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Abstract

The task of knowledge base population (KBP)
aims to discover facts about entities from texts
and expand a knowledge base with these facts.
Previous studies shape end-to-end KBP as a
machine translation task, which is required to
convert unordered fact into a sequence accord-
ing to a pre-specified order. However, the facts
stated in a sentence are unordered in essence.
In this paper, we formulate end-to-end KBP
as a direct set generation problem, avoiding
considering the order of multiple facts. To
solve the set generation problem, we propose
networks featured by transformers with non-
autoregressive parallel decoding. Unlike previ-
ous approaches that use an autoregressive de-
coder to generate facts one by one, the pro-
posed networks can directly output the final set
of facts in one shot. Furthermore, to train the
networks, we also design a set-based loss that
forces unique predictions via bipartite match-
ing. Compared with cross-entropy loss that
highly penalizes small shifts in fact order, the
proposed bipartite matching loss is invariant
to any permutation of predictions. Benefiting
from getting rid of the burden of predicting
the order of multiple facts, our proposed net-
works achieve state-of-the-art (SoTA) perfor-
mance on two benchmark datasets.

1 Introduction

Nowadays, knowledge bases (KBs) are valuable
resources, which can provide back-end support for
various knowledge-centric services of real-world
applications, such as question answering systems
(Cui et al., 2017), dialogue systems (Madotto et al.,
2018) and recommendation systems (Guo et al.,
2020). However, high-quality KBs still rely almost
exclusively on human-curated structured or semi-
structured data (Mesquita et al., 2019). Such a
reliance on human curation is a major barrier to
creating always-up-to-date KBs.

To overcome this barrier, knowledge base popu-
lation (KBP) is proposed (Ji and Grishman, 2011;

Getman et al., 2018), which is a task of automat-
ically discovering facts about entities from texts
and expanding the incomplete KB with these facts.
As shown in Table 1, a KBP system is required to
take a given sentence as input and transform it into
a set of facts. A fact is in the form of <h, r, t>,
where h is a head entity, t is a tail entity, and r is a
predicate that falls in a predefined set of predicates.
Following Trisedya et al. (2019), we also assume
that h and t are existing entities in the given KB
while the fact <h, r, t> does not exist in the KB,
since KBs typically have much better coverage on
entities than on relationships.

Conventionally, KBP is solved by several in-
dividual components in a pipeline manner (Shin
et al., 2015; Angeli et al., 2015; Zhang et al., 2017;
Chaganty et al., 2017; Mesquita et al., 2019), typ-
ically including (1) entity discovery or named en-
tity recognition (Tjong Kim Sang and De Meulder,
2003), (2) entity linking (Milne and Witten, 2008)
and (3) relation extraction (Zelenko et al., 2003).
Entity discovery seeks to locate and classify named
entities mentioned in text into predefined categories
(e.g., people, organizations and locations). Entity
linking is a task to disambiguate these recognized
entity mentions by linking them to a reference KB.
Relation extraction aims to predict semantic rela-
tions between pairs of entities. Though widely used
in practice, this pipeline architecture is inherently
prone to error propagation between its components
(Trisedya et al., 2019).

To alleviate error propagation, some end-to-end
KBP methods are proposed, such as Liu et al.
(2018); Trisedya et al. (2019). These methods are
all based on the sequence-to-sequence (seq2seq)
framework (Sutskever et al., 2014; Cho et al., 2014).
Under this framework, end-to-end KBP is treated
as a translation of a sentence into a sequence of fact
elements (entity or predicate). Considering the run-
ning example in Table 1, a seq2seq model would
translate the sentence “President Obama
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Input Sentence:

President Obama welcomed President Xi Jinping of
China to visit the United States.

Output Facts:

<Q76, P39, Q11696>; <Q15031, P39, Q655407>

Table 1: An example of KBP. In this example,
“Obama”, “President of United States”, “Xi Jinping”,
and “President of People’s Republic of China” are
mapped to their unique Wikidata identifiers “Q76”,
“Q11696”, “Q15031” and “Q655407” respectively, and
the semantic relation “P39” (“position held” in Wiki-
data) is labeled between these entity pairs.

welcomed President Xi Jinping of
China to visit the United States"
into a sequence of Wikidata identifiers “Q76 P39
Q11696 Q15031 P39 Q655407". From the
output sequence, two new facts would be derived.

