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Abstract

Information Extraction (IE) aims to extract
structural information from unstructured texts.
In practice, long-tailed distributions caused by
the selection bias of a dataset, may lead to in-
correct correlations, also known as spurious
correlations, between entities and labels in the
conventional likelihood models. This moti-
vates us to propose counterfactual IE (CFIE), a
novel framework that aims to uncover the main
causalities behind data in the view of causal
inference. Specifically, 1) we first introduce
a unified structural causal model (SCM) for
various IE tasks, describing the relationships
among variables; 2) with our SCM, we then
generate counterfactuals based on an explicit
language structure to better calculate the direct
causal effect during the inference stage; 3) we
further propose a novel debiasing approach to
yield more robust predictions. Experiments on
three IE tasks across five public datasets show
the effectiveness of our CFIE model in mitigat-
ing the spurious correlation issues.

1 Introduction

The goal of Information Extraction (IE) is to de-
tect the structured information from unstructured
texts. Previous deep learning models for IE tasks,
such as named entity recognition (NER; Lample
et al. 2016), relation extraction (RE; Peng et al.
2017) and event detection (ED; Nguyen and Gr-
ishman 2015), are largely proposed for learning
under some reasonably balanced label distributions.
However, in practice, these labels usually follow a
long-tailed distribution (Doddington et al., 2004).
Figure 1 shows such an unbalanced distribution
on the ACE2005 (Doddington et al., 2004) dataset.
As a result, performance on the instance-scarce
(tail) classes may drop significantly. For example,
on an existing model for NER (Jie and Lu, 2019),
the macro F1 score of instance-rich (head) classes
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Figure 1: Class distribution of the ACE2005 dataset.

can be 71.6, while the score of tail classes sharply
decreases to 41.7.

The underlying causes for the above issue are the
biased statistical dependencies between entities1

and classes, known as spurious correlations (Sri-
vastava et al., 2020). For example, an entity
Gardens appears 13 times in the training set of
OntoNotes5.0, with the NER tag location LOC,
and only 2 times as organization ORG. A classi-
fier trained on this dataset tends to build spurious
correlations between Gardens and LOC, although
Gardens itself does not indicate a location. Most
existing works on addressing spurious correlations
focus on images, such as re-balanced training (Lin
et al., 2017), transfer learning (Liu et al., 2019) and
decoupling (Kang et al., 2019). However, these
approaches may not be suitable for natural lan-
guage inputs. Recent efforts on information extrac-
tion (Han et al., 2018; Zhang et al., 2019) incorpo-
rate prior knowledge, which requires data-specific
designs.

Causal inference (Pearl et al., 2016) is promis-
ing in tackling the above spurious correlation issues
caused by unbalanced data distribution. Along this
line, various causal models have been proposed for

1For the NER task, a model may also build the spurious
correlations between the part-of-speech (POS) tags of entities
and class labels. For RE and ED tasks, a model may also learn
incorrect correlations between features like NER tags and
labels. We consider all above issues in our proposed causal
diagram.
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visual tasks (Abbasnejad et al., 2020; Tang et al.,
2020b). Despite their success, these methods may
be unsatisfactory on textual inputs. Unlike images,
which can be easily disentangled with detection
or segmentation methods for causal manipulation,
texts rely more on the context involving complex
syntactic and semantic structures. Hence it is im-
practical to apply the methods used in images to
disentangle tokens’ representations. Recent causal
models (Zeng et al., 2020; Wang and Culotta, 2020,
2021) on text classification eliminate biases by re-
placing target entities or antonyms. These methods
do not consider structural information, which has
proven effective for various IE tasks as they are
able to capture non-local interactions (Zhang et al.,
2018; Jie and Lu, 2019). This motivates us to pro-
pose a novel framework termed as counterfactual
information extraction (CFIE). Different from pre-
vious efforts, our CFIE model alleviates the spuri-
ous correlations by generating counterfactuals (Bot-
tou et al., 2013; Abbasnejad et al., 2020) based on
the syntactic structure (Zhang et al., 2018).

From a causal perspective, counterfactuals state
the results of the outcome if certain factors had
been different. This concept entails a hypothetical
scenario where the values in the causal graph can be
altered to study the effect of the factor. Intuitively,
the factor that yields the most significant changes
in model predictions has the greatest impact and
is therefore considered as the main effect. Other
factors with minor changes are categorized as side
effects. In the context of IE with language struc-
tures, counterfactual analysis answers the question
on “which tokens in the text would be the key clues
for RE, NER or ED that could change the predic-
tion result”. With that in mind, our CFIE model
is proposed to explore the language structure to
eliminate the bias caused by the side effects and
maintain the main effect for prediction. We show
the effectiveness of CFIE on three representative IE
tasks including NER, RE and ED. Our code and the
supplementary materials are available at https:
//github.com/HeyyyyyyG/CFIE.

Specifically, our major contributions are:

• To the best of our knowledge, CFIE is the first
study that marries the counterfactual analysis
and syntactic structure to address the spurious
correlation issue for long-tailed IE. We build
different structural causal models (SCM; Pearl
et al. 2016) for various IE tasks to better cap-
ture the underlying main causalities.

• To alleviate spurious corrections, we generate
counterfactuals based on syntactic structures.
To achieve more robust predictions, we further
propose a novel debiasing approach, which
maintains a better balance between the direct
effect and counterfactual representations.

• Extensive quantitative and qualitative experi-
ments on various IE tasks across five datasets
show the effectiveness of our approach.

2 Model

Figure 2 demonstrates the proposed CFIE method
using an example from the ACE2005 dataset (Dod-
dington et al., 2004) on the ED task. As shown
in Figure 2 (a), two event types “Life:Die” and
“SW:Quit” of the trigger killed have 511 and 19
training instances, respectively. Such an unbal-
anced distribution may mislead a model to build
spurious correlations between the trigger word
killed and the type “Life:Die”. The goal of CFIE is
to alleviate such incorrect correlations. CFIE em-
ploys SCM (Pearl et al., 2016) as causal diagram as
it clearly describes relationships among variables.
We give the formulation of SCM as follows.

