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Abstract

While interest in models that generalize at test
time to new compositions has risen in recent
years, benchmarks in the visually-grounded
domain have thus far been restricted to syn-
thetic images. In this work, we propose
COVR, a new test-bed for visually-grounded
compositional generalization with real images.
To create COVR, we use real images anno-
tated with scene graphs, and propose an al-
most fully automatic procedure for generating
question-answer pairs along with a set of con-
text images. COVR focuses on questions that
require complex reasoning, including higher-
order operations such as quantification and ag-
gregation. Due to the automatic generation
process, COVR facilitates the creation of com-
positional splits, where models at test time
need to generalize to new concepts and compo-
sitions in a zero- or few-shot setting. We con-
struct compositional splits using COVR and
demonstrate a myriad of cases where state-of-
the-art pre-trained language-and-vision mod-
els struggle to compositionally generalize.

1 Introduction

Models for natural language understanding (NLU)
have exhibited remarkable generalization abilities
on many tasks, when the training and test data are
sampled from the same distribution. But such mod-
els still lag far behind humans when asked to gener-
alize to an unseen combination of known concepts,
and struggle to learn concepts for which only few
examples are provided (Finegan-Dollak et al., 2018;
Bahdanau et al., 2019a). Humans, conversely, do
this effortlessly: for example, once humans learn
the meaning of the quantifier “all”, they can eas-
ily understand the utterance “all cheetahs have
spots” if they know what “cheetahs” and “spots”
mean (Chomsky, 1957; Montague, 1970; Fodor
and Pylyshyn, 1988). This ability, termed composi-
tional generalization, is crucial for building models
that generalize to new settings (Lake et al., 2018).

Q: All skateboards are blue A: TRUE

Q: There is a man reading a book and wearing eyeglasses A: FALSE

Q: All women are holding a purse and are sitting on a bench A: FALSE

Train
Test

★

Figure 1: Compositional generalization in the VQA
setup. COVR enables the creation of compositional
splits such as the one depicted here, where quantifica-
tion appears with conjunction only in the test set.

In recent years, multiple benchmarks have been
created, illustrating that current NLU models fail
to generalize to new compositions. However, these
benchmarks focused on semantic parsing, the task
of mapping natural language utterances to logical
forms (Lake and Baroni, 2018; Kim and Linzen,
2020; Keysers et al., 2020). Visual question an-
swering (VQA) is arguably a harder task from the
perspective of compositional generalization, since
the model needs to learn to compositionally “ex-
ecute” the meaning of the question over images,
without being exposed to an explicit meaning rep-
resentation. For instance, in Fig. 1, a model should
learn the meaning of the quantifier “all’ from the
first example, and the meaning of a conjunction of
clauses from the second example, and then execute
both operations compositionally at test time.

Existing VQA datasets for testing compositional
generalization typically use synthetic images and
contain a limited number of visual concepts and
reasoning operators (Bahdanau et al., 2019a,b; Ruis
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Figure 2: An overview of the dataset creation process.

et al., 2020), or focus on generalization to unseen
lexical constructions rather than unseen reason-
ing skills (Hudson and Manning, 2019; Agrawal
et al., 2017). Other datasets such as GQA (Hud-
son and Manning, 2018) use real images with syn-
thetic questions, but lack logical operators available
in natural language datasets, such as quantifiers
and aggregations, and contain “reasoning short-
cuts”, due to a lack of challenging image distractors
(Chen et al., 2020b).

In this work, we present COVR (COmpositional
Visual Reasoning), a test-bed for visually-
grounded compositional generalization with real
images. We propose a process for automatically
generating complex questions over sets of images
(Fig. 2), where each example is annotated with the
program corresponding to its meaning. We take
images annotated with scene graphs (Fig. 2a) from
GQA, Visual Genome (Krishna et al., 2016), and
imSitu (Yatskar et al., 2016), automatically collect
both similar and distracting images for each exam-
ple, and filter incorrect examples due to errors in
the source scene graphs (Fig. 2b,c). We then use a
template-based grammar to generate a rich set of
complex questions that contain multi-step reason-
ing and higher-order operations on multiple images
(2d). To further enhance the quality of the dataset,
we manually validate the correctness of develop-
ment and test examples through crowdsourcing and
paraphrase the automatically generated questions
into fluent English for a subset of the automatically
generated dataset (2e). COVR contains 262k ex-
amples based on ∼89k images, with 13.9k of the
questions manually validated and paraphrased.

Our automatic generation process allows for

the easy construction of compositional data splits,
where models must generalize to new compositions,
and is easily extendable with new templates and
splits. We explore both the zero-shot setting, where
models must generalize to new compositions, and
the few-shot setting, where models need to learn
new constructs from a small number of examples.

We evaluate state-of-the-art pre-trained models
on a wide range of compositional splits, and ex-
pose generalization weaknesses in 10 out of the
21 setups, where the generalization score we de-
fine is low (0%-70%). Moreover, results show it
is not trivial to characterize the conditions under
which generalization occurs, and we conjecture
generalization is harder when it requires that the
model learn to combine complex/large structures.
We encourage the community to use COVR to fur-
ther explore compositional splits and investigate
visually-grounded compositional generalization.1

2 Related Work

Prior work on grounded compositional generaliza-
tion has typically tested generalization in terms of
lexical and syntactic constructions, while we fo-
cus on compositions in the space of meaning by
testing unseen program compositions. For exam-
ple, the “structure split” in Hudson and Manning
(2019) splits examples based on their surface form.
As a result, identical programs are found in both
the training and the test splits. The “content split”
from the same work tests generalization to unseen
lexical concepts. This is a different kind of skill
than the one we address, where we assume the

1The dataset and our codebase can be found at https:
//github.com/benbogin/covr-dataset.

https://github.com/benbogin/covr-dataset
https://github.com/benbogin/covr-dataset
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model sees all required concepts during training.
C-VQA (Agrawal et al., 2017) splits are based only
on question-answer pairs and not on the question
meaning. CLEVR-CoGenT (Johnson et al., 2017)
tests for unseen combinations of attributes, thus fo-
cuses more on visual generalization. Other datasets
that do split samples based on their programs (Bah-
danau et al., 2019a,b; Ruis et al., 2020) are using
synthetic images with a small set of entities and
relations (≤ 20).

GQA (Hudson and Manning, 2018) uses real
images with synthetic questions, which in theory
could be used to create compositional splits. How-
ever, our work uses multiple images which allows
testing reasoning operations over sets and not only
over entities, such as counting, quantification, com-
parisons, etc. Thus, the space of possible compo-
sitional splits in COVR is much larger than GQA.
If we anonymize lexical items in GQA programs
(i.e., replace them with a single placeholder), the
number of distinct programs (79) is too low to cre-
ate a rich set of splits where all operators appear
in the training set. In contrast, COVR contains
640 anonymized programs, allowing us to create a
large number of splits. Moreover, our process for
finding high-quality distracting images mitigates is-
sues with reasoning shortcuts, where models solve
questions due to a lack of challenging image dis-
tractors (Chen et al., 2020b). Finally, other VQA
datasets with real images and questions that were
generated by humans (Suhr et al., 2019; Antol et al.,
2015) do not include a meaning representation for
questions and thus cannot be easily used to create
compositional splits.

3 Dataset Creation

The goal of COVR is to facilitate the creation of
VQA compositional splits, with questions that re-
quire a high degree of compositionality on both the
textual and visual input.

