding domain, such as sim-
ilarity or sentiment analysis. Some earlier methods,
like GloVe (Pennington et al., 2014), BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) pool
directly from underlying token-level embeddings
to create a sentence representation. Recently, these
pooling strategies have been challenged by vari-
ous parameterized policies that can be optimized
on domain specific tasks. The majority of these
are either unsupervised or supervised. While unsu-
pervised methods only utilize unlabeled sentences,

supervised methods can quickly customize the em-
beddings by using domain specific labels. As a
consequence, supervised methods make less as-
sumptions about optimization objectives and usu-
ally achieve better results. However, supervised
training requires a large amount of labeled sen-
tence pairs, which is usually unavailable. In many
real scenarios, the dataset turns out to be positive-
unlabeled (i.e. PU dataset), where the majority is
unlabeled and the rest of the samples are labeled as
positive. The methods that enable learning binary
classifiers on PU datasets are called PU learning.
To bridge the gap between supervised and unsuper-
vised approaches, we incorporate state-of-the-art
PU learning with the general supervised sentence
embedding approaches, proposing a novel method
— PAUSE (Positive and Annealed Unlabeled Sen-
tence Embedding)'. The main highlights of PAUSE
include:

(1) good sentence embeddings can be learned from
datasets with only a few positive labels;

(2) it can be trained in an end-to-end fashion;

(3) it can be directly applied to any dual-encoder
model architecture;

(4) it is extended to scenarios with an arbitrary
number of classes;

(5) polynomial annealing of the PU loss is pro-
posed to stabilize the training;

(6) our experiments show that PAUSE constantly
outperforms baseline methods.

2 Related Work

Among unsupervised sentence embedding methods,
some are capable of exploring the relations among

!The source code, pre-processed data, and trained mod-
els are accessible publicly from: https://github.com/
EQTPartners/pause
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sub-sentences, such as skip-thoughts (Kiros et al.,
2015), FastSent (Hill et al., 2016), quick-thoughts
(Logeswaran and Lee, 2018) and DiscSent (Jernite
et al., 2017). These methods assume that adjacent
sentences always have similar semantics. How-
ever, not every corpus is long enough, perfectly
ordered or coherent enough to fulfill that assump-
tion, which limits their applicable domains. Other
unsupervised methods merely focus on the internal
structures within each sentence, such as paragraph-
vectors (Le and Mikolov, 2014), Doc2VecC (Chen,
2017), Sent2Vec (Pagliardini et al., 2018; Gupta
etal., 2019), WMD (Wu et al., 2018), GEM (Yang
et al., 2019) and IS-BERT (Zhang et al., 2020).
In general, those unsupervised approaches opti-
mize objectives based on assumptions, which limits
their embeddings from being adapted towards dif-
ferent applications. Recently, several concurrently
proposed methods, such as Yan et al. 2021; Kim
et al. 2021; Carlsson et al. 2021; Giorgi et al. 2021,
adopt contrastive objectives by constructing differ-
ent views from the same sentence. Gao et al. 2021
achieved superior results by simply using dropout
to create different views.

The supervised approaches, on the other hand,
are usually (1) trained in an end-to-end man-
ner, (2) following a dual encoder architecture and
(3) finetuned from a model pretrained on SNLI
(Stanford Natural Language Inference) (Bowman
et al., 2015) and Multi-Genre NLI (Williams et al.,
2018) datasets. NLI is the task of determining
whether a hypothesis is true (entailment), false
(contradiction), or undetermined (neutral) given
a premise”. The recent representative methods in-
clude InferSent (Conneau et al., 2017), USE (Uni-
versal Sentence Encoder) variants (Cer et al., 2018;
Chidambaram et al., 2019), SBERT (Sentence-
BERT) (Reimers and Gurevych, 2019) and LaBSE
(Language-agnostic BERT Sentence Embedding)
(Feng et al., 2020). Built upon pretrained models,
they can effectively learn good embeddings from
the labeled sentence pairs. However, this approach
is not feasible in scenarios where the quantity of
annotations is limited.