SCM: Without loss of generality, we express
SCM as a directed acyclic graph (DAG) G =
{V,F,U}, where the set of observables (vertices)
are denoted as V = {V1, ..., Vn}, the set of func-
tions (directed edges) as F = {f1, ..., fn}, and the
set of exogenous variables (e.g., noise) (Pearl et al.,
2016) as U = {U1, ..., Un} for each vertice. Here
n is the number of nodes in G. In the deterministic
case where U is given, the values of all variables
in SCM are uniquely determined. Each observable
Vi can be derived from:

Vi := fi(PAi, Ui), (i = 1, ..., n), (1)

where PAi ⊆ V\Vi is the set of parents of Vi and
“\” is an operator that excludes Vi from V, and fi
refers to the direct causation from PAi to its child
variable Vi. Next we show how our SCM-based
CFIE works.

2.1 Causal Representation Learning
Figure 3 presents our unified SCM Gie for IE tasks
based on our prior knowledge. The variable S indi-
cates the contextualized representations of an input
sentence, where the representations are the output
from a BiLSTM (Schuster and Paliwal, 1997) or a
pre-trained BERT encoder (Devlin et al., 2019). Zj

https://github.com/HeyyyyyyG/CFIE
https://github.com/HeyyyyyyG/CFIE
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Figure 2: Training and inference stages of CFIE for ED, which detects the triggers and then predict the correspond-
ing event types for a given sentence. (a) The number of training instances for the trigger killed labeled with two
different event types. (b) Step 1 builds the SCM and trains the model. (c) Step 2 obtains prediction results for each
token, e.g., Yxi

for the token killed. (d) Step 3 generates the counterfactuals of each token by masking the tokens
along the 1st hop of a syntactic tree, and then achieves counterfactual prediction, e.g., Yx∗

i
for killed.
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Figure 3: (a) a unified structured causal model (SCM)
for IE tasks. (b) causal interventions on X .

(j ∈ {1, 2, . . . ,m}) represents features such as the
NER tags and part-of-speech (POS) tags, where m
is the number of features. The variable X is the
representation of a relation, an entity and a trigger
for RE, NER and ED, respectively, and Y indicates
the output logits for classification.

For Gie, we denote the parents of Y as E =
{S,X,Z1, . . . , Zm}. The direct causal effects
towards Y are linear transformations. Transfor-
mation for each edge i → Y is denoted as
WiY ∈ Rc×d, where i ∈ E , c is the number of
classes, and d is the dimensional size. We let
Hi ∈ Rd×k denote k representations for the node
i. Then, the prediction can be obtained by sum-
mation Yx =

∑
i∈EWiY Hi or gated mechanism

Yx = WgHX�σ(
∑

i∈EWiY Hi), where� refers
to element-wise product, HX is the representation
of the node X , and Wg ∈ Rc×d and σ(·) indicate
a linear transformation and the sigmoid function,
respectively.

To avoid any single edge dominating the genera-
tion of the logits Yx, we introduce a cross-entropy
loss LiY , i ∈ E for each edge. Let LY denote the
loss for Yx, the overall loss L can be:

L = LY +
∑
i∈E
LiY (2)

Step 1 in Figure 2 (b) trains the above causal
model, aiming to teach the model to identify the
main cause (main effect) and the spurious correla-
tions (side effect) for classification. Our proposed
SCM is encoder neutral and it can be equipped with
various encoders, such as BiLSTM and BERT.

Fusing Syntactic Structures Into SCM: So far
we have built our unified SCM for IE tasks. On the
edge S → X , we adopt different neural network
architectures for RE, NER and ED. For RE, we use
dependency trees to aggregate long-range relations
with graph convolution networks (GCN; Kipf and
Welling 2017) to obtain HX . For NER and ED,
we adopt the dependency-guided concatenation ap-
proach (Jie and Lu, 2019) to obtain HX .

2.2 Inference and Counterfactual Generation

Given the above SCM, we train our neural model
designed for a specific task such as ED. Step 2 in
Figure 2 (c) performs inference with our proposed
SCM, and Step 3 in Figure 2(d) generates syntax-
based counterfactuals to obtain better main effect.
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Interventions: For Gie, an intervention indicates
an operation that modifies a subset of variables
V ⊆ V to new values where each variable Vi ∈
V is generated by manual manipulations. Thus,
the causal dependency between Vi and its parents
{PAi, Ui} will be cut off, as shown in Figure 3(b).
Such an intervention for one variableX ∈ V can be
expressed by the do-notation do(X = x∗) where
x∗ is the given value (Pearl, 2009).

Counterfactuals: Unlike interventions, the con-
cept of counterfactual reflects an imaginary sce-
nario for “what would the outcome be had the vari-
able(s) been different”. Let Y ∈ V denote the
outcome variable, and let X ∈ V\{Y } denote the
variable of study. The counterfactual is obtained by
setting X = x∗ and formally estimated as:

Yx∗(u) = YGx∗ (u) (3)

where Gx∗ means assigning X = x∗ for all equa-
tions in the SCM G. We slightly abuse the notation
and use Yx∗ as a short form for Yx∗(u), since the ex-
ogenous variable u is not explicitly required here2.
For SCM G, the counterfactual Yx∗ of the original
instance-level prediction Yx is computed as:

Yx∗ = fY (do(X = x∗), S = s, Z = z)

=
∑

i∈E\{X}

WiY Hi + WXY Hx∗ (4)

where fY is the function that computes Y . Com-
pared to the vanilla formula for Yx, we only replace
its feature HX with Hx∗ .