Task definition Examples in COVR are (q, I, a)
triples, where q is a complex question, I is a set of
images, and a the expected answer. Unlike most
visually-grounded datasets , which contain 1-2 im-
ages, each example in COVR contains up to 5
images. This allows us to (a) generate questions
with higher-order operators, and (b) detect good dis-
tracting images. Also, questions are annotated with
programs corresponding to their meaning, which
enables creating compositional splits.

object object

rel-
mod object

“man”

“standing”

“uncorking” “wine bottle”

“with” “corkscrew”

attribute

relation
ROOT

Figure 3: An example subgraph that shows all sup-
ported nodes, referring to “standing man uncorking a
wine bottle with a corkscrew”. The types of the nodes
are inside the circle, and their name above it.

High-level overview Fig. 2 provides an overview
of the data generation process. Given an image and
its annotated scene graph describing the image ob-
jects and their relations, we iterate through a set of
subgraphs. For example, in Fig. 2a the subgraph
corresponds to “a man is catching a frisbee and
wearing jeans”. Next, we sample images with re-
lated subgraphs: (a) images that contain the same
subgraph (Fig. 2b), and (b) images that contain a
similar subgraph, to act as distracting images (e.g.,
images with a man catching a ball or a woman
catching a frisbee, Fig. 2c). To ensure the qual-
ity of the distracting images, we propose models
for automatic filtering and validation (§3.2). Next
(Fig. 2d), we instantiate questions from a template-
based grammar by filling slots with values com-
puted from the selected subgraphs, and automat-
ically obtain a program for each question. Last,
we balance the answers and question types, and
use crowdsourcing to manually validate and pro-
vide fluent paraphrases for the evaluation set and a
subset of the training set (Fig. 2e).

3.1 Extracting Subgraphs

A scene graph describes objects in an image, their
attributes and relations. We use existing datasets
with annotated scene graphs, specifically imSitu
(Yatskar et al., 2016) and GQA (Hudson and Man-
ning, 2018), which contains a clean version of Vi-
sual Genome’s human-annotated scene graphs (Kr-
ishna et al., 2016). While Visual Genome’s scenes
have more detailed annotations, imSitu has a more
diverse set of relations, such as “person measuring
the length of the wall with a tape”, which also in-
troduces ternary relations (“uncorking”, in Fig. 3).

Given a scene graph, we extract all of its sub-
graphs using the rules described next. A sub-
graph is a directed graph with the following node
types: object, attribute, relation and
rel-mod (relation modifier), where every node
has a name which describes it (e.g. “wine”). Fig. 3
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Type Example

VERIFYATTR Is the sink that is below a towel white?
CHOOSEATTR Is the man that is wearing a jersey running or

looking up?
QUERYATTR What is the color of the cat that is on a black floor?
COMPARECOUNT There are more coffee tables that are in living room

than couches that are in living room
COUNT How many people are erasing a mark from a paper?
VERIFYCOUNT There is at most 1 cup that is behinda man that is

wearing a jacket
COUNTGROUPBY How many images contain exactly 2

men that are in water?
VERIFYCOUNT-
GROUPBY

There is at least 1 image that contain exactly 2
women that are carrying surfboard

VERIFYLOGIC Are there both people that are packing a tea
into a mason jar and people that are packing a
salt into a bag?

VERIFYQUANT No boys with large trees behind them are wearing
jeans

VERIFYQUANT-
ATTR

Do all dogs that are on a bed have the same color?

CHOOSEOBJECT The woman that is wearing dress is carrying
a bottle or a purse?

QUERYOBJECT What is the woman that is wearing glasses
holding?

VERIFYSAME-
ATTR

Does the pillow that is on a bed and the pillow
that is on a couch have the same color?

CHOOSEREL Is the sitting man holding a hat or wearing it?

Table 1: A list of all question templates with examples.
Template slots are underlined.

shows an example subgraph. A valid subgraph
has a root object node, and has the following
structure: Every object has an outgoing edge
to ≤ 2 relation nodes and ≤ 1 attribute
node. Every relation node has an outgoing
edge to exactly one object node and optionally
multiple rel-mod nodes. Every rel-mod node
has an outgoing edge to exactly one object node.
The depth of the subgraph is constrained such that
every path from the root to a leaf goes through at
most two relation nodes. For brevity, we refer
to subgraphs with a textual description (“standing
man uncorking a wine bottle with a corkscrew”).

3.2 Finding Related Images
Given a subgraph g, we pick candidate context im-
ages that will be part of the example images I . We
want to only pick related images, i.e., images that
share sub-structure with g. Images that contain g in
their scene graph will be used to generate counting
or quantification questions. Images with different
but similar subgraphs to g will be useful as image
distractors, which are important to avoid “reason-
ing shortcuts” (Cirik et al., 2018; Agrawal et al.,
2018; Chen et al., 2020a,b; Bitton et al., 2021; Ker-
vadec et al., 2021). For example, for the question in
Fig. 2e, it is not necessary to perform all reasoning
steps if there is only one man in all images in I.

To find images with similar subgraphs, we define
the edit distance between two graphs to be the min-

imum number of operations required to transform
one graph to another, where the only valid opera-
tion is to substitute a node with another node that
has the same type. A good distracting image will (a)
contain a subgraph at edit distance 1 or 2, and (b)
not contain the subgraph g itself. For the question
in Fig. 2e, a good distracting image will contain,
for example, “a man holding a frisbee wearing
shorts” or “a woman catching a frisbee wearing
jeans”. We extract related images by querying all
scene graphs that exhibit the mentioned require-
ments using a graph-based database.2

Filtering overlapping distractors A drawback of
the above method is that the edit distance between
two subgraphs could be 1, but the two subgraphs
might still semantically overlap. For example, a
subgraph “woman using phone” is not a good dis-
tractor for “woman holding phone” since “holding”
and “using” are not mutually exclusive. A similar
issue arises with objects and attributes (e.g. “man”
and “person”, “resting” and “sitting”).

We thus add a step when sampling distracting
images to filter such cases. We define m(x1, x2) to
be the probability that node x1 and x2 are mutually
exclusive. For example, for an object x, m(x, ·)
should return high probabilities for all objects ex-
cept x, its synonyms, hypernyms, and hyponyms.
When performing node substitutions (to compute
the edit distance) we only consider nodes x1, x2
such that m(x1, x2) > 0.5. To learn m(x, ·), we
fine-tune RoBERTa (Liu et al., 2019) separately on
nouns, attributes and relations, with a total of 6,366
manually-annotated word pairs, reaching accura-
cies of 94.4%, 95.7% and 82.5% respectively. See
App. A for details.
Incomplete scene graphs A good distracting im-
age should not contain the source subgraph g. How-
ever, because scene graphs are often incomplete,
naïve selection from scene graphs can yield a high
error rate. To mitigate this issue, we fine-tune
LXMERT (Tan and Bansal, 2019), a pre-trained
multi-modal classifier, to recognize if a given sub-
graph is in an image or not. We do not assume that
this classifier will be able to comprehend complex
subgraphs, and only use it to recognize simple sub-
graphs, that contain ≤ 2 object nodes, and up to
a single relation and attribute. We train
the model on binary-labeled image-subgraph pairs,
where we sample a simple subgraph gs and its im-
age I from the set of all subgraphs, and use I as a

2https://neo4j.com/

https://neo4j.com/
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Type Preconditions Example subgraph(s) Template Example output

VERIFY-
ATTR

(1) g’s root has attribute
(2) Distracting images have 2
different nodes, one of which
is the root’s attribute

white sink below towel Is the G-NOATTRIBUTE ,

ATTRIBUTE ?

Is the sink that is below a towel ,

white ?