Rather than purely labeled or unlabeled, in many
real scenarios, the dataset turns out to be positive-
unlabeled (PU), where a small portion of sentence
pairs are labeled as positive samples and the rest
are unlabeled. To address this type of problem, the
gap between supervised and unsupervised methods

http://nlpprogress.com
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Figure 1: Problem setting and notations.

has to be filled. Levi experimented with incorpo-
rating an unsupervised regularization criteria in the
supervised loss. Although (Levi, 2018) reported
better generalization capability, all of the samples
still have to be labeled. Jiang et al. made an early
attempt to apply PU learning — particularly for ma-
trix factorization (Yu et al., 2017) — to obtain word
embeddings for low-resource languages.

Existing PU learning methods can be divided
into three categories based on how unlabeled data
is handled. The first category, with methods like
(Li and Liu, 2003; Yang et al., 2017), tries to assign
labels to unlabeled data in a heuristic-driven and
iterative manner which makes the training scattered
in steps/phases and hard to implement in practice.
The second includes methods like (Liu et al., 2003;
Lee and Liu, 2003) that treat unlabeled data as
negative with lower confidence. This can be more
computationally expensive to tune. The third cate-
gory, with methods such as uPU (Du Plessis et al.,
2014), nnPU (Kiryo et al., 2017), PUbN (Hsieh
et al., 2019) and Self-PU (Chen et al., 2020), re-
gards each unlabeled sample as a weighted mixture
of being positive and negative. This third category
optimizes a so called PU loss, and has recently be-
come dominant due to its wide applicability and
end-to-end nature. However, a major limitation is
that these algorithms are only applicable to binary
classification problems. In this work, we show how
to adapt PU learning to effectively learn sentence
embeddings from multi-class PU datasets.
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Figure 2: The dual encoder model architecture.

3 The Proposed Method

We propose a generic and end-to-end approach
to obtain sentence embeddings in a setup that is
a generalized natural language inference (GNLI)
task. This approach can have (1) any number
of classes and (2) the majority of the sentence
pairs unlabeled. Let X be the set of sentence
pairs in the entire dataset; as illustrated in Fig-
ure 1, X = U2 XP) Uy X®W  where C(> 2)
is the total number of entailment classes, X (P)(¢)
denotes the NIEC) sentence pairs labeled as the c-th
class, and X" represents the N,, unlabeled pairs.
For the N, = 3¢ | N{9) labeled pairs, we use
Y € RMXC to denote their mutually exclusive
and one-hot encoded labels, hence the binary label
for the c-th entailment class should have the form
y(c) e RM ) . On the individual sample level, we
use xgp)(c) (C) , and X( % to denote the i-th sen-
tence pair that is labeled as class c, the binary label
towards the c-th class for the ¢-th pair, and the ¢-th
unlabeled sample respectively.

3.1 Dual encoder model architecture

The model architecture of PAUSE follows a dual
encoder schema (Figure 2) that is widely adopted
in supervised sentence embedding training. Each
individual sample x; contains a pair of hypothesis
and premise sentences (x;, z), each of which is fed
into a pretrained encoder (e.g. BERT). As shown
in Figure 2, the two encoders are identical during

the training by sharing their weights. We add a
pooling operation to the output of both encoders to
obtain the fixed sized sentence embeddings g(x;)
and g(x), and following the empirical suggestion
of (Reimers and Gurevych, 2019), we apply the
MEAN-strategy (i.e. calculating the average of the
encoder output vectors). Once the sentence embed-
dings are generated, three matching methods are ap-
plied to extract relations between g(x;) and g(x}):
(1) concatenation of the two vectors, (2) absolute
element-wise difference |g(x;) — g(z})|, and (3)
element-wise product g(z;) * g(x7}). The results of
the three matching methods are then concatenated
into a vector, which captures information from both
the premise and the hypothesis. This vector is fed
into a 128-way fully-connected (FC) layer with
ELU (Exponential Linear Unit) activation (Clevert
et al., 2016), the output of which is transformed by
a C-way linear FC layer, obtaining the final output

F(xi) = [f(xi)1, f(xi)2,- -, f(xi)c]-

3.2 Supervised loss

For multi-class and mono-label problems, we cal-
culate cross entropy (CE) loss using the labeled

samples:
Z]C’:]- ef(xi)j )

ey
For multi-class multi-label problems, the super-
vised loss can be binary CE:

Np
722‘ )‘1°g<1+ S >

i=1 c=1
2
When there is absolutely no negative label for bi-
nary classification problems, the supervised loss
can safely be ignored.