Counterfactual Generation: There are many
language structures such as dependency and con-
stituency trees (Marcus et al., 1993), semantic role
labels (Palmer et al., 2005), and abstract mean-
ing representations (Banarescu et al., 2013). We
choose the dependency tree in our case as it can
capture rich relational information and complex
long-distance interactions that have proven effec-
tive on IE tasks. Counterfactuals lead us to think
about: what are the key clues that determine the
relations of two entities for RE, and a certain span
of a sentence to be an entity or an event trigger
for NER and ED respectively? As demonstrated in
Figure 2 (d), we mask entities, or the tokens in the
scope of 1 hop on the dependency tree. Then this
masked sequence is fed to a BiLSTM or BERT en-
coder to output new contextualized representations

2Derivations are given in the supplementary materials.
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Figure 4: Causal effect estimation: (a) Step 4 computes
the TDE by subtraction of outputs for each token in
Step 2 and 3, e.g., Yxi

−αYx∗
i
. (b) Step 5 obtains more

robust predictions by highlighting each token’s counter-
factual representations, e.g., WXY Hx∗

i
for killed.

S∗, as shown in Figure 2 (d). Then we feed S∗ to
the function of the edge S → X to getX∗. This op-
eration also aligns with a recent finding (Zeng et al.,
2020) that the entity itself may be more important
than context in NER. By doing so, the key clues are
expected to be wiped off in the representations X∗

of counterfactuals, strengthening the main effect
while reducing the spurious correlations.

2.3 Causal Effect Estimation
As shown in Figure 4, we estimate the causal effect
in the Step 4 and use the representation of coun-
terfactuals for a more robust prediction in Step 5.
Inspired by SGG-TDE (Tang et al., 2020b), we
compare the original outcome Yx and its counter-
factual Yx∗ to estimate the main effect so that the
side effect can be alleviated with Total Direct Effect
(TDE) (Pearl, 2009)3:

TDE = Yx − Yx∗ (5)

As both of the context and entity (or trigger) play
important roles for the classification in NER, ED,
and RE, we propose a novel approach to further
alleviate the spurious correlations caused by side
effects, while strengthening the main effect at the
same time. The interventional causal effect of the
i-th entity in a sequence can be described as:

Main Effect = Yxi − αYx∗
i

+ βWXY Hx∗
i

(6)

where α, β are the hyperparameters that balance
the importance of context and entity (or trigger) for

3Derivations are given in the supplementary materials.
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NER, ED, and RE. The first part Yxi − αYx∗
i

indi-
cates the main effect, which reflects more about the
debiased context, while the second part WXY Hx∗

i

reflects more about the entity (or trigger) itself.
Combining them yields more robust prediction by
better distinguishing the main and side effect.

As shown in Step 4 of Figure 4(a), the sentence
“The program was killed” produces a biased high
score for the event “Life:Die” in Yx and results
in wrong prediction due to the word “killed”. By
computing the counterfactual Yx∗ with “program”
masked, the score for “Life:Die” remains high but
the score for “SW:Quit” drops. The difference com-
puted by Yx − αYx∗ may help us to correct the
prediction while understanding the important role
of the word “program”. However, we may not only
rely on the context since the entity (trigger) itself is
also an important clue. To magnify the difference
and obtain more robust predictions, we strengthen
the impact of entity (trigger) on the final results
by WXY Hx∗

i
as shown in Step 5 of Figure 4(b).

Such a design differs from SGG-TDE (Tang et al.,
2020a) by providing more flexible adjustment and
effect estimation with hyperparameters α and β.
We will show that our approach is more suitable
for long-tailed IE tasks in experiments.

3 Experiments

3.1 Datasets and Settings

We use five datasets in our experiments including
OntoNotes5.0 (Pradhan et al., 2013) and ATIS (Tur
et al., 2010) for the NER task, ACE2005 (Dodding-
ton et al., 2004) and MAVEN (Wang et al., 2020b)
for ED, and NYT24 (Gardent et al., 2017) for the
RE task. The labels in the above datasets follow
long-tailed distributions. We categorize the classes
into three splits based on the number of training
instances per class, including Few, Medium, and
Many, and also report the results on the whole
dataset with the Overall setting. We focus more on
Mean Recall (MR; Tang et al. 2020b) and Macro F1
(MF1), two more balanced metrics to measure the
performance of long-tailed IE tasks. MR can better
reflect the capability in identifying the tail classes,
and MF1 can better represent the model’s ability
for each class, whereas the conventional Micro F1
score highly depends on the head classes and pays
less attention to the tail classes. The hyperparam-
eter α in Equation (6) is set as 1 for NER and ED
tasks, and 0 for the RE task. We tune the optimal

α on the development sets4.

3.2 Baselines
We categorize the baselines used in our experi-
ments into three groups and outline them as follows.
Conventional models include BiLSTM (Chiu and
Nichols, 2016), BiLSTM+CRF (Ma and Hovy,
2016), C-GCN (Zhang et al., 2018), Dep-Guided
LSTM (Jie and Lu, 2019), and BERT (Devlin et al.,
2019). These neural models do not explicitly take
the long-tailed issues into consideration.
Re-weighting/Decoupling models refer to loss
re-weighting approaches including Focal Loss
(Lin et al., 2017), and two-stage decoupled learn-
ing methods (Kang et al., 2019) that include τ -
normalization, classifier retraining (cRT) and learn-
able weight scaling (LWS).
Causal model includes SGG-TDE (Tang et al.,
2020b). There are also recent studies based on
the deconfounded methodology (Tang et al., 2020a;
Yang et al., 2020) for images, which however seem
not applicable to be selected as a causal baseline
in our case for text. We ran some of the baseline
methods by ourselves since they may have not been
reported on NLP datasets.