Despite the success of existing end-to-end meth-
ods for KBP, they are still limited by two widely
used modules in the seq2seq framework: autore-
gressive decoder and cross-entropy loss. The rea-
sons are as follows: the facts contained in a sen-
tence have no intrinsic order in essence. Consid-
ering the running example in Table 1, predicting
<Q76, P39, Q11696> first and then <Q15031,
P39, Q655407> has no difference from predict-
ing <Q15031, P39, Q655407> first and then
<Q76, P39, Q11696>. However, in order to
adapt the autoregressive decoder, whose output is a
sequence, unordered target facts must be sorted in a
certain order during the training phase. Meanwhile,
cross-entropy is a permutation-sensitive loss func-
tion, where a penalty is incurred for every fact that
is predicted out of the position. Consequently, the
current seq2seq models not only need to learn how
to generate facts, but also are required to consider
the extraction order of multiple facts.

In this paper, we formulate the end-to-end KBP
task as a set generation problem, avoiding con-
sidering the order of multiple facts. In order
to address the set generation problem, we pro-
pose end-to-end networks, dubbed “Set Genera-
tion Networks" (SGN), featured by transformers
with non-autoregressive parallel decoding and bi-
partite matching loss. In detail, there are three
parts in the proposed set generation networks: a
sentence encoder, a set generator, and a set based
loss function. First, we adopt the transformer-based

encoder (Vaswani et al., 2017) to represent the sen-
tence. After that, since the autoregressive decoder
must generate items one by one in order, such a
decoder is not suitable for generating unordered
sets. In contrast, we leverage a transformer-based
non-autoregressive decoder (Gu et al., 2018) as the
set generator, which can predict all facts at once. Fi-
nally, in order to assign a predicted fact to a unique
ground truth, we propose the bipartite matching
loss function inspired by the assignment problem
in operation research (Kuhn, 1955; Munkres, 1957;
Edmonds and Karp, 1972). Compared with the
cross-entropy loss that highly penalizes small shifts
in fact order, the proposed loss function is invariant
to any permutation of predictions; thus it is suitable
for evaluating the difference between the ground
truth set and the prediction set.

To summarize, our main contributions include:

• We formulate the end-to-end knowledge base
population as a set generation problem.

• We combine non-autoregressive parallel de-
coding with the bipartite matching loss func-
tion to solve this problem.

• Our proposed method yields SoTA results on
two benchmark datasets, and we perform vari-
ous experiments to verify its effectiveness.

2 Methodology

The goal of end-to-end KBP is to identify all pos-
sible facts Y = {< h1, r1, t1 > , ..., < hn, rn, tn >
} stated in a given sentence X to enrich the given
reference KB. To solve this task, we propose end-
to-end set generation networks, which are shown
in Figure 1. Four key components of the proposed
neural networks will be elaborated in the follow-
ing section. Concretely, we first present the joint
learning of word and entity embeddings in Section
2.1, which are the basis of the proposed networks.
Next, we introduce the sentence encoder in Section
2.2, which can represent each token in a given sen-
tence based on its bidirectional context. Then, we
illustrate the set generator in Section 2.3, which is
based on a non-autoregressive decoder to generate
a set of facts in a single pass. Finally, we describe a
set-based loss in Section 2.4, called bipartite match-
ing loss, which forces unique matching between
predicted and ground truth facts.
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Figure 1: The main architecture of set generation networks. The set generation networks predict the final set of
facts in parallel by combining a transformer-based encoder with a non-autoregressive decoder. In the training
phrase, bipartite matching uniquely assigns predictions with ground truths to provide accurate training signals.

2.1 Joint Learning of Word and Entity
Embeddings

In the first step, we jointly embed words, enti-
ties and predicates into the same vector space. To
achieve this, we combine the anchor context model
(Yamada et al., 2016) to compute the word embed-
dings with TransE (Bordes et al., 2013) to compute
the entity and predicate embeddings.

Specifically, we first utilize the anchor context
model to establish the interaction between the en-
tity and word embeddings. In this model, a mod-
ified Wikipedia corpus is generated by replacing
the hyperlinks with the related entity identifiers,
and a skip-gram model (Mikolov et al., 2013) is
trained on this corpus to compute the word and
entity embeddings. Formally, given a sequence
[w1, w2, ..., wT ], the loss function of the anchor
context model is:

JW = −
T∑
t=1

∑
−c≤j≤c,j 6=0

logP (wt+j |wt) (1)

where c is the size of the context window, wt de-
notes the target word, and wt+j is its context word.
The conditional probability P (wt+j |wt) is com-
puted using the following softmax function:

P (wt+j |wt) =
exp(VT

wt+j
Uwt)∑

w∈W exp(VT
wt

Uw)
(2)

where W is a set containing all words in the vocab-
ulary, and Vw,Uw ∈ Rd represent the vectors of
word w in matrices V and U (Mikolov et al., 2013).