Ny ©
-1 < (©

i=1 c=1

3.3 Positive unlabeled loss

To leverage unlabeled data in obtaining better sen-
tence embeddings, we turn to state-of-the-art PU
learning methods, among which we largely follow
(Du Plessis et al., 2014, 2015; Kiryo et al., 2017)
due to their effectiveness and simplicity. Recently,
Chen et al. proposed an updated version which
achieved marginal improvement but with the cost
of greatly increased training complexity.

To facilitate computing PU loss, we address
each class separately as a binary classification

problem, therefore y(c) € {£1}. For each class

(2
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C, we define p(x,y(©) as the joint density of
(X.y@). 5y (x) = plaely® = +1) as the pos-
itive marginal, pr(l)(x) = p(xjyl® = —1) as
the negative marginal, p(®(x) as the unlabeled
marginal, 7TI(,C) = p(y'® = +1) as the positive
prior, and 7\ =1 — w]gc) as the negative prior.
Assuming that we have all samples labeled for

the c-th class, we can easily estimate the error risk

R(f)cas
R(f)e =B y@)mpiy@n [L(f X)es v D], (3)

where function f is approximated by the model
depicted in Figure 2, and ¢ : R x {£1} — R is
the loss function, such that the value ¢(a, b) means
the loss incurred by predicting an output a when
the ground truth is b. The feasible £ functions can
be referred to in (Kiryo et al., 2017). Noticing
that R(f). can be equivalently calculated by sum-
ming the error from positive and negative samples
(denoted as R (f)c and R (f)c respectively):

R(f)e = mORE(Fe + Ry (f)e

- 7TI()C)H.F:X,Vpr()@ (%) [£+] “4)
() -
R 0 ),

where £~ = 0(f(x)., —1) and T = £(f(x), +1).
_ C) (C)( ) (c), ()

Since p(9) (x) + 7 'pn (X), we have:
EXNP(C)(X) (7] = WI(’C)EXNP ) (x) (]

© )
+ T Ex pl(lf‘)( )[E ]

For the sake of simplicity, we denote the terms
Eopto) () [( ] and Exwéc) ) [(7]as Ry (f). and
R, (f)c respectively. As a result, (5) becomes

Ry (Ne=71IR (e + 7Ry (fle: ()

By solving (4) and (6), we can eliminate the term

Ry (f)cin (4):

R(f)e = mORE(f)e

(7N
+ Ru_ (f)c -

Ry (£e]

where the two terms are called positive risk and
negative risk respectively. Kiryo et al. argue that
when the value of the negative risk becomes less
than zero, it often indicates overfitting. In that
circumstance, we empirically choose to drop the

positive risk and optimize reversely in respect to
the negative risk term. Hence, in implementation,
the error risk for the c-th class has the form of

R(f)e = 1Ry (e — 7Ry (£)e > 0}
x TORE(f)e
+max{Ry (f)e — 1Ry (e,

TR (f)e — Ry (F)e-

(®)

For ¢, we choose to use sigmoid loss, i.e. {(a,b)
= (1+ ¢®)~1, and we can conveniently calculate
R(f). by plugging in the flowing equations:

"= 1 2 (14
P i=1
B 1 Ny PO\ T (9)
Rp(f)c_]v(c)z<l+ g L)
P 1=1

The overall PU loss Lpy can be constructed using
(8) and (9):

C

Lpy = 1 ZR(f)c

c (10)

3.4 Annealed joint optimization

During training, the model is optimized in an end-
to-end manner on mini-batches. Every mini-batch
is sampled from all subsets of the dataset (cf. Fig-
ure 1) according to the relative subset sizes, so
that the mini-batches reflect the composition of
the entire dataset. Because the initial estimations
of positive/negative risks in (7) tend to be inaccu-
rate, simply optimizing both losses (i.e. Lcg and
Lpy) jointly with the same weights often leads to
sub-optimal and unstable solution. This problem
is particularly prominent when the dataset is large
or the model is highly flexible. As a result, we
propose to apply an annealing strategy to the PU
loss component when constructing the overall loss:

[}
L= Lo+ (t> Lo, (D)
T
where 1" denotes the total number of training steps
and 1 < ¢t < T is the elapsed number of steps.
The hyper-parameter o > 2 controls the annealing
speed. We empirically discover that o = 3 usually
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offers optimal and stable performance. For binary
classification problems (C' = 1), the overall loss
will fall back to Lpy when there is no negative
labels available.