3.3 Task Definitions
We show the definition of the IE sub-tasks used
in our experiments as follows, including named
entity recognition (NER), event detection (ED) and
relation extraction (RE).

Named Entity Recognition: NER is a sequence
labeling task that seeks to locate and classify named
entities in unstructured text into pre-defined cate-
gories such as person, location, etc.

Event Detection: ED aims to detect the occur-
rences of predefined events and categorize them as
triggers from unstructured text. An event trigger
is defined as the words or phase that most clearly
expresses an event occurrence. Taking the sentence
“a cameraman died in the Palestine Hotel” as an ex-
ample, the word “died” is considered as the trigger
with a “Life:Die” event.

Relation Extraction: The goal of RE is to iden-
tify semantic relationships from text, given two or
more entities. For example, “Paris is in France”
states a “is in” relationship between two entities
“Paris" to “France". Their relation can be denoted
by the triple (Paris, is in, France).

4More details are attached in the supplementary materials.
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Model
OntoNotes5.0 ATIS

Few Medium Many Overall Few Medium Many Overall
MR MF1 MR MF1 MR MF1 MR MF1 MR MF1 MR MF1 MR MF1 MR MF1

BiLSTM (Chiu and Nichols, 2016) 67.5 69.9 72.6 75.3 88.1 85.4 76.4 76.8 66.2 69.0 89.8 85.9 93.0 92.2 84.2 83.1
BiLSTM+CRF (Ma and Hovy, 2016) 60.7 63.6 65.3 69.1 86.9 86.9 71.6 73.5 58.1 60.4 87.4 83.5 93.0 93.5 81.0 80.2
C-GCN (Zhang et al., 2018) 68.3 69.8 69.1 72.9 90.9 86.6 77.3 76.8 63.2 65.3 87.3 83.2 91.8 89.3 82.0 80.1
Dep-Guided LSTM (Jie and Lu, 2019) 61.8 69.3 70.2 73.7 89.8 84.3 74.1 75.8 60.6 65.4 94.1 90.4 93.2 92.9 84.6 84.3

Focal Loss (Lin et al., 2017) 64.1 65.5 69.9 71.2 87.7 84.7 74.2 73.9 48.9 49.8 89.3 84.6 91.1 89.8 78.7 76.6
cRT (Kang et al., 2019) 64.1 68.5 73.9 75.3 88.0 85.2 75.0 76.1 68.1 71.7 92.3 88.0 92.8 92.2 85.7 84.8
τ - Normalization (Kang et al., 2019) 61.1 66.7 72.8 76.4 88.0 85.7 73.5 75.7 64.8 68.0 89.9 86.2 93.0 92.5 83.9 83.1
LWS (Kang et al., 2019) 58.7 64.9 71.6 76.1 87.6 85.2 72.1 74.7 66.2 69.1 89.9 85.9 93.0 92.2 84.3 83.2

SGG-TDE (Tang et al., 2020b) 71.9 68.8 77.9 74.8 91.2 86.7 80.4 76.7 67.5 67.1 95.3 89.4 93.7 93.5 87.1 84.5

Ours (Glove) 76.7 68.9 83.6 76.2 92.0 87.6 83.8 77.3 71.8 73.1 95.6 91.4 94.3 93.5 88.6 87.0

BERT (Devlin et al., 2019) 77.7 76.5 81.4 78.6 94.0 90.7 84.6 82.4 60.7 65.9 97.2 89.1 93.9 93.5 86.1 84.0
Ours (BERT) 80.6 79.1 85.1 80.4 94.5 91.4 86.7 84.1 69.9 71.2 97.2 91.5 93.5 93.1 88.5 86.4

Table 1: Evaluation results on the OntoNotes5.0 dataset and ATIS datasets for the NER task.

Model
ACE2005 MAVEN

Few Medium Many Overall Few Medium Many Overall
MR MF1 MR MF1 MR MF1 MR MF1 MR MF1 MR MF1 MR MF1 MR MF1

BiLSTM (Chiu and Nichols, 2016) 34.2 35.6 55.1 58.2 64.9 67.0 52.3 54.8 36.5 40.7 78.3 79.9 80.4 82.3 67.1 69.5
BiLSTM+CRF (Ma and Hovy, 2016) 41.4 45.1 49.8 52.2 70.1 70.5 51.8 54.1 43.4 46.8 79.0 79.8 82.3 83.0 69.6 71.1
C-GCN (Zhang et al., 2018) 41.4 44.1 51.2 55.8 66.4 71.2 52.0 56.1 49.7 51.7 81.8 80.8 82.6 82.1 73.1 73.0
Dep-Guided LSTM (Jie and Lu, 2019) 42.8 41.7 49.8 56.0 71.1 71.6 52.4 55.8 44.7 45.4 76.5 78.2 75.9 78.9 67.8 69.3

Focal Loss (Lin et al., 2017) 38.6 42.9 50.7 58.8 74.6 76.0 52.6 58.5 45.4 51.5 78.6 81.3 85.4 87.2 70.3 73.8
cRT (Kang et al., 2019) 44.8 47.4 58.8 60.1 68.8 68.5 57.6 58.9 49.7 55.4 78.4 81.3 82.1 85.0 71.0 74.6
τ - Normalization (Kang et al., 2019) 34.3 35.6 50.9 53.8 82.7 68.3 53.3 52.5 21.1 26.7 60.0 68.5 74.4 80.0 51.0 58.4
LWS (Kang et al., 2019) 34.3 35.6 61.2 60.2 76.8 71.7 58.2 56.9 33.3 38.7 77.6 79.7 81.6 81.7 65.9 68.7

SGG-TDE (Tang et al., 2020b) 34.3 33.9 61.5 59.7 77.4 73.3 58.5 56.5 39.8 36.2 83.3 78.0 87.8 85.2 71.9 67.4

Ours (Glove) 47.1 49.7 64.3 59.9 80.5 73.3 63.5 60.2 60.4 57.4 86.8 82.2 89.1 86.6 79.8 76.0

BERT(Devlin et al., 2019) 47.6 48.9 67.8 67.5 84.5 76.8 66.5 65.1 61.1 61.8 86.1 84.6 90.3 89.4 79.8 78.9
Ours (BERT) 61.9 63.2 76.5 76.6 85.3 80.7 74.9 74.4 61.8 62.7 86.6 84.5 90.0 89.4 80.2 79.1

Table 2: Evaluation results on the ACE2005 and MAVEN datasets for event detection.