Then, in order to map the entity and predicate
embeddings into the same continuous vector space,
a TransE model is trained on all facts in the given
reference KB (Note that facts mentioned in the test

set are not included in the KB). The loss function
of the TransE model is defined as :

JE =
∑
tr∈Tr

∑
t′r∈T ′

r

max(0, [γ + f(tr)− f(t′r)]) (3)

where Tr is the set of valid facts in the give KG,
T ′r is the set of corrupted facts, γ is the margin and
f = ‖h+ r − t‖2. The corrupted facts are created
by replacing the head or tail entity of a valid fact
with a random entity, and act as negative samples
in training.

To jointly train the anchor context model and the
TransE model, a hybrid loss function J is used, in
which the above loss functions are linearly com-
bined.

J = JW + JE (4)

After training, we can obtain word embeddings
Vw, entity embeddings Ve and predicate embed-
dings Vp, which coexist in the same continuous
vector space.

2.2 Sentence Encoder
The sentence encoder is designed to generate the
context-aware representation of each token in a sen-
tence. Following previous work (Trisedya et al.,
2019), we utilize the transformer-based encoder
(Vaswani et al., 2017), which is a stack of lay-
ers composed of two sub-layers: multi-head self-
attention followed by a feed-forward sub-layer.
Specific steps to generate context-aware represen-
tations are as follows: First, a given sentence X is
segmented with tokens. Then, these segmented to-
kens are projected to the continuous vector space by
using the pretrained word embeddings Vw (men-
tioned in Section 2.1). After that, word embeddings
of these tokens are fed into the transformer-based
encoder. Finally, the transformer-based encoder
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outputs the context-aware representation of each to-
ken in the sentence. The output of the transformer-
based encoder is denoted as He ∈ Rl×d, where l is
the sentence length and d is the output dimension
of the transformer-based encoder.

2.3 Set Generator
The goal of the set generator is to generate a set of
predicted facts based on the output of the sentence
encoder.

Input. The input of the set generator includes the
output of the sentence encoder He ∈ Rl×d and m
trainable embeddings, which are called fact queries.
With m fact queries, the set generator is able to
generate a fixed-size set of m predictions for each
sentence. To meet all conditions, m is set to be the
largest number of facts stated in a sentence.

Non-Autoregressive Decoder. The backbone of
the set generator is a non-autoregressive decoder.
The non-autoregressive decoder is composed of a
stack of N identical layers. In each layer, there are
multi-head self-attention mechanism to model the
relationship between facts, and multi-head inter-
attention mechanism to fuse the information of the
given sentence. Notably, compared with the autore-
gressive decoder, the non-autoregressive decoder
is not limited by an autoregressive factorization of
the output, so there is no need to prevent earlier
decoding steps from accessing information from
later steps. Thus, there is no casual mask used
in the multi-head self-attention mechanism. In-
stead, we use the unmasked self-attention. Through
the non-autoregressive decoder, m fact queries are
transformed into m output embeddings, which are
denoted as Hd ∈ Rm×d.

Output Layer. The output embeddings Hd are
then independently decoded into predicates and en-
tities by three feed forward networks, resulting m
final predicted facts. Specifically, given an output
embedding hd ∈ Rd in Hd, the predicted distribu-
tion of the predicate is :

pr = softmax(Vphd) (5)

where Vp ∈ Rp×d are the pretrained predicate
embeddings, and p is the total number of predi-
cate types. Note that a special predicate type ∅
is included to indicate no fact. Unlike the direct
prediction of predicates, the prediction of entities
requires a special handling, since there are typi-
cally millions of entities in KB, while the number

of predicates is only a few hundred. In detail, based
on the given output embedding hd ∈ Rd, we first
compute the predicted logit values of the entities:

logith = Verelu(W1hd)

logitt = Verelu(W2hd)
(6)

where W1,W2 ∈ Rd×d are learnable parameters,
and Ve is entity embedding matrix mentioned in
Section 2.1. Then, we conduct masked softmax1 to
compute the distribution of the entities:

ph = masked_softmax(logith,C(X))

pt = masked_softmax(logitt,C(X))
(7)

where C(X) is the entity candidates of the given
sentence X and is obtained through the process
mention in the following paragraph.