4 Experiments

Inspired by previous work (Hill et al., 2016;
Reimers and Gurevych, 2019; Zhang et al., 2020),
we evaluate PAUSE on STS (Semantic Textual Sim-
ilarity) and SentEval® in both supervised and unsu-
pervised settings. We also show the robustness of
PAUSE in a real industrial use case. In our exper-
iments, we test two versions of PAUSE: PAUSE-
base (110M parameters) and PAUSE-small (4.4M
parameters), which use uncased BERT-base (De-
vlin et al., 2019) and BERT-small (Turc et al., 2019)
4 as their encoder model, respectively. PAUSE is
trained by minimizing (11) with o = 3 (searched
3, 4, and 5) using the Adam optimizer with learn-
ing rate 7.5e-5 (searched le-3, le-4, 7.5e-5, Se-
5, 2.5e-5, 1e-5 and le-6). The experiments are
carried out on a machine (managed virtual ma-
chine instance’) with four virtual CPUs (Intel Xeon
2.30GHz), 15GB RAM, and four GPUs (NVIDIA
Tesla P100). Since PAUSE requires a large batch
size to ensure enough labeled samples from each
class in every mini-batch, we use a batch size of
128 and 1,024 for PAUSE-base and PAUSE-small
respectively, fully utilizing the GPU capacity.

4.1 Unsupervised STS

We first evaluate PAUSE on STS tasks without
using any STS data for training. Specifically, we
choose the datasets of STS 2012-2016 (Agirre et al.,
2012, 2013, 2014, 2015, 2016), STS benchmark
(STSb) (Cer et al., 2017), and SICK-Relatedness
(SICK-R) (Marelli et al., 2014). These datasets
have labels between 0 and 5 indicating the semantic
relatedness of sentence pairs. We compare PAUSE
with two groups of baselines. The first group is
the unsupervised methods, which includes Fast-
Sent (Hill et al., 2016), IS-BERT-NLI (Zhang et al.,
2020), the average of GloVe embeddings, the aver-
age of the last layer representations of BERT, and
the [CLS] embedding of BERT. The second group
consists of supervised approaches: InferSent-Glove

*https://github.com/facebookresearch/
SentEval

“https://github.com/google-research/
bert

Shttps://cloud.google.com/ai-platform/
docs/technical-overview#notebooks

(Conneau et al., 2017), USE (Cer et al., 2018),
SBERT, and SRoBERTa (Reimers and Gurevych,
2019). All models are trained on the combina-
tion of the SNLI (Bowman et al., 2015) and Multi-
Genre NLI (Williams et al., 2018) datasets, which
contains one million sentence pairs annotated with
three labels (C' = 3): entailment, contradiction
and neutral. PAUSE is trained for 2 epochs with a
linear learning rate warm-up over the first 10% of
the training steps.

As suggested in (Reimers et al., 2016; Reimers
and Gurevych, 2019; Zhang et al., 2020), we calcu-
late the Spearman’s rank correlation between the
cosine-similarity of the sentence embeddings and
the labels, which is presented in Table 1. The re-
sults show that most of the supervised methods
achieve superior performances compared to un-
supervised ones, which has been previously evi-
denced by (Hill et al., 2016; Cer et al., 2018; Zhang
et al., 2020). PAUSE using the BERT-base encoder
(PAUSE-NLI-base) performs much better than the
versions using the BERT-small encoder (PAUSE-
NLI-small). PAUSE-NLI-base takes on average
220 minutes to complete one epoch of training,
while PAUSE-NLI-small takes merely 9 minutes.
The post-fix (i.e. 1%, 5%, ..., 100%) in the names
of the PAUSE variants indicate the percentage of
NLI labels that are used during training. Although
the performance monotonically drops when using
less labels, this drop remains marginal even when
only 50% of the labels are used. PAUSE-NLI-base-
100% obtained slightly better results than SBERT-
NLI-base. PAUSE-NLI-base-100% and SBERT-
NLI-base are trained on the same amount of labeled
samples, yet the former achieves slightly better re-
sults, probably due to differences in (1) the BERT-
base versions® and/or (2) the layers following the
encoding step. Observing the average results of
each PAUSE-NLI-base variant, the model trained
on merely 10% of the labels results in a perfor-
mance about 2% lower than the one relying on all
labels. This demonstrates that PAUSE is a label-
efficient sentence embedding approach applicable
to situations where only a small number of samples
are labeled.