CHOOSE-
OBJECT

(1) Distracting images have 2
different nodes, one of which
is the object

woman lighting a cigar on fire

using a candle

G-SUBJECT is REL

OBJ or DECOYOBJ ?

The woman that is lighting a cigar on fire

is lighting it using a candle or

a lighter ?

COMPARE-
COUNT

(no conditions) woman wearing dark blue jacket ,

woman wearing white jacket

There are COMPARATIVE

G than G2

There are less

women that are wearing a dark blue jacket

than women that are wearing a white jacket

Table 2: A subset of the question templates with their preconditions and examples for how questions are instanti-
ated. Template slots are shown with a background color. See text for further explanation.

positive example, and an image I ′ that contains a
subgraph g′s as a negative example, where I ′ is a
distracting image for I , according to the procedure
described above. For example, for the subgraph

“man wearing jeans” the model will be trained to
predict ‘True’ for an image that contains it, and
‘False’ for an image with “man wearing shorts”,
but not “man with jeans”.

After training, we filter out candidate distract-
ing images for the subgraph g if the model outputs
a score above a certain threshold τ for all of the
simple graphs in g. We adjust τ such that the proba-
bility of correctly identifying missing subgraphs is
above 95% according to a manually-annotated set
of 441 examples. We also use our trained model to
filter out cases where an object is annotated in the
scene graph, but the image contains other instances
of that object (e.g., if in an image with a crowd full
of people, only a few are annotated). See App. B
for details.

3.3 Template-based Question Generation

Once we have a subgraph, an image, and a set of
related images, we can generate questions. For
a subgraph g and its related images, we gener-
ate questions from a set of 15 manually-written
templates (Table 1), that include operators such as
quantifiers, counting, and “group by”. Further ex-
tending this list is trivial in our framework. Each
template contains slots, filled with values condi-
tioned on the subgraph g as described below. Since
we have 15 templates with multiple slots, and each
slot can be filled with different types of subgraphs,
we get a large set of possible question types and
programs. Specifically, if we anonymize lexical
terms (i.e. replace nouns, relations and attributes
with a single placeholder) there are 640 different

Measurement Train Dev.+Test

# total questions 248.1k 13.9k
# unique questions 122.0k 7.6k
# unique answers 3666 1268
# unique images 79.0k 9.5k
# unique anonymized programs 635 291
# True/False (T/F) questions 133.3k 7.5k
# “X or Y” questions 50.0k 2.9k
# “how many ...” questions 33.3k 1.8k
# Open questions 31.5k 1.7k
avg. # question words (a/p) 14.0 13.5/11.9
avg. # images per question 4.4 3.4

Table 3: Statistics for COVR for both the training and
test sets (development and test combined). a/p stands
for automatically-generated vs paraphrased.

programs in total.
We define a set of preconditions for each tem-

plate (Table 2) which specifies (a) the types of
subgraphs that can instantiate each slot, and (b)
the images that can be used as distractors. The
first precondition type ensures that the template is
supported by the subgraph—e.g., to instantiate a
question that verifies an attribute (VERIFYATTR),
the root object must have an outgoing edge to an
attribute. The second precondition type en-
sures that we have relevant distractors. For exam-
ple, for VERIFYATTR, we only consider distracting
subgraphs if the attribute connected to their root is
different from the attribute of g’s root. In addition,
the distracting subgraphs must have at least one
more different node. Otherwise, we cannot refer
to the object unambiguously: if we have a “white
dog” as a distracting image for a “black dog”, the
question “Is the dog black?” will be ambiguous.

When a template, subgraph, and set of images
satisfy the preconditions, we instantiate a question
by filling the template slots. There are three types
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of slots: First, slots with the description of g or
a subset of its nodes. E.g., in VERIFYATTR (Ta-
ble 2) we fill the slot G-NOATTRIBUTE with the
description of g without the attribute node (“sink
that is below a towel”), and the slot ATTRIBUTE

with the name of that attribute (“white”). In
CHOOSEOBJECT (second row), we fill the slots
G-SUBJECT , REL and OBJ with different sub-

sets of g: “woman lighting a cigar on fire”, “using”
and “candle”.

The second slot type fills the description of a
different subgraph than g, or a subset of its nodes.
In COMPARECOUNT (third row), we fill G2 with
the description of another subgraph, sampled from
the distracting images. Similarly, in CHOOSEOB-
JECT, we fill DECOYOBJ with the node “lighter”.
Last, some slots are filled from a closed set of
words that describe reasoning operations: In COM-
PARECOUNT, we fill COMPARATIVE with one of

“less”, “more” or “same number”.
Once slots are filled, we compute the correspond-

ing program for the question. Each row in the pro-
gram is an operator (such as Find, Filter, All)
with a given set of arguments (e.g. “black”) or de-
pendencies (input from other operator). The list
of program operators and a sample program are in
App. G.

3.4 Quality Assurance and Analysis

We perform the generation process separately on
the training and validation set of GQA and imSitu
graph scenes, which yields 13 million and 1 million
questions respectively. We split the latter set into
development and test sets of equal size, making
sure that no two examples with the same question
text appear in both of them.
Balancing the dataset Since we generate a ques-
tion for every valid combination of subgraph and
template, the resulting set of questions possibly
contains correlations between the language of the
question and the answer, and has skewed distri-
butions over answers, templates, and subgraph
structures. To overcome the first issue, whenever
possible, we create two examples with the same
question, but a different set of images and answers
(186,841/75.3% questions appear with at least two
different answers in the training set). Then, to bal-
ance our dataset, we use a heuristic procedure that
leads to a nearly uniform distribution over tem-
plates, and balances the distribution over answers
and over the size and depth of subgraphs as much

as possible (App. C). We provide statistics about
our dataset in Table 3 and the answer distribution
in App. D.
Manual Validation Examples thus far are gener-
ated automatically. To increase the evaluation set
quality, we validate all development and test exam-
ples through crowdsourcing. Workers receive the
question, images and answer, and reject it if they
find it invalid, leading to a 17% rejection rate (see
App. E.1 for more details, including error analysis).
Paraphrasing Since questions are generated au-
tomatically, we ask workers to paraphrase 3990
examples from the training set, and all develop-
ment and test questions into fluent English, while
maintaining their meaning. Paraphrasing examples
are given in App. E.2.

Overall, after validation, COVR contains
262,069 training, 6,891 development and 7,024
test examples. See App. F for examples from the
validation set.

4 Compositional Splits

Our generation process lets us create questions and
corresponding programs with a variety of reasoning
operators. We now show how COVR can be used
to generate challenging compositional splits. We
propose two setups: (1) Zero-shot, where training
questions provide examples for all required rea-
soning steps, but the test questions require a new
composition of these reasoning steps, and (2) Few-
shot, where the model only sees a small number of
examples for a specific reasoning type (Bahdanau
et al., 2019a; Yin et al., 2021).

Because each question is annotated with its pro-
gram, we can define binary properties over the pro-
gram and answer, where a property is a binary pred-
icate that typically defines a reasoning type in the
program. For example, the property HAS-QUANT

is true iff the program contains a quantifier, and
HAS-QUANT-NONE iff it contains the quantifier
NONE. We can create any compositional split that
is a function of such properties. We list the types
of properties used in this work in Table 5.

All compositional splits are based on the original
training/validation splits from Visual Genome and
imSitu to guarantee that no image appears in both
the training set and any of the test sets. Splits are
created simply by removing certain questions from
the train and test splits. If we do not remove any
question, we get an i.i.d split.

Zero-shot We test if a model can answer ques-



9830

Test name Training Generalization

HAS-QUANT-COMPSCOPE &
HAS-QUANT-ALL

No man that is next to a horse is standing

All birds are black

All computer mice that are on a

mouse pad are black

HAS-COUNT & HAS-ATTR There are 3 dogs

What is the black dog holding?