Candidate Selection. Inspired by the studies in
entity linking (Ganea and Hofmann, 2017; Kolitsas
et al., 2018), we conduct the candidate selection to
avoid involving an extremely large number of enti-
ties. For each span s in the given sentenceX , we se-
lect up to 10 entity candidates that might be referred
by this span. These top entities are based on an em-
pirical probabilistic entity-map p(e|s) built from
hyperlinks and disambiguation pages in Wikipedia.
We denote this candidate set as C(X) and use it at
both training and test time. For more details about
the candidate selection, we refer readers to Kolitsas
et al. (2018).

2.4 Bipartite Matching Loss
The main difficulty of training is to score the pre-
dicted facts with respect to the ground truths in
an end-to-end manner. We solve this difficulty by
introducing a permutation-invariant loss function,
called bipartite matching loss. The procedure of
computing this loss can be divided into two steps:
finding the optimal matching and computing the
loss based on the optimal matching.

Notations. Let us denote Y = {Yi}ni=1 as the set
of ground truth facts, and Ŷ = {Ŷi}mi=1 as the set
of m predicted facts, where m is greater than or
equal to n. We can consider Y also as a set of size
m padded with ∅ (no fact). Each element i of the
ground truth set can be seen as a Yi = (hi, ri, ti),

1The masked softmax is defined as:

masked_softmax(x,C) =

{
exp(xi)∑

j∈C exp(xj)
i ∈ C

0 i /∈ C
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where hi, ri and ti are the target head entity, predi-
cate (which may be ∅) and tail entity, respectively.
Each element i of the set of predicted facts is de-
noted as Ŷi = (phi ,p

r
i ,p

t
i), which is calculated

based on Equation 5 and Equation 7.

Finding the Optimal Matching. The first step in
bipartite matching loss is to find the optimal match-
ing between the set of ground truth facts Y and the
set of predicted facts Ŷ, which can be reduced to
a linear balanced assignment problem2 (Burkard
et al., 2012). In detail, we can regard the set of
predicted facts Ŷ as a set of persons, and the set of
ground truth Y as a set of jobs. For each ground
truth fact, only one predicted fact is assigned to it,
and vice versa. Meanwhile, the cost of assigning
Ŷi (the persons i) with Yj (the job j) is defined as:

Cmatch(Ŷi,Yj) =− 1{ri 6=∅}[p
r
i (rj)

+ phi (hj) + pti(tj)]
(8)

The goal of this problem is to find a permutation of
elements π? with the lowest cost, which is defined
as:

π? = argmin
π∈Π(m)

m∑
i=1

Cmatch(Ŷπ(i),Yi) (9)

where Π(m) is the space of all m-length permu-
tations, and Cmatch(Ŷπ(i),Yi) is the cost between
the predicted fact with index π(i) and the ground
truth Yi.

One of the most effective ways to solve the as-
signment problem is Hungarian algorithm3 (Kuhn,
1955). Armed with this algorithm, the optimal as-
signment π? with the minimum total cost can be
easily computed in polynomial time (O(m3)).

Computing the Loss. The second step is to com-
pute the loss for all pairs matched in the previous
step. We define the loss as:

L(Ŷ,Y) =

m∑
i=1

{− logprπ?(i)(ri) + 1{ri 6=∅}[

− logphπ?(i)(hi)− logptπ?(i)(ti)]}

(10)

where π? is the optimal assignment computed by
Hungarian algorithm in the first step.

3 Experiments

In this section, we carry out an extensive set of ex-
periments with the aim of answering the following
research questions (RQs):

2https://en.wikipedia.org/wiki/
Assignment_problem

3https://en.wikipedia.org/wiki/
Hungarian_algorithm

• RQ1: How well do our proposed set genera-
tion networks (SGN) perform, in comparison
with the competitive baselines?

• RQ2: How efficient is the training and infer-
ence of the model?

• RQ3: How does each design of the proposed
networks matter?

• RQ4: What is the performance of the pro-
posed networks in sentences that mention dif-
ferent numbers of facts?

In the remainder of this section, we describe the
datasets, experimental settings (in the Appendix),
and all baselines.