In an attempt to train the SBERT-NLI-base
model using only 1%, 5%, 10%, and 30% of the
labels for 2 epochs, we found that all trials suffered
from overfitting in varying degrees. While this

®PAUSE uses https://tfhub.dev/tensorflow/
bert_en_uncased_L-12_H-768_A-12/3
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Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R | Avg.

3 FastSent” - - 63.00 - - - 61.00 -
Z| Avg. GloVe embeddings’ | 55.14  70.66 59.73 6825 63.66 5802 53.76 | 61.32
3| Avg. BERT embeddings’ | 38.78 57.98 5798 63.15 61.06 4635 5840 |54.81
2 BERT [CLS]-vector! 20.16 30.01 20.09 36.88 38.08 1650 42.63 |[29.19
5| IS-BERT-NLI* 56.77 6924 6121 7523 70.16 6921 6425 |66.58
3| InferSent-Glove' 5286  66.75 6215 7277 6687 68.03 65.65 |65.01
-Z| USE! 6449 6780 64.61 7683 73.18 7492 76.69 |71.22
S| SBERT-NLI-basef 70.97 76.53 7319 79.09 7430 77.03 7291 |74.89
2| SROBERTa-NLI-basef 71.54 7249 7080 78.74 73.69 7777 7446 | 74.21
PAUSE-NLI-small-100% | 67.40 68.47 6234 67.73 69.08 7124 71.65 |68.27
PAUSE-NLI-small-70% | 65.58 67.60 61.05 6725 67.85 7042 70.85 |67.23
PAUSE-NLI-small-50% | 65.60 66.95 61.52 66.87 6648 6935 70.83 |66.80
PAUSE-NLI-small-30% | 64.50 6591 60.42 6728 6642 69.33 70.00 |66.27
«| PAUSE-NLI-small-10% | 60.85 6547 60.90 66.56 6599 68.12 6724 |65.02
§| PAUSE-NLI-small-5% 5921 6532 59.56 66.14 6593 67.58 65.81 |64.22
S| PAUSE-NLI-small-1% 57.06 64.00 5947 6428 6325 63.14 61.09 |61.76
2 PAUSE-NLI-base-100% | 73.68 77.08 7410 7858 76.58 80.34 74.69 |76.44
;ﬂ PAUSE-NLI-base-70% 73.96 7626 73.13 7757 7574 7898 7453 |75.74
AY| PAUSE-NLI-base-50% 7372 7589 7280 7729 7540 78.62 74.55 |75.47
PAUSE-NLI-base-30% 73.54 7515 7244 77.09 7443 7839 73.55 | 74.94
PAUSE-NLI-base-10% 7151 7446 7323 77.16 7467 7822 7349 | 74.68
PAUSE-NLI-base-5% 67.59 7376 68.68 7324 7347 7577 7228 |72.11
PAUSE-NLI-base-1% 62.44 7201 6388 6939 6632 7022 69.64 |67.70

“ The results are extracted from (Hill et al., 2016).
T The results are extracted from (Reimers and Gurevych, 2019).
¥ The results are extracted from (Zhang et al., 2020).

Table 1: Unsupervised evaluation results: Spearman’s rank correlation p between the cosine similarity of sentence
embeddings and the labels for STS tasks. p x 100 is reported here. The PAUSE results are averaged from three
runs with random seeds. Bold font indicates the top-3 results on each dataset.

problem could be addressed by hyper-parameter
optimization and regularization, such alterations
would compromise the fairness of the comparison.

4.2 Supervised STS benchmark

Similar to (Reimers and Gurevych, 2019; Zhang
et al., 2020), we use the STS benchmark (STSb)
dataset (Cer et al., 2017) to evaluate the models’
performance on the supervised STS task. STSb
includes 8,628 sentence pairs from the categories
of captions, news, and forums. The dataset is split
into train (5,749), dev (1,500), and test (1,379) sub-
sets. We use the training set to finetune PAUSE
(pretrained using partially labeled NLI) using a re-
gression objective function. On the test set, we
compute the cosine similarity between each pair
of sentences. Since PAUSE obtains better results
using BERT-base compared to BERT-small (cf. Ta-
ble 1), we only report the results for PAUSE-NLI-
STSb-base models, which are trained with five ran-
dom seeds and four epochs.