There are 3 black dogs

HAS-COUNT & RM/V/C The horse is pulling people with a rope or a leash?

There are two people next to a tree.

There are two children cleaning the path

with a broom

LEXICAL-X/LEXICAL-Y
(Lexical Split)

All men wear jeans .

No women are standing .

No men wearing jeans are standing .

HAS-SAMEATTR-COLOR What is the color of X?

Do all X have the same material?

Do all X have the same color ?

TPL-CHOOSEOBJECT What is the man carrying ?

Is the man X or Y ?

The man is carrying a X or Y ?

TPL-VERIFYQUANTATTR Does the sitting dog and the standing cat have the same color ?

All dogs are standing

Do all dogs have the same color ?

TPL-VERIFYATTR Is the table that is under donuts dark or tan ? Is the towel that is on a floor pink ?

TPL-VERIFYCOUNT ∪
TPL-VERIFYCOUNTGROUPBY

How many images contain at least 2 men that are in water? There are at least 2 images that contain exactly
2 blankets that are on bed

Table 4: List of the zero-shot compositional splits. Top half shows splits where we hold out examples where two
properties co-occur, bottom half shows splits where we hold out questions with a single property or a union of two
(see text). Background colors highlight different reasoning steps that the model is trained or tested on.

Property Description

HAS-X True if p contains an operator of type X, X ∈ {
QUANTIFIER (QUANT), COMPARATIVE (COMPAR),
GROUPBY (GROUP), NUMBER (NUM), ATTRIBUTE
(ATTR), SAMEATTR}.

HAS-X-Y Same as HAS-X, where Y is a specific instance of X
(e.g., ALL if X is QUANTIFIER).

HAS-QUANT-
COMPSCOPE

True if the quantifier’s scope is “complex”, i.e., in-
cludes an attribute or a relation.

RM/V/C True if g’s structure contains either a Rel-Mod
node, an object node with two outgoing edges to
relation nodes (V-shape) or chain of more than a
single relation (C).

TPL-X True if the question originated from the template X.
ANS-X True if answer is of type X ∈ { NUM, ATTR, NOUN}
LEXICAL-X True if g contains a node with the name X.

Table 5: List of the types of properties given a program
p and subgraph g on which the question was based on.

tions where two properties co-occur, when during
training it has only seen questions that have at most
one of these properties. For a pair of properties, we
filter from the training set all examples that have
both properties, and keep only such examples for
the evaluation set. For example, the split in the first
row of Table 4 (top) shows a split of the two proper-
ties HAS-QUANT-COMPSCOPE and HAS-QUANT.

The zero-shot setup can also be used to test
examples with a single property that is unseen
during training (Table 4, bottom), or a union of
two properties, assuming that the model has seen
examples for all the reasoning steps that the un-
seen property requires. For example, in TPL-
CHOOSEOBJECT we test on a template that is en-
tirely unseen during training, since we have the

templates CHOOSEATTR and VERIFYOBJECT.
Another popular zero-shot test is the program

split. In a similar fashion to the compositional gen-
eralization tests in Finegan-Dollak et al. (2018),
we randomly split programs after anonymizing the
names of nodes, and hold out 20% of the programs
to test how models perform on program structures
that were not seen during training. We also per-
form a lexical split, where we hold out randomly
selected pairs of node names (i.e., names of objects,
relations or attributes) such that the model never
sees any pair together in the same program during
training. We create 3 random splits where we hold
out 20% of all pairs.

Few-shot In this setup, we test if a model can
handle examples with a given property, when it
has only seen a small number M of examples with
this property during training. For a given property,
we create this split by filtering from the original
training set all examples that have this property,
except for M examples. From the evaluation set,
we keep only examples that have this property.

5 Experiments

Experimental Setup We consider the following
baselines: (a) MAJ, the majority answer in the
training set, and (b) MAJTEMPL: an oracle-based
baseline that assumes perfect knowledge of the
template from which the question was generated,
and predicts the majority answer for that template.
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Model COVR COVR-PARAPH.
Development Test Development Test

MAJ 26.4 26.8 26.4 26.8
MAJTEMPL 42.1 41.5 42.1 41.5
VBTEXT 45.6 44.8 40.9 39.9
VBiid 69.2 67.6 61.1 57.9

VBEASYDISTRACTORS 56.4 56.9 50.2 49.0

Humans - - - 91.9

Table 6: Results on both the generated and paraphrased
versions of the development and test set for the i.i.d.
split.

For templates that include two possible answers
(“candle or lighter”), it randomly picks one.

We use the Volta framework (Bugliarello et al.,
2021) to train and evaluate different pre-trained
vision-and-language models. We use Volta’s con-
trolled setup models (that have a similar number of
parameters and pre-training data) of VisualBERT
(Li et al., 2019) and VILBERT (Lu et al., 2019). In
this section we show results only for VisualBERT,
and results for VILBERT can be found in App. H,
showing mostly similar scores.

A vision-and-language model provides a rep-
resentation for question-image pairs, (q, I). We
modify the implementation to accept N images
by running the model with (q, I) as input for each
image I ∈ I , and then passing theN computed rep-
resentations through two transformer layers with a
concatenated [CLS] token. We pass the [CLS]
token representation through a classifier layer to
predict the answer. The classifier layer and the
added transformer layers are randomly initialized,
and all parameters are fine-tuned during training.

To estimate a lower bound on performance with-
out any reasoning on images, we evaluate a text-
only baseline VBTEXT that only sees the input text
(image representations are zeroed out).

For the compositional splits, we evaluate Vi-
sualBERT trained on the entire data (VBiid), the
text baseline (VBTEXT), and the compositionally-
trained models VB250, VB0 for the few-shot
(M=250) and zero-shot setups, respectively. To
control the training size, we also evaluate VBiid-size,
a model trained with a similar data size as
the compositionally-trained model, by uniformly
downsampling the training set. All models are
evaluated on the same subset of the development
compositional split. To focus on the generaliza-
tion gap, we define a generalization score (“Gen.
Score”) that measures the proportion of the gap
between VBTEXT and our upper-bound, VBiid–size,

that is closed by a model. In all compositional
splits, we train the models 8 epochs and early-stop
using the subset of the development set that does
not contain any of the compositional properties we
test on (Teney et al., 2020).

Results First, we show how models perform on
paraphrased and automatically-generated questions
in the i.i.d setup in Table 6. The difference between
VBTEXT and MAJTEMPL is small (3.3%), suggest-
ing that the answer to most questions cannot be in-
ferred without looking at the images. We also show
that when the model is trained with random images
instead of distracting ones (VBEASYDISTRACTORS),
accuracy drops by 10.7%, showing the importance
of training on good distracting images. In addition,
there is still a large gap from human performance,
at 91.9%, which we estimate by evaluating human
answers on 160 questions. Finally, we observe
a 9.7% performance drop when training on the
automatically-generated examples and testing on
the paraphrased examples. Accuracy per template
is shown in App. H.

Next, we report results on the compositional
splits. We show results on automatically-generated
questions (not paraphrased), to disentangle the ef-
fect of compositional generalization from transfer
to natural language. App. H reports results for the
paraphrased test set, where generalization scores
are lower, showing that transfer to natural language
makes compositional generalization even harder.