3.4 Main Results

NER: Table 1 shows the comparison results on
both OntoNotes5.0 and ATIS datasets. Our models
perform best or achieve comparable results under
most settings, including Few, Medium, Many and
Overall. For example, our model achieves more
than 8 points higher MR comparing with the C-
GCN model under the Few setting with Glove em-
beddings on the both of the two benchmarks. The
results show the superiority of CFIE in handling
the instance-scarce classes for the long-tailed NER.
Comparing with a causal baseline SGG-TDE, our
model consistently performs better in terms of the
two metrics. The results confirm our hypothesis
that language structure can help a causal model to
better distinguish main effect from the side effect.
CFIE also obtains large performance gains with the
BERT-based encoder under most of the settings,
showing the effectiveness of our approach in miti-
gating the bias issue with a pre-trained model. It is
interesting that BERT-based models perform worse
than Glove-based ones on ATIS. The reason is prob-
ably that BERT, which is trained on Wikipedia, may
not perform well on a small dataset collected from
a very different domain.

ED: Table 2 shows comparison results on both
of the ACE2005 and MAVEN datasets. Overall,
our model significantly outperforms the previous
causal baseline SGG-TDE under the Few setting
by a large margin, specifically, 12.8 and 15.8 points
higher in terms of MR and MF1 respectively on
ACE2005 dataset, 20.6 and 21.2 points higher in
terms of the two metrics on MAVEN dataset with
Glove embeddings. Meanwhile, our model is able
to achieve better or comparable results under other
settings, such as Medium and Many. The results
further confirm the robustness of our model for
tail classes with few training instances available.
Our model also performs better or comparable than
BERT baselines under Few, Medium, Many and
Overall settings, indicating that BERT models still
suffer from bias issues on the long-tailed IE tasks.

RE: As shown in Table 3, we further evaluate
CFIE on the NYT24 dataset. Our method signif-
icantly outperforms all other methods in MR and
MF1 for tail classes. The overall performance is
also competitive. Although Focal Loss achieves the
best overall scores, its ability to handle the classes
with very few data points drops significantly, which
is the main focus of our work. The results for rela-
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The picture showed premier Peng Li visiting malacca 

The picture showed premier Peng Li visiting malacca 

MASK

MASK

MASK

Figure 5: Masking operations. Figure 6: Prediction distributions. Figure 7: Syntax contribution.

Model
NYT24

Few Overall
MR MF1 MR MF1

C-GCN (Zhang et al., 2018) 24.0 26.7 51.2 52.6
Focal Loss (Lin et al., 2017) 56.0 54.6 65.7 65.5
cRT (Kang et al., 2019) 66.0 24.2 65.6 50.5
τ - Normalization (Kang et al., 2019) 40.0 40.0 53.5 54.6
LWS (Kang et al., 2019) 40.0 40.0 53.5 54.6

SGG-TDE (Tang et al., 2020b) 60.0 57.1 61.0 60.2

Ours (Glove) 68.0 68.6 65.3 63.6

Table 3: Results on the NYT24 dataset for RE.

tion extraction further confirm our hypothesis that
the proposed CFIE is able to alleviate spurious cor-
relations caused by unbalanced dataset by learning
to distinguish the main effect from the side effect.
We also observe that CFIE outperforms the previ-
ously proposed SGG-TDE by a large margin for
both Few and Overall settings, i.e., 11.5 points and
3.4 points improvement in terms of MF1. This
further proves our claim that properly exploring
language structure on causal models will boost the
performance of IE tasks.

3.5 Discussion
What are the key factors for NER? We have
hypothesised that the factors, such as 2-hop and
1-hop context on the dependency tree, the entity
itself, and POS feature, may hold the potential to
be the key clues for NER predictions. To evaluate
the impact of these factors, we first generate new
sequences by masking these factors. Then we feed
the generated sequences to the proposed SCM to
obtain the predictions. Figure 5 illustrates how we
mask the context based on a dependency tree. Fig-
ure 6 shows a qualitative example for predicting the
NER tag for the entity “malacca”. It visualizes the
variances of the predictions, where the histograms
in the left refer to prediction probabilities for the
ground truth class, while the histograms in the right
are the max predictions except the results of ground
truth class. For example, the “Mask 2-hop" opera-
tion with a blue rectangle in Figure 5 masks tokens

“showed” and “Li” on the dependency tree, and
the corresponding prediction probability distribu-
tion is given in Figure 6, which is expressed as
the blue bar. We observe that masking the entity,
i.e., “malacca”, will lead to the most significant
performance drop, indicating that entity itself plays
a key role for the NER task. This also inspires us to
design a more robust debiasing method as shown
in Step 5 in our framework.

Does the syntax structure matter? To answer
this question, we design three baselines includ-
ing: 1) Causal Models w/o Syntax that
doesn’t employ dependency trees during the train-
ing stage, and only uses it for generating counterfac-
tuals, 2) Counterfactuals w/o Syntax
that employs dependency structures for training
but uses a null input as the intervention during
the inference state. We refer such a setting from
the previous study (Tang et al., 2020a), and 3) No
Syntax that is the same as the previous work
SGG-TDE (Tang et al., 2020b) which doesn’t in-
volve dependency structures in both training and
inference stages. As shown in Figure 7, our model
outperforms all three baselines on the ACE2005
dataset under both Few and All settings, demon-
strating the effectiveness of dependency structure
in improving the causal models for the long-tailed
IE tasks both in the training and inference stages.