In Table 2, we compare PAUSE to three cate-
gories of baselines: (1) not trained on STSb at all,
(2) only trained on STSb, and (3) first trained on
the fully labeled NLI, then finetuned on STSb. It
is clear that finetuning on STSb greatly improves
the model performance and pretraining on NLI fur-
ther uplifts the performance slightly. Using merely
10% to 70% of NLI labels, PAUSE manages to
achieve results comparable to the baselines that use
all NLI labels. Another interesting finding is that
when pretraining PAUSE on less than 5% of the la-
bels, the performance becomes inferior to directly
finetuning on STSb. This suggests that pretraining
PAUSE with too few labeled samples may result in
embeddings that are hard to finetune in downstream
regression tasks. In addition, we observe a clear
trend in Table 2: the standard deviation increases
when less labels are used, which is also observed
in the unsupervised experiments.
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Model | px 100

Not trained on STSb

Avg. BERT embeddings 46.35
SBERT-NLI-base 77.03
SRoBERTa-NLI-base 71.77

Only trained on STSb

IS-BERT-STSb (ft) 74.25 £ 0.94
IS-BERT-STSb (ssl+ft) 84.84 + 0.43
SBERT-STSb-base 84.67 + 0.19
SRoBERTa-STSb-base 84.92 + 0.34
Trained on NLI, then on STSb
SBERT-NLI-STSb-base 85.35 £ 0.17
SRoBERTa-NLI-STSb-base 84.79 £ 0.38
PAUSE-NLI-STSb-base-100% | 84.83 + 0.30
Trained on partially labeled NLI, then on STSb
PAUSE-NLI-STSb-base-70% | 84.02 £+ 0.29
PAUSE-NLI-STSb-base-50% | 83.86 + 0.35
PAUSE-NLI-STSb-base-30% | 83.53 £ 0.37
PAUSE-NLI-STSb-base-10% | 83.39 + 0.44
PAUSE-NLI-STSb-base-5% 81.77 £ 0.41
PAUSE-NLI-STSb-base-1% 73.04 £ 0.58

Table 2: The supervised evaluation results (Spearman’s
rank correlation p) on the STS benchmark (STSb)
test set. The results of the non-PAUSE baselines
are extracted from (Reimers and Gurevych, 2019) and
(Zhang et al., 2020).

4.3 SentEval: domain specific tasks

In order to give an impression of the quality of our
sentence embeddings for various domain specific
tasks, we choose to evaluate PAUSE on seven Sen-
tEval tasks (Conneau and Kiela, 2018): (1) TREC
- fine grained question type classification (Li and
Roth, 2002), (2) CR - sentiment prediction of cus-
tomer product reviews (Hu and Liu, 2004), (3)
MRPC - Microsoft Research Paraphrase Corpus
from parallel news sources (Dolan et al., 2004), (4)
SUBJ - Subjectivity prediction of sentences from
movie reviews and plot summaries (Pang and Lee,
2004), (5) MR - sentiment prediction for movie
reviews (Pang and Lee, 2005), (6) MPQA - opin-
ion polarity classification (Wiebe et al., 2005) and
(7) SST - binary sentiment analysis (Socher et al.,
2013). Unlike (Devlin et al., 2019) and (Zhang
et al., 2020) that finetune the encoder on these
tasks, we directly use the sentence embeddings
from PAUSE-NLI-base models (cf. Section 4.1) as
features for a logistic regression classifier that is
trained in a 10-fold cross-validation setup, where
the prediction accuracy is computed for the test

fold.

The results can be found in Table 3, where
the top-3 results on each task are presented in
bold face. Largely speaking, the sentence embed-
dings from SBERT and PAUSE successfully cap-
ture domain specific information with the exception
of the TREC task where pretraining on question-
answering data (e.g. USE) seems to be beneficial.
In Table 1, we have observed poor results from Avg.
BERT embeddings, BERT [CLS]-vector, PAUSE-
NLI-base-5% and PAUSE-NLI-base-1%. However,
on the selected SentEval tasks, they all achieve de-
cent results and the performance of PAUSE does
not even degrade as we use significantly less labels.
This inconsistency can be explained by how we
measure the model performance: on STS datasets
we calculated the cosine-similarity between sen-
tence embeddings, which treats all dimensions in-
differently, while SentEval fits a logistic regression
classifier to the embeddings allowing different di-
mensions to have different impact on the classifier’s
output. As a result, cosine-similarity can only be
relied on when the sentence embeddings are fine-
tuned on related datasets with a large number of la-
beled samples. When the sentence embeddings are
directly used as input features for training discrimi-
native models on downstream tasks, finetuning on
NLI only gives approximately 1~2% performance
uplift. Moreover, PAUSE appears to be unaffected
by a drastic decrease in labeled samples, which is
consistent with the results of IS-BERT-task.