Table 7 shows results in the few-shot setup,
where in 5 out of 11 setups the generalization score
is ≤ 70. VB250 generalizes better in cases where
the withheld operator is similar to an operator that
appears in the training set. For instance, HAS-
QUANT-ALL has higher generalization score com-
pared to HAS-QUANT since it sees many exam-
ples with the quantifiers “some” and “none”, HAS-
COMPAR-MORE has a higher score compared to
HAS-COMPAR, and HAS-LOGIC-AND has a per-
fect generalization score. This suggests that when
the model has some representation for a reasoning
type it can generalize better to new instances of it.

The large gap between the nearly-perfect score
of HAS-NUM-3 (92%), and the low score of HAS-
NUM-3-ANS-3 (0%), where in both the number
3 is rarely seen in the question, and in the latter it
is also rare as an answer, suggests that the model
learns good number representations just from see-
ing numbers in the answers. Other cases where
the generalization scores are low are HAS-QUANT,
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Split Filtered VBTEXT VB250 Gen. Score VBiid-size VBiid

HAS-QUANT 33.3k 50.8 55.8 78.1 80.5
HAS-QUANT-ALL 21.1k 50.7 69.2 75.2 77.6
HAS-QUANT-COMPSCOPE 22.8k 50.8 60.4 78.1 80.3
HAS-COMPAR 16.7k 54.3 57.5 76.4 80.0
HAS-COMPAR-MORE 7.6k 53.8 79.8 81.3 84.0
HAS-GROUPBY 33.3k 38.1 56.5 62.8 65.7
HAS-LOGIC 16.7k 50.4 69.3 75.4 77.5
HAS-LOGIC-AND 8.8k 50.4 74.8 72.3 75.2
HAS-NUM-3 6.9k 44.8 68.8 70.8 71.9
HAS-NUM-3-ANS-3 12.1k 26.2 25.8 65.6 66.8
ANS-NUM 33.3k 26.4 32.2 64.9 67.0

Table 7: Non-paraphrased test results in the few-shot setup. ‘Filtered’ shows the number of examples that were
filtered out of the training set in each split.

Split Filtered VBTEXT VB0 Gen. Score VBiid-size VBiid

HAS-QUANT-COMPSCOPE & HAS-QUANT-ALL 12.9k 50.8 57.7 77.3 78.2
HAS-COUNT & HAS-ATTR 37.6k 41.2 58.7 62.6 63.6
HAS-COUNT & RM/V/C 36.9k 40.5 74.1 82.2 82.0
HAS-SAMEATTR-COLOR 27.3k 49.8 66.0 71.2 72.6
TPL-CHOOSEOBJECT 16.7k 52.0 1.6 62.6 66.4
TPL-VERIFYQUANTATTR 16.7k 50.4 71.2 76.9 80.3
TPL-VERIFYATTR 16.7k 49.6 0.0 75.4 73.5
TPL-VERIFYCOUNT ∪ TPL-VERIFYCOUNTGROUPBY 33.3k 49.8 41.7 77.6 79.8

Program Split 48k± 11k 43.8± 4.5 49.5± 3.6 61.5± 4.4 64.8± 4.7
Lexical Split 40k± 3k 46.4± 0.1 71.5± 1.1 72.2± 1.5 73.0± 1.7

Table 8: Non-paraphrased test results in the zero-shot setup. Filtered shows number of examples that were filtered
out of the training set. A red rectangle under “Gen. Score” illustrates that VB0 is lower than VBTEXT. ‘&‘ indicates
holding out the intersection of two sets of questions, ‘∪‘ indicates holding out the union of the two.

where quantifiers appear in only 250 examples,
HAS-QUANT-COMPSCOPE, where the scope of the
quantifier is complex, and HAS-COMPAR, where
comparatives appear in only 250 examples. Fig. 13
(App. H) shows performance on the development
set as M , the number of examples with the tested
property that the model is shown during training,
increases. We observe model performance is much
lower when M = 50 and improves rapidly as M
increases. This shows that models acquire new
skills rapidly from hundreds of examples, but not
from a handful of examples, like humans.

Table 8 shows results for the zero-shot setup.
A model that sees examples where the quan-
tifier scope is complex, but never in the con-
text of the quantifier ALL, fails to generalize
(HAS-QUANT-COMP & HAS-QUANT-ALL, 26%).
The model also fails to generalize to the tem-
plate CHOOSEOBJECT, although it saw at train-
ing time the necessary parts in the templates
CHOOSEATTR and VERIFYOBJECT. Similarly,
the model fails to generalize to the template VER-
IFYATTR, and to TPL-VERIFYCOUNT ∪ TPL-
VERIFYCOUNTGROUPBY, where we hold out all
verification questions with counting, even though
the model sees verification questions and counting
in other templates. Last, the model struggles to

generalize in the program split.
Conversely, the model generalizes well to ques-

tions with the Count operator where the subgraph
contains a complex sub-graph (HAS-COUNT &
RM/V/C) or an attribute (HAS-COUNT & HAS-
ATTR), and in the lexical split, where the model is
tested on unseen combinations of names of nodes.

A possible explanation for the above is that com-
positional generalization is harder when the model
needs to learn to combine large/complex structures,
and performs better when composing more atomic
constructs. However, further characterizing the con-
ditions under which compositional generalization
occurs is an important question for future work.

6 Conclusion

We present COVR, a test-bed for visually-
grounded compositional generalization with real
images. COVR is created automatically except for
manual validation and paraphrasing, and allows us
to create a suite of compositional splits. COVR can
be easily extended with new templates and splits
to encourage the community to further understand
compositional generalization. Through COVR, we
expose a wide range of cases where models strug-
gle to compositionally generalize.
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A Filtering Overlapping Distracors

We take the published RoBERTa (Large, Liu et al.
2019) model that is already fine-tuned on MNLI
(Williams et al., 2018), and further fine-tune it sep-
arately on pairs of nouns, attributes and relations
to predict whether a pair of words or phrases are
mutually exclusive. To leverage the knowledge
learned during pre-training, we use the same setup
as the training on MNLI, where the model is given
two phrases and predicts one of three classes: “con-
tradiction”, “entailment” and “neutral”.

To collect the list of pairs to annotate that will
be used for fine-tuning, we fetched all pairs that
have been used in Visual Genome within the same
context. For attributes, we took all pairs of at-
tributes that have appeared within the context of
the same object (this way, we will be likely to col-
lect “red” and “green” since they appear within
the context objects such as “apple”, but not “red”
and “grilled”). For nouns, we consider all pairs of
nouns that have been used with the same relation.
For relations, we consider all pairs of relations that
have been used with the same pair of nouns. While
there are other resources that could have been use-
ful for fine-tuning (e.g. WordNet, Fellbaum 1998),
we did not use any such external knowledge base
since it allowed us to have exact control on the
subtleties of the data in our training context.

We train all models for 50 epochs with a learning
rate of 3e−5. For the nouns models, we use 2,366
manually annotated pairs of nouns for training and
validation. The model is trained to predict “contra-
diction” whenever nouns are mutually-exclusive,
i.e. when none of the words is a synonym, hy-
pernym, or hyponym of the other, and “neutral”
otherwise (we do not use the entailment class). We
randomly shuffle the internal order of each pair
for regularization. We get an accuracy score of
94.4% on 20% of the pairs which were held-out
for validation. Similarly we train a model that
predicts mutual-exclusiveness of attributes over
3,053 pairs, and get an accuracy of 95.7%.