How do various interventions and SCMs af-
fect performance? We study this question
on ACE2005 dataset for ED task. We de-
sign three interventional methods including 1)
Intervene X & NER, 2) Intervene X &
POS, 3) Intervene X & NER & POS . Fig-
ure 8 shows that introducing interventions solely
on X is able to achieve the best performance
under both Few and All settings. We also in-
troduce three variants of our proposed SCM :
1) SCM w/o NER, 2) SCM w/o POS, 3) SCM
w/o NER and POS. Figure 9 shows that remov-
ing the NER node will significantly decrease the
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Figure 9: Various SCMs. Figure 10: Various β.

ED performance, especially over the Few setting.
The results prove the superiority of our proposed
SCM that explicitly involves linguistic features to
calculate main effect.

How does the hyper-parameter β impact the
performance? To evaluate the impact of β on
the performance, we tuned the parameter on four
datasets including OntoNotes5.0, ATIS, ACE2005,
and MAVEN. As shown in Figure 10, when increas-
ing β from 0 to 2.4 on ATIS dataset, the F1 scores
increase dramatically then decrease slowly. The F1
scores reach the peak when β is 1.2. As the value
of β represents the importance of entity for classi-
fications, we therefore draw a conclusion that, for
NER task, an entity plays a relatively more impor-
tant role than the context (Zeng et al., 2020). We
observe that the performance significantly drops
when β is 0. This suggests that directly applying
previous causal approach (Tang et al., 2020b) may
not yield good performance. The result further
confirms the effectiveness of Step 5 in CFIE.

3.6 Case Study
Figure 11 shows two cases to visualize the predic-
tions of baseline models and our CFIE model for
long-tailed NER and ED, respectively. We use the
“BIOES” tagging scheme for both cases and choose
Dep-Guided LSTM (Jie and Lu, 2019) and SGG-
TDE (Tang et al., 2020b) as baselines. In the first
case for NER, the baseline assigns “chinese” with
the label S-NORP, which indicates “nationalities or
religious or political groups”, while the corrected
annotation is “S-LANGUAGE”. This is caused by
the spurious correlations between “chinese” and S-
NORP learned from unbalanced data. For this case,
there are 568 and 20 training instances for S-NORP
and S-LANGUAGE, respectively. The numbers of
training instances for each type are indicated in
the third column of Figure 11. The numbers in
the 4-th to 6-th columns indicate the probability
of the token “chinese” predicted as a certain label.

For example, in the 6-th column “Predictions of
CFIE”, the prediction probability is 35.17% for the
label S-LANGUAGE. In the second case for ED,
we demonstrate a similar issue for the trigger word
“attack”, and compare it with the two baselines. For
both cases, previous SGG-TDE outputs relatively
unbiased predictions compared with Dep-Guided
LSTM, although the predictions are also incorrect.
Our CFIE model can obtain correct results for both
instances, showing the effectiveness of our novel
debiasing approach. Compared to CFIE, the infe-
rior performance of SGG-TDE is due to ignoring
the importance of entity (trigger) for the NER and
ED tasks.

4 Related Work

Long-tailed IE: RE (Zeng et al., 2014; Peng et al.,
2017; Quirk and Poon, 2017; Song et al., 2018; Lin
et al., 2019; Peng et al., 2020; Nan et al., 2020;
Qu et al., 2020; Guo et al., 2020; Zhang et al.,
2021c; Zheng et al., 2021; Zhang et al., 2020b; Ye
et al., 2021; Bai et al., 2021; Nan et al., 2021a),
NER (Lample et al., 2016; Chiu and Nichols, 2016;
Xu et al., 2021b), and ED (Nguyen and Grishman,
2015; Huang et al., 2018) are mainstream IE tasks
in NLP. For the long-tailed IE, recent models (Lei
et al., 2018; Zhang et al., 2019) leverage external
rules or transfer knowledge from data-rich classes
to the tail classes. Plenty of re-balancing models
are also proposed, including re-sampling strategies
(Mahajan et al., 2018; Wang et al., 2020a) that
aim to alleviate statistical bias from head classes,
and re-weighting approaches (Milletari et al., 2016;
Lin et al., 2017) which assign balanced weights
to the losses of training samples from each class
to boost the discriminability via robust classifier
decision boundaries. Another line is decoupling
approaches (Kang et al., 2019) that decouple the
representation learning and the classifier by direct
re-sampling. Different from the above works that
are based on conventional approaches, we tackle
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Task Instances #Instances/Class 
in Training set

Predictions of 
Dep-Guided LSTM 

Predictions of 
SGG-TDE 

Predictions of 
CFIE 

NER The wangma computer company 
was named for the wubi font, the 
coding method of chinese characters 
invented by the famous computer 
expert - yongmin wang.

S-NORP : 568
O : 243
I-ORG : 42
S-LANGUAGE : 20
……

ED The Camp Chapman attack was a 
suicide attack by Human Khalil 
Abu-Mulal al-Balawi against the 
Central Intelligence Agency facility 
inside Forward Operating Base 
Chapman on December 30, 2009.