We also notice that unsupervised PAUSE-NLI-
base-100% performs better than SBERT-NLI-base
in Table 1, yet this is not the case for supervised
fine-tuning (Table 2 and 3). This might be a con-
sequence of several differences: (1) PAUSE uses a
newer version of the pretrained BERT-base model®
compared to (Reimers and Gurevych, 2019), (2)
PAUSE has an extra term g(z;) * g(z) when ex-
tracting relations between two sentences, as seen
in Figure 2, and (3) PAUSE treats the NLI sen-
tence pairs with ambiguous/conflicting labels as
unlabeled samples that are utilized by the PU loss
term during model optimization.

4.4 Use case: finding similar companies

In this section, we will discuss the potential of
PAUSE on a real industrial use case from EQT
Group’. The EQT investment professionals use

"EQT Group is a global investment organization (https :
//eqgtgroup.com).
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Model MR CR SUBJ MPQA SST TREC MRPC | Avg.
Unigram-TFIDF" 737 792 903 824 - 85.0 73.6 -

SDAE" 746 780 908 86.9 - 78.4 73.7 -

ParagraphVec DBOW ™ 60.2 669  76.3 70.7 - 59.4 72.9 -

FastSent” 70.8 784  88.7 80.6 - 76.8 72.2 -

SkipThought” 76.5  80.1 93.6 87.1 82.0 92.2 73.0 | 83.50
Avg. GloVe embeddings’| 77.25 7830 91.17 87.85 80.18  83.0 72.87 | 81.52
Avg. BERT embeddings'| 78.66 86.25 9437 88.66 8440 92.8 69.54 | 84.94
BERT [CLS]-vector! 78.68 84.85 9421 8823 84.13 914 71.13 | 84.66
IS-BERT-task? 81.09 87.18 9496 88.75 8596 88.64 7424 | 8591
InferSent-Glove' 81.57 86.54 9250 90.38 84.18 88.2 75.77 | 85.59
USEf 80.09 85.19 9398 86.70 86.38  93.2 70.14 | 85.10
SBERT-NLI-base' 83.64 8943 9439 89.86 88.96 89.6 76.00 | 87.41
PAUSE-NLI-base-100% | 81.40 87.87 93.64 88.85 88.41 844 75.83 | 85.77
PAUSE-NLI-base-70% | 80.04 87.74 92.65 8942 87.70 84.2 75.71 | 85.35
PAUSE-NLI-base-50% | 80.27 87.52 93.09 89.14 87.70 81.6 74.61 | 84.85
PAUSE-NLI-base-30% | 80.42 87.31 9299 89.04 8726 84.8 74.09 | 85.13
PAUSE-NLI-base-10% | 79.93 86.49 9343 88.60 86.44 86.2 73.68 | 84.97
PAUSE-NLI-base-5% 80.06 87.05 9337 88.86 8561 86.0 75.01 | 85.14
PAUSE-NLI-base-1% 79.99 85.83 9333 88.16 86.66 86.4 77.10 | 85.35

T The results are extracted from (Hill et al., 2016).
T The results are extracted from (Reimers and Gurevych, 2019).

¥ The results are extracted from (Zhang et al., 2020); IS-BERT-task is fintuned on each of the task-specific dataset (without label) to produce sentence

embeddings, which are then used for training downstream classifiers.

Table 3: Accuracy of test fold (10 fold cross validation) on domain specific SentEval tasks. Sentence embeddings
from different models are used as features to train a logistic regression classifier.