Unlike the other two models, for the rela-
tions model we do not require complete mutual-
exclusiveness, and we do not assume symmet-
rical annotations, i.e., that if m(x1, x2) then
m(x2, x1), to increase the probability of find-
ing pairs where m returns a score higher than
0.5 for a relation x. For example, we annotate
pairs such that m(“riding on”,“near”) = 1 but
m(“near”,“’riding on’) = 0, since most often, if

some object is hanging on another object, the an-
notation of the relations between the two objects in
Visual Genmoe will be specific, i.e. “riding on” or

“on” and not “near”. This way, for a question such
as “Is the man riding a motorcycle” we might get
distracting images with a man “standing near” a
motorcycle, but for a question such as “Is the man
near a motorcycle” we will not get distracting im-
ages with a man “riding” a motorcycle, as then the
question will be ambiguous. Note that while this
can potentially introduce some noise (i.e., in some
rare cases “a man riding a motorcycle” might be
annotated as if the man is “near” a motorcycle),
such mistakes will hopefully be overridden with the
second validation that we use (incomplete scene
graphs, App B). We annotate 917 pairs of relations,
where every pair is annotated in both directions.
We get an accuracy of 82.5% on the held-out set.

B Incomplete Scene Graphs

We use LXMERT (Tan and Bansal, 2019) to train
a classifier that predicts whether a simple subgraph
exists in an image. See §3.2 for details on the data
we train on. We extract image and objects features
with the bottom-up top-down attention method of
Anderson et al. (2018) as performed in LXMERT’s
paper, and fine-tune the pre-trained model. To ex-
tract the training data, we use all subgraphs from
all images for which we have at least one valid neg-
ative image (from both the training and test sets).
This results in 6,520,367 positive and negative ex-
amples. Since we need the model to predict results
not only on the test set, but also on the training
set, we split all examples (training and test) into
5 splits based on their image, and train 5 different
models, where each model does not see a different
fifth of the images during training. Then, to predict
whether a simple subgraph exists in an image, we
use the model that was not trained on that image.

We manually annotate 441 examples where we
determine if a simple subgraph exists in an image
and use these annotations for early stopping and to
adjust a threshold τ . We use this threshold to filter
out candidate distracting images for a subgraph g
if the model outputs a score above a certain thresh-
old τ for all of the simple graphs in g. Note that
each negative example is a candidate distracting
image to some subgraph g. We use g to further
adjust τ in the following way. By definition, a can-
didate simple graph of a distracting image has a
non-empty set d of nodes that are different than



9836

g. Based on our annotated examples, we found
that the model should have a different threshold τ
for different types of nodes in d. Specifically, we
found that the model performed best when d con-
tained nodes of type object, then relation,
and finally attribute. Thus, we use a different
τ for each type: τ = 0.05 for object, τ = 0.1
for relation and τ = 0.5 for attribute. If
there are more than one type of nodes in d, we take
the one that gives the maximal τ .

The described procedure can be used to detect
unannotated objects, however, it will not be useful
in the non-rare case where an object is annotated in
the scene graph, but the image contains more simi-
lar objects in the image (e.g. there is a crowd full
of people in the image, but only a few of the people
are annotated). We thus add another verification
step for each simple sub-graph g. First, we take the
annotated positions of all instances of g in the scene.
For example, if there are three annotated “apples”,
we will take the positions (bounding boxes annota-
tions from Visual Genome) of all three. Then, we
use our trained LXMERT model with the textual
description of g (e.g. “apple”) and the image, but
this time we zero-out the image parts that contain
the apples according to their annotated positions.3

Essentially, we are querying the model if there are
any other “apples” other than those that are anno-
tated. We use a similar procedure as before to find
the best threshold, 0.5. Since the LXMERT model
is never trained with zeroed-out parts, during the
described fine-tuning procedure we also zero-out
15% of the bounding boxes.

C Downsampling & Balancing

We use the following downsampling method to
balance the dataset and reduce bias as much as pos-
sible, separately for the training, development and
test sets. At a high-level, we start with a total of N
questions and group them by their templates, such
that we have T groups. We then use a heuristic
ordering method that prioritizes or balances differ-
ent desired features, described next, and finally we
take the top S = N

T questions from each group,
such that we get an equal number of questions per
template. The ordering method is defined as fol-
lows, starting with an empty list Lt for a template t.
Each question is automatically annotated with the

3LXMERT uses pre-calculated features of bounding boxes
that are proposed by Faster-RCNN (Ren et al., 2015), thus
we zero-out proposed bounding boxes that overlap with the
annotated bounding boxes.
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Figure 4: Distribution over the top 30 answers in the
training set (excluding true/false).
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Figure 5: Distribution over the number of images each
question in the training set contains.

following three features: (1) whether this question
appears at least twice with different answers, (2)
the answer to the question and (3) the structure of
the source subgraph for that question, specifically a
tuple with its size and its depth. We first add to Lt

all questions where the first feature is positive (in
all cases this was less than S). Then, to balance be-
tween the different question answers, at each step
until |Lt| = S, we count the appearances of all
answers and sample an answer a from the answers
that appeared least in Lt. Then, we count the ap-
pearances of all subgraph structures, and sample
a question with answer a, such that its subgraph
structure appeared least. We stop once |Lt| = S.

D Additional Statistics

Answers distribution We show the distribution
over the top 30 answers of the training set in Fig. 4,
excluding true/false answers. As can be seen, the
most common answers are the numbers 0-5, fol-
lowed by common colors, attributes and relations.

Number of images distribution We show in
Fig. 5 the distribution over the number of images
each question in the training set contains. As can
be seen, most questions contain exactly 5 images.
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Figure 6: Distributions over the number of occurrences that specific operators appear in a single question in the
training set.

Occurrences of operators in questions We
show in Fig. 6, for a selected set of operators
(find, filter, and with_relation), the
distribution over the number of occurrences of that
operator in a single question (e.g. the program for
the question “There is 1 green banana on a tree
that is next to a man” contains 3 find operators,
one filter and two with_relation). The
graphs show that find appears between one to
eight times in a single question, and filter and
with_relation between zero to six. Note that
a question that contains six with_relation
does not imply that a single reference to an ob-
ject contains six relations, since a question can
contain more than one object reference (e.g. in
COMPARECOUNT).

E Crowdsourcing Details

We use Amazon Mechanical Turk (AMT) for two
different tasks: validation of questions and para-
phrasing them.

E.1 Validation

We wanted to make sure that our validation and
test examples are of high-quality by manually vali-
dating that the question is logically valid, there are
no ambiguous object references, and the answer is
correct. To maintain high-quality work in AMT,
we first created a qualification task by annotating
ourselves 100 examples, finding that the percentage
of valid questions from the automatically generated
samples was 83%. Workers were asked to choose
one of the following options: “Answer is COR-
RECT”, “I cannot understand the question”, “I
cannot determine if the answer is correct” or “An-
swer is WRONG”. We filtered workers by their
performance: workers that have gained over 85%
accuracy were given feedback and were approved

for the main task that contained the rest of the
questions. During their work, we have repeatedly
sampled the annotations of the workers and gave
feedback where necessary, and also measured the
accuracy of their submissions: all workers got an
accuracy of between 95% to 98%. Workers were
paid 0.5$ for a batch of 5 questions. Screenshots
of the instructions and the HIT can be seen in Fig-
ures 7 and 8.

Analysis We sample 40 examples that were fil-
tered out by the annotators to analyze the different
causes for invalid generated questions. We find
that most errors (70%) were due to problematic
scene graph annotations: either because of miss-
ing annotations (53%) or wrong annotations (17%).
The former type would make the answers to ques-
tions that require counting to be incorrect, and also
questions that ask about a specific object (e.g. a
question about “a man wearing a hat” will be in-
valid if there’s more than one such man), and in
general, means that our automatic validation mech-
anism failed to recognize that object. The latter
type (wrong annotations, in contrast to missing an-
notations) can cause any question to be incorrect,
and could not have been detected by our automatic
validation methods. Other errors were questions
about color (6%) that were not accurate (e.g. a
question about whether two benches are brown
will be given the answer ‘true’ since they are both
annotated brown, but in practice, they could have
significantly different shades of brown which might
lead to the correct answer ’false’). The rest of the
errors (16%) were due to various issues that make
the answer unclear, such as questions that require
to count feathers or meat.
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Figure 7: The instructions for the AMT validation task.
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Figure 8: An example input for the AMT validation task. The expected annotation is “Answer is WRONG”.