3.1 Datasets and Evaluation Metrics
The Cold Start track in TAC (Getman et al., 2018)
provides a testbed for KBP systems. However, the
dataset is not publicly available and manual evalu-
ation is used to examine a system’s “justification”
(Mesquita et al., 2019), which make it difficult to
reproduce TAC’s evaluation for new systems.

Instead, we validate the proposed method on
two publicly available datasets: WIKI and GEO4

(Trisedya et al., 2019). The statistics of these
datasets are shown in Table 2. The training set,
validation set and WIKI are constructed from
Wikipedia articles. To evaluate methods on a differ-
ent style of text than the training data, GEO is used
as a testbed, which is a dataset about user reviews
on 100 popular landmarks in Australia.

Instead of performing the irreproducible manual
evaluation, standard precision, recall and micro-F1
are adopted to evaluate the model in these datasets.
A fact is regarded as correct if the predicate and the
two corresponding entities are all correct.

#Sentences #Facts #Entities #Predicates

Training 224881 300198 248244 157
Validation 988 1329 1683 37

WIKI 29785 39894 38690 109
GEO 1000 1000 124 11

Table 2: Statistics of the dataset.

3.2 Implementation Details
We tune the hyperparameters of our proposed
method by grid searching using the validation

4These datasets are available at https://bitbucket.
org/bayudt/relation_extraction

https://en.wikipedia.org/wiki/Assignment_problem
https://en.wikipedia.org/wiki/Assignment_problem
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://bitbucket.org/bayudt/relation_extraction
https://bitbucket.org/bayudt/relation_extraction
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Model
WIKI GEO

Precision Recall F1 Precision Recall F1

Pipeline
Models

AIDA + MinIE 36.72 48.56 41.82 35.74 39.01 37.30
NeuralEL + MinIE 35.11 39.67 37.25 36.44 38.11 37.26
AIDA + ClauseIE 36.17 47.28 40.99 35.31 39.51 37.29

NerualEL + ClauseIE 34.45 37.86 36.07 35.63 37.91 36.73
AIDA + CNN 40.35 35.03 37.50 37.15 31.65 34.18

NeuralEL + CNN 36.89 35.21 36.03 37.81 30.05 33.49

End-to-End
Models

Single Attention 60.56 52.31 56.13 58.69 48.51 53.12
N-gram Attention 74.24 68.45 71.23 68.16 68.61 68.38

Transformer 58.29 50.25 53.97 61.81 61.61 61.71

Set Generation Networks 82.75 ± 0.11 77.55 ±0.27 80.07 ±0.27 86.89 ±0.51 85.31±0.47 86.10±0.34

Table 3: Precision (%) , Recall (%) and F1 score (%) of our proposed set generation networks and current SoTA
methods on the WIKI and GEO dataset. The results of baselines are taken from Trisedya et al. (2019). To reduce
randomness, we use 10 different random seeds to run the model with early stopping on the development set, and
report the mean and standard deviation (%) of test precision, recall and F1 for each dataset.

set. For a fair comparison, the dimension of pre-
trained word, entity and predicate embeddings is
set to 64, which is the same as Trisedya et al.
(2019). The initial learning rate is set to 0.0001,
the number of stacked transformer blocks in the
non-autoregressive decoder is set to 2 and the batch
size is set to 8. We use the dropout strategy to miti-
gate overfitting, and the dropout rate is set to 0.1.
All experiments are conducted with an NVIDIA
GeForce RTX 2080 Ti.

3.3 Baselines

We compare the proposed model with the following
systems that report SoTA results on these datasets.

Firstly, we compare our proposed model with
pipeline models. In these pipeline models, we use
two entity discovery and entity linking systems,
AIDA (Hoffart et al., 2011; Yosef et al., 2011) and
NeuralEL (Kolitsas et al., 2018). In AIDA, entity
mentions are automatically detected by using the
Stanford NER Tagger (Manning et al., 2014), and
then are mapped to entities by using a probabilistic
graphical model. In NeuralEL, all possible spans
that have at least one possible entity candidate are
generated, and are linked to entities by using a
context-aware compatibility score. To label the
relationship between two entities, we adopt super-
vised approaches like CNN (Lin et al., 2016) and
OpenIE-based approaches, such as MinIE (Gash-
teovski et al., 2017) and ClausIE (Del Corro and
Gemulla, 2013). In OpenIE-based approaches, we
leverage the dictionary based paraphrase detection
to map the extracted predicate of the output. We
combine