Motherbrain® to accomplish tasks such as deal
sourcing, market analysis and metrics benchmark-
ing to name a few. One concrete use case is com-
petitor mapping, where the Motherbrain users track
competitors for companies they are studying (a.k.a.
anchor companies). Competitors are defined as the
companies running a business similar to that of the
anchor company. In our database, there are more
than eight million companies with textual descrip-
tions and only 12,326 of these have annotations in-
dicating their relatedness to other companies, form-
ing 166,832 company pairs with noisy binary la-
bels indicating whether they are similar (55,139
pairs) or dissimilar (111,693 pairs). Table 4 demon-
strates our similar company (SC) dataset containing
these annotated company pairs, which is divided
into train (156,925), dev (4,922) and test (4,985)
sets. A BERT-base encoder is finetuned using the
PAUSE approach on the training set. The finetuned
encoder model is served via Tensorflow Servingg,

$Motherbrain is EQT’s proprietary investment plat-
form driven by diversified big data and cutting-edge al-
gorithms. (https://eqgtgroup.com/motherbrain
https://egtventures.com/motherbrain)

*https://github.com/tensorflow/serving

which is called by an Apache Beam'? job encoding
the incoming company descriptions into company
embeddings in a streaming fashion. The company
embeddings are then indexed by Elasticsearch'! to
support fast similarity search initiated by platform
users.

To benchmark PAUSE in this setting, we trained
models using different percentages of labeled sam-
ples (100%, 50%, 10%, 5%). Table 5 shows that
it is sufficient to have 10% of the samples labeled
and still reach high accuracy, precision, and re-
call. When all samples are labeled, the accuracy
is only increased by around 3%. In practice, these
results encourage us to extend our dataset without
the burden of manually labeling all samples. We
also speculate that increasing the size of the dataset
while maintaining the balance between labeled and
unlabeled samples could improve performance fur-
ther. Essentially, this implies that we can achieve
results close to that of a fully labeled dataset with
a fraction of the manual annotation work.

Yhttps://beam.apache.org
Uhttps://www.elastic.co
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ID | Anchor Company

Candidate Company label

1 | Owner and operator of data centers in UK ... distribute
data in data centers and the global digital economy.

Independent co-location / data center provider in | 1
Slovenia.

2 | Provider of human-computer interaction technology
designed to ... documentation is common to both CX
and ES.

Developer of a mobile stock-trading application de- | 0
signed to make ... enabling traders to discover and
invest in markets without a hassle.

3 | Provide a reliable and fast veterinary diagnostic ser-
vice ... We intend to be your partner in the daily medi-
cal diagnosis!

Provider of laboratory services. We care about ... Bio- | 1
chemical and haematological examinations are avail-
able 24 hours a day.

4 | Manufacturer of smart electric scooters designed to
offer ... noise-free scooters that run on electricity.

A peer-to-peer rental marketplace which allows people | 0
to rent spare items ... can be borrowed within minutes.

166,832 rows (company pairs) in total

Table 4: The first four samples (shortened and anonymized) of the similar company (SC) dataset used to train
company embeddings for identifying similar companies. Label=0 and 1 represent dissimilarity and similarity,

respectively.
Model Acc. | Precision | Recall
PAUSE-SC-100% | 76.13 717.55 61.87
PAUSE-SC-50% | 75.27 74.30 64.41
PAUSE-SC-10% | 73.35 73.29 60.58
PAUSE-SC-5% 64.40 63.80 54.07

Table 5: The performance of PAUSE (using the BERT-
base encoder) trained on the similar company (SC)
dataset using different percentages of labeled samples.

5 Conclusions and Future Work

In this work, we attempt to bridge the gap between
supervised and unsupervised sentence embedding
techniques, proposing PAUSE — a generic and end-
to-end sentence embedding approach that exploits
the labels and explores the unlabeled sentence pairs
simultaneously. PAUSE trained on NLI datasets
achieves state-of-the-art results on unsupervised
STS tasks, and also performs well on many down-
stream domain-specific tasks. In all of our experi-
ments, we observe that PAUSE keeps performing
well with a reduced number of labeled samples,
as long as more than 5-10% of the dataset is la-
beled. This indicates that PAUSE is a label-efficient
sentence embedding approach that can be effec-
tively applied to datasets where only a small part
is labeled while the rest remains unlabeled. We
also demonstrate that PAUSE helps lower the label-
ing requirement for an industrial use case aimed
at encoding company descriptions. In that sense,
PAUSE pushes the application boundary of sen-
tence embeddings to include many more real-world
scenarios where labeled samples are scarce. The
possible extensions of this work include (1) aug-
menting the the labels with dropout, (2) experi-
menting with contrastive supervised loss, and (3)
exploring how PAUSE can be extended with con-

textual sentence embeddings.
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