Auto-generated question Paraphrase

Does the trees that are behind a zebra and the trees that are
behind a fire hydrant have the same color?

Are the trees behind a zebra the same color as those behind
a fire hydrant?

There is 1 bottle that is on bench that is in front of tree Is there a bottle on a bench in front of a tree?
No forks that are on a white plate are silver None of the forks on a white plate are silver.
Do all boats that are in a harbor have the same color? Are all the boats in the harbor the same color?
Is the person that is wearing a yellow jacket skiing? Is the person in the yellow jacket skiing?
How many images with mushrooms that are on a pizza that
is on a table?

The pizza on the table - how many mushrooms are on it?

Is there either a girl that is holding a bouquet and is wearing
dress or a girl that is holding a book and is wearing a hat?

Is there either a girl holding a bouquet and wearing a dress,
or a girl holding a book and wearing a hat?

There are less boats that are on water than surfboards that
are on water

There are fewer boats on water than surfboards.

There are at least 4 people that are buttering pan There are four or more people buttering a pan.
What is the material of the table that is under a coffee mug? What material is the table under the coffee mug?

Table 9: Examples for crowd-sourced paraphrasing.
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Figure 9: The instructions and examples for the AMT question rephrasing task.

Figure 10: An example HIT for the AMT question rephrasing task.
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E.2 Paraphrasing
For the question paraphrasing task, we again con-
ducted a qualification task in addition to the final
task. All potential workers were first added to the
qualification task and asked to paraphrase 10 ques-
tions each. The paraphrases were then manually
analyzed for meaning preservation and fluency and
only the workers with very good performance were
added to the final task which was used to para-
phrase the bulk of the questions. In either case,
we shared feedback with the workers via Google
spreadsheets (one for each worker). Additionally,
we regularly sampled and analysed the workers’
paraphrases in the final task and used the same
spreadsheets to share any necessary feedback. The
workers were asked to periodically check their feed-
back spreadsheets and the workers that ignored the
feedback were disqualified from the final task. We
qualified 14 workers to the final task most of whom
wrote good paraphrases. We only had to disqualify
one worker for not taking note of their feedback.

Both the qualification and final tasks had the
same instructions, examples and HIT interface.
Screenshots can be seen in Figures 9 and 10. Work-
ers were paid $0.7 for every task completed in both
AMT tasks – with 5 questions per task. Addition-
ally, as shown in Figure 10, workers were provided
a comment box to leave comments in case they
could not understand the question. Comments were
left for a very small fraction of questions (less than
2%), mostly to indicate questions that were invalid
or unclear. We removed all questions with com-
ments in the final datasets. Some examples of the
crowd-sourced paraphrases are shown in Table 9.

F Dataset examples

Fig. 11 and 12 show 10 selected validated and para-
phrased examples from the validation set, demon-
strating the variety of the questions and relevant
distracting images.

G Programs

We list all program operators in Table 11, together
with their input arguments/dependencies and out-
put. A sample program can be found in Table 10.

H Additional Results

Results per pattern Tables 12 and 13 show
the accuracy for each template for both the non-
paraphrased and the paraphrased versions, for mod-
els that were trained on all data. The results of

Index Operator Arguments

1 Find “table”
2 Filter � 1, “wood”
3 Find “book”
4 WithRelation � 3, � 2, “on”
5 GroupByImages � 4
6 KeepIfValuesCountEq � 5, 2
7 Count � 6

Table 10: The program for the question “How many im-
ages contain exactly 2 books that are on wood table?”.
The symbol � with a row index next to it indicates that
it is replaced with the output of the operator of the row
in that index.

the text-only baseline, VBTEXT, show that indeed
the model is struggling to get more than a ran-
dom baseline performance of 50% in most patterns.
The scores of the main model, VBiid, show that
open questions are hardest (QUERYATTR, QUERY-
OBJECT), and that there’s a rather large variance
between the performance on the different patterns.

Compositional Results on COVR-PARAPH.
We report results on the compositional splits when
they are evaluated on the paraphrased questions
in Tables 14 and 15. The generalization scores are
lower than the results for the non-paraphrased data,
showing that transfer to natural language makes
compositional generalization harder.

Effect of M We show how M , the number of
examples the model sees from the compositional
subset, affects the accuracy in Figure 13. The graph
shows that using 50 examples barely has an effect,
and that most of the improvement is achieved when
increasing the number of examples from 125 to
2500. Increasing it further shows diminishing im-
provements.

VILBERT Results To assess whether the re-
sults we get are specific to the model that we used
(VisualBERT), we run additional compositional
tests on a different model, VILBERT, using Volta’s
framework (Bugliarello et al., 2021). The model
has the same number of parameters and was trained
on the same pre-training data. Results in Tables 16
and 17 show that for most of the compositional
splits, both of our tested models get similar gener-
alization scores.
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What is being held by the man in the jacket? umbrella

     

No men are surfing on a white surfboard. True

    

At least one image depicts a girl hitting a ball while wearing gloves. False
 

     

There are precisely two men wearing white shorts in how many images? 1
 

     

There is at least 1 image with exactly 2 dark bottles on a counter. True
 

     

Figure 11: Selected examples from COVR validation set.
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There are fewer plates on the table than there are on the wall. True

     

Are there 2 boys wearing a hat? False

     

In how many of the images can you see exactly two green cones? 2
 

     

Is the plate on a brown table the same color as the plate that is on a black table? True
 

     

All of the cats on a laptop are dark. False
 

     

Figure 12: Selected examples from COVR validation set.
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Operator Input Output

All (1) objects, (2) subprogram Returns ‘True’ iff ‘subprogram’ returns ‘True’ for all ‘objects’.
Some (1) objects, (2) subprogram Returns ‘True’ iff ‘subprogram’ returns ‘True’ for any of the

‘objects’.
None (1) objects, (2) subprogram Returns ‘True’ iff ‘subprogram’ returns ‘True’ for none of the

objects.
QueryName (1) object Returns the name of ‘object’
Find (1) name Returns all objects from all scenes that are named ‘name’.
Filter (1) objects (2) at-

tribute_value
Returns only objects in ‘objects’ that have ‘attribute_value’.

Count (1) objects Returns the size of ‘objects’
Or (1) bool1 (2) bool2 Returns ‘bool1’ OR ‘bool2’
And (1) bool1 (2) bool2 Returns ‘bool1’ AND ‘bool2’
eq (1) number1 (2) number2 Returns ‘True’ iff number1 == number2
gt (1) number1 (2) number2 Returns ‘True’ iff number1 > number2
lt (1) number1 (2) number2 Returns ‘True’ iff number1 < number2
geq (1) number1 (2) number2 Returns ‘True’ iff number1 ≥ number2
leq (1) number1 (2) number2 Returns ‘True’ iff number1 ≤ number2
Unique (1) objects Assumes ‘objects’ contain a single object. Returns the object in

the list.
UniqueImages (1) objects Returns a set (without duplicates) of all images of the given

‘objects’.
GroupByImages (1) objects Returns (image, objects_in_image) tuples where all object in

‘objects’ that are in the same image are grouped together and
coupled with that image.