S-Attack : 545
O : 230
S-Terroism : 32
E-Terrorism : 12
……

S-NORP
S-LANGUAGE

O S-GPE

72.38

15.07

S-NORP
S-LANGUAGE

O S-PERSON

31.63
30.31

S-LANGUAGE

S-NORP

B-NORP

O

27.60
35.17

S-Attack

O S-Terrorism

E-Terrorism

42.70

4.07
S-Attack

S-Terrorism

E-Terrorism

O

32.82

5.17
E-Terrorism

S-Attack

S-Terrorism

O

20.70
26.07

Figure 11: Two cases selected from OntoNote5.0 and MAVEN for NER and ED tasks respectively, with unbalanced
distributions for the targeting entity and event trigger. The two baseline models Dep-Guided LSTM and SGG-TDE
tend to predict incorrect results caused by the spurious correlations, while our proposed CFIE model is able to yield
better predictions.

the long-tailed IE problem from the perspective of
causal inference.
Causal Inference: Causal inference (Pearl et al.,
2016; Rubin, 2019) has been applied in many areas,
including visual tasks (Tang et al., 2020b; Abbasne-
jad et al., 2020; Niu et al., 2021; Yang et al., 2020;
Zhang et al., 2020a; Yue et al., 2020; Yang et al.,
2021; Nan et al., 2021b), model robustness and sta-
ble learning (Srivastava et al., 2020; Zhang et al.,
2020a; Shen et al., 2020; Yu et al., 2020; Dong
et al., 2020), generation (Wu et al., 2020), language
understanding (Feng et al., 2021b), and recommen-
dation systems (Jesson et al., 2020; Feng et al.,
2021a; Zhang et al., 2021d; Wei et al., 2021; Wang
et al., 2021a; Tan et al., 2021; Wang et al., 2021b;
Ding et al., 2021). Works most related to ours are
(Zeng et al., 2020; Wang and Culotta, 2021) that
generates counterfactuals for weakly-supervised
NER and text classifications, respectively. Our
method is remotely related to (Tang et al., 2020b)
proposed for image classifications. The key differ-
ences between our methods and previous ones: 1)
counterfactuals in our method are generated by a
task-specific pruned dependency structure on var-
ious IE tasks. While in previous works, counter-
factuals are generated by replacing the target entity
with another entity or their antonyms (Zeng et al.,
2020; Wang and Culotta, 2021), or simply mask-
ing the targeting objects in an image (Tang et al.,
2020b). These method do not consider the complex
language structure that has been proven useful for
IE tasks. 2) compared with previous method SGG-
TDE (Tang et al., 2020b), our inference mechanism
is more robust for various IE tasks, simultaneously
mitigating the spurious correlations and strength-

ening salient context.

5 Concluding Remarks

This paper presents CFIE, a novel framework for
tackling the long-tailed IE issues in the view of
causal inference. Extensive experiments on three
popular IE tasks, named entity recognition, event
detection, and relation extraction, show the effec-
tiveness of our method. Our CFIE model provides
a new perspective on tackling spurious correlations
by exploring language structures based on struc-
tured causal models. We believe that our models
may also find applications in other NLP tasks that
suffer from spurious correlation issues caused by
unbalanced data distributions. Our future work in-
cludes developing more powerful causal models
for the long-tailed distribution problems using the
task-specific language structures learned from the
data. We are also interested in addressing the spu-
rious correlations in various vision and language
tasks (Nan et al., 2021b; Li et al., 2021; Xu et al.,
2021a; Fan et al., 2020; Liu et al., 2021; Zhang
et al., 2021a,b; Chen et al., 2020, 2021).
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2020. Reasoning with latent structure refinement for
document-level relation extraction. In Proc. of ACL.

Guoshun Nan, Guoqing Luo, Sicong Leng, Yao Xiao,
and Wei Lu. 2021a. Speaker-oriented latent struc-
tures for dialogue-based relation extraction. In Proc.
of EMNLP.

Guoshun Nan, Rui Qiao, Yao Xiao, Jun Liu, Sicong
Leng, Hao Zhang, and Wei Lu. 2021b. Interven-
tional video grounding with dual contrastive learn-
ing. In Proc. of CVPR.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In Proc. of ACL.

Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu,
Xian-Sheng Hua, and Ji-Rong Wen. 2021. Counter-
factual vqa: A cause-effect look at language bias. In
Proc. of CVPR.

Martha Palmer, Paul R. Kingsbury, and D. Gildea.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31:71–
106.

Judea Pearl. 2009. Causality. Cambridge university
press.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell.
2016. Causal inference in statistics: A primer. John
Wiley & Sons.

Hao Peng, Tianyu Gao, Xu Han, Yankai Lin, Peng
Li, Zhiyuan Liu, Maosong Sun, and Jie Zhou. 2020.
Learning from context or names? an empirical study
on neural relation extraction. In Proc. of EMNLP.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics, 5:101–115.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Proc. of
CoNLL.

Meng Qu, Tianyu Gao, Louis-Pascal Xhonneux, and
Jian Tang. 2020. Few-shot relation extraction via
bayesian meta-learning on relation graphs. In Proc.
of ICML.

Chris Quirk and Hoifung Poon. 2017. Distant super-
vision for relation extraction beyond the sentence
boundary. In Proc. of EACL.

Donald B Rubin. 2019. Essential concepts of causal
inference: a remarkable history and an intriguing fu-
ture. Biostatistics & Epidemiology, 3(1):140–155.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681.

Zheyan Shen, Peng Cui, Jiashuo Liu, Tong Zhang,
Bo Li, and Zhitang Chen. 2020. Stable learning
via differentiated variable decorrelation. In ACM
SIGKDD.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. N-ary relation extraction using graph-
state lstm. In Proc. of EMNLP.

Megha Srivastava, Tatsunori Hashimoto, and Percy
Liang. 2020. Robustness to spurious correlations via
human annotations. In Proc. of ICML.

Juntao Tan, Shuyuan Xu, Yingqiang Ge, Yunqi Li,
Xu Chen, and Yongfeng Zhang. 2021. Counter-
factual explainable recommendation. In Proc. of
CIKM.

Kaihua Tang, Jianqiang Huang, and Hanwang Zhang.
2020a. Long-tailed classification by keeping the
good and removing the bad momentum causal effect.
In Proc. of NeurIPS.



9694

Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi,
and Hanwang Zhang. 2020b. Unbiased scene graph
generation from biased training. In Proc. of CVPR.

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck. 2010.
What is left to be understood in atis? In Proc. of
2010 IEEE Spoken Language Technology Workshop.

Tao Wang, Yu Li, Bingyi Kang, Junnan Li, Junhao
Liew, Sheng Tang, Steven Hoi, and Jiashi Feng.
2020a. The devil is in classification: A simple
framework for long-tail instance segmentation. In
Proc. of ECCV.

Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang
Zhang, and Tat-Seng Chua. 2021a. Clicks can be
cheating: Counterfactual recommendation for miti-
gating clickbait issue. In Proc. of SigIR.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang,
Rong Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai
Lin, and Jie Zhou. 2020b. Maven: A massive gen-
eral domain event detection dataset. In Proc. of
EMNLP.

Zhao Wang and Aron Culotta. 2020. Identifying spu-
rious correlations for robust text classification. In
Proc. of EMNLP.

Zhao Wang and Aron Culotta. 2021. Robustness to
spurious correlations in text classification via auto-
matically generated counterfactuals. In In Proc. of
AAAI.

Zhenlei Wang, Jingsen Zhang, Hongteng Xu, Xu Chen,
Yongfeng Zhang, Wayne Xin Zhao, and Ji-Rong
Wen. 2021b. Counterfactual data-augmented se-
quential recommendation. In Proc. of SigIR.

Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jin-
feng Yi, and Xiangnan He. 2021. Model-agnostic
counterfactual reasoning for eliminating popularity
bias in recommender system. In Proc. of KDD.

Yiquan Wu, Kun Kuang, Yating Zhang, Xiaozhong Liu,
Changlong Sun, Jun Xiao, Yueting Zhuang, Luo Si,
and Fei Wu. 2020. De-biased court’s view genera-
tion with causality. In Proc. of EMNLP.

Li Xu, He Huang, and Jun Liu. 2021a. Sutd-trafficqa:
A question answering benchmark and an efficient
network for video reasoning over traffic events. In
Proc. of CVPR.

Lu Xu, Zhanming Jie, Wei Lu, and Lidong Bing. 2021b.
Better feature integration for named entity recogni-
tion. In Proc. of NAACL.

Xu Yang, Hanwang Zhang, and Jianfei Cai. 2020. De-
confounded image captioning: A causal retrospect.
arXiv preprint arXiv:2003.03923.

Xun Yang, Fuli Feng, Wei Ji, Meng Wang, and Tat-
Seng Chua. 2021. Deconfounded video moment re-
trieval with causal intervention. In Proc. of SigIR.

Hongbin Ye, Ningyu Zhang, Shumin Deng, Mosha
Chen, Chuanqi Tan, Fei Huang, and Huajun Chen.
2021. Contrastive triple extraction with generative
transformer. In Proc. of AAAI.

Xiyu Yu, Tongliang Liu, Mingming Gong, Kun Zhang,
Kayhan Batmanghelich, and Dacheng Tao. 2020.
Label-noise robust domain adaptation. In Proc. of
ICML.

Zhongqi Yue, Hanwang Zhang, Qianru Sun, and Xian-
Sheng Hua. 2020. Interventional few-shot learning.
In Proc. of NeurIPS.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jian Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proc. of COL-
ING.

Xiangji Zeng, Yunliang Li, Yuchen Zhai, and Yin
Zhang. 2020. Counterfactual generator: A weakly-
supervised method for named entity recognition. In
Proc. of EMNLP.

Dong Zhang, Hanwang Zhang, Jinhui Tang, Xiansheng
Hua, and Qianru Sun. 2020a. Causal intervention
for weakly-supervised semantic segmentation. In
Proc. of NeurIPS.

Hao Zhang, Aixin Sun, Wei Jing, Guoshun Nan, Lian-
gli Zhen, Joey Tianyi Zhou, and Rick Siow Mong
Goh. 2021a. Video corpus moment retrieval with
contrastive learning. In Proc. of SigIR.

Hao Zhang, Aixin Sun, Wei Jing, Liangli Zhen,
Joey Tianyi Zhou, and Rick Siow Mong Goh. 2021b.
Natural language video localization: A revisit in
span-based question answering framework. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.

Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng,
Chuanqi Tan, Mosha Chen, Fei Huang, Luo Si, and
Huajun Chen. 2021c. Document-level relation ex-
traction as semantic segmentation. In Proc. of IJ-
CAI.

Ningyu Zhang, Shumin Deng, Zhen Bi, Haiyang Yu, Ji-
acheng Yang, Mosha Chen, Fei Huang, Wei Zhang,
and Huajun Chen. 2020b. Openue: An open
toolkit of universal extraction from text. In Proc of.
EMNLP.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guany-
ing Wang, Xi Chen, Wei Zhang, and Huajun Chen.
2019. Long-tail relation extraction via knowledge
graph embeddings and graph convolution networks.
In Proc. of NAACL.

Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei,
Chonggang Song, Guohui Ling, and Yongdong
Zhang. 2021d. Causal intervention for leveraging
popularity bias in recommendation. In Proc. of Si-
gIR.



9695

Yuhao Zhang, Peng Qi, and Christopher D Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proc. of
EMNLP.

Hengyi Zheng, Rui Wen, Xi Chen, Yifan Yang, Yun-
yan Zhang, Ziheng Zhang, Ningyu Zhang, Bin Qin,
Ming Xu, and Yefeng Zheng. 2021. Prgc: Potential
relation and global correspondence based joint rela-
tional triple extraction. In Proc. of ACL.