KeepIfValuesCountEq/
KeepIfValuesCountGt/
KeepIfValuesCountLt

(1) (key, list) tuples
(2) size

Returns only tuples where the size of ‘list’ is equal/greater
than/less than ‘size’.

QueryAttribute (1) object
(2) attribute_name

Returns the attribute value (e.g., “red”) of the ‘attribute_name’
(e.g., “color”) of ‘object’.

VerifyAttribute (1) object
(2) attribute_value

Returns “True” iff ‘object’ has the attribute ‘attribute_value’.

WithRelation (1) objects1, (2) objects2
(3) relation

Returns all objects from ‘objects1‘ that have the relation ‘rela-
tion’ with any of the objects in ‘objects2.

WithRelationObject (1) objects1, (2) objects2
(3) relation

Same as WithRelation, except it returns objects from ‘ob-
jects2’.

Table 11: All program operators.
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Template VBTEXT VBiid

VERIFYATTR 49.6 73.5
CHOOSEATTR 52.0 69.5
QUERYATTR 36.2 47.1
COMPARECOUNT 54.3 80.0
COUNT 26.2 73.1
VERIFYCOUNT 50.0 87.7
COUNTGROUPBY 26.6 60.3
VERIFYCOUNT-GROUPBY 49.5 71.2
VERIFYLOGIC 50.4 77.5
VERIFYQUANTIFIER 51.2 80.7
VERIFYQUANTIFIER-ATTR 50.4 80.3
CHOOSEOBJECT 52.0 66.4
QUERYOBJECT 11.0 14.4
VERIFYSAMEATTR 52.1 62.3
CHOOSEREL 58.1 65.9

Table 12: Accuracy score per template (i.i.d setup) on
COVR automatically-generated questions, test set.

Template VBTEXT VBiid

VERIFYATTR 46.5 69.0
CHOOSEATTR 48.5 62.1
QUERYATTR 23.3 35.2
COMPARECOUNT 50.9 67.8
COUNT 25.2 67.6
VERIFYCOUNT 50.2 80.9
COUNTGROUPBY 29.6 46.0
VERIFYCOUNT-GROUPBY 50.0 67.1
VERIFYLOGIC 47.7 71.1
VERIFYQUANTIFIER 50.0 68.7
VERIFYQUANTIFIER-ATTR 50.0 75.6
CHOOSEOBJECT 19.6 41.9
QUERYOBJECT 6.3 8.3
VERIFYSAMEATTR 47.9 50.7
CHOOSEREL 51.8 52.2

Table 13: Accuracy score per template (i.i.d setup) on
COVR (paraphrased), test set.

0 50 125 250 500 1000 25005000 10k 20k33k
0.0

0.2

0.4

0.6

0.8 Ans-Num
Has-Quant

Figure 13: Effect of M on development set accuracy
on two compositional splits, starting with no examples
at all of the tested compositional property (zero-shot)
and up to the maximal amount of available training ex-
amples with that property. Log scale is used for the
X-axis.
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Split Filtered VBTEXT VB250 Gen. Score VBiid-size VBiid

HAS-QUANT 33.3k 50.0 48.8 70.9 72.1
HAS-QUANT-ALL 21.1k 50.2 58.7 70.1 74.1
HAS-QUANT-COMPSCOPE 22.8k 49.8 53.8 70.3 72.5
HAS-COMPAR 16.7k 50.9 44.8 64.8 67.8
HAS-COMPAR-MORE 7.6k 50.8 60.7 70.6 72.9
HAS-GROUPBY 33.3k 39.8 54.0 57.8 56.6
HAS-LOGIC 16.7k 47.7 55.7 71.9 71.1
HAS-LOGIC-AND 8.8k 49.6 72.7 73.4 73.0
HAS-NUM-3 6.9k 42.7 65.6 63.5 63.5
HAS-NUM-3-ANS-3 12.1k 24.2 25.4 54.5 51.6
ANS-NUM 33.3k 27.3 28.8 57.9 57.3

Table 14: Same splits and experiments as in Table 7, evaluated on the paraphrased questions.

Split Filtered VBTEXT VB0 Gen. Score VBiid-size VBiid

HAS-QUANT-COMP & HAS-QUANT-ALL 12.9k 50.1 54.5 68.9 75.0
HAS-COUNT & HAS-ATTR 37.6k 40.9 52.7 53.0 55.7
HAS-COUNT & RM/V/C 36.9k 39.9 68.5 76.3 76.5
HAS-SAMEATTR-COLOR 27.3k 47.7 59.3 61.6 63.5
TPL-CHOOSEOBJECT 16.7k 19.6 1.6 34.8 41.9
TPL-VERIFYQUANTATTR 16.7k 50.0 57.8 72.0 75.6
TPL-VERIFYATTR 16.7k 46.5 8.1 64.0 69.0
TPL-VERIFYCOUNT ∪ TPL-VERIFYCOUNTGROUPBY 33.3k 50.1 47.7 73.7 74.3

Program Split 48k± 11k 38.6± 2.5 42.8± 3.8 52.3± 2.0 55.5± 2.7
Lexical Split 40k± 3k 42.7± 1.3 61.2± 0.5 63.0± 0.7 64.3± 0.3

Table 15: Same splits and experiments as in Table 8, evaluated on the paraphrased questions.

Split Filtered VLBTEXT VLB250 Gen. Score VLBiid-size VLBiid

HAS-QUANT 33.3k 51.1 65.6 78.5 80.7
HAS-QUANT-ALL 21.1k 50.9 60.9 74.1 77.6
HAS-QUANT-COMPSCOPE 22.8k 50.9 67.5 78.1 80.2
HAS-COMPAR 16.7k 54.3 64.2 76.8 77.7
HAS-COMPAR-MORE 7.6k 53.8 79.8 79.0 81.7
HAS-GROUPBY 33.3k 37.2 55.6 63.4 61.3
HAS-LOGIC 16.7k 50.2 72.1 76.2 75.0
HAS-LOGIC-AND 8.8k 50.0 70.9 75.5 74.5
HAS-NUM-3 6.9k 43.8 67.7 68.8 71.9
HAS-NUM-3-ANS-3 12.1k 25.4 27.5 66.4 68.0
ANS-NUM 33.3k 24.1 38.5 64.0 65.8

Table 16: Same splits and experiments as in Table 7 for VILBERT.

Split Filtered VLBTEXT VLB250 Gen. Score VLBiid-size VLBiid

HAS-QUANT-COMPSCOPE & HAS-QUANT-ALL 12.9k 50.8 64.7 76.4 77.4
HAS-COUNT & HAS-ATTR 37.6k 39.6 57.4 62.6 62.6
HAS-COUNT & RM/V/C 36.9k 39.9 71.4 81.1 81.9
HAS-SAMEATTR-COLOR 27.3k 48.5 64.7 67.7 71.4
TPL-CHOOSEOBJECT 16.7k 51.0 2.0 58.9 63.8
TPL-VERIFYQUANTATTR 16.7k 50.4 61.2 76.1 78.2
TPL-VERIFYATTR 16.7k 50.2 0.0 70.0 75.4
TPL-VERIFYCOUNT ∪ TPL-VERIFYCOUNTGROUPBY 33.3k 49.6 29.5 78.0 77.1

Program Split 48k± 11k 43.6± 4.5 49.0± 3.1 61.9± 4.5 64.6± 4.9
Lexical Split 40k± 3k 45.6± 0.7 71.5± 1.4 70.6± 0.7 73.6± 0.9

Table 17: Same splits and experiments as in Table 8, for VILBERT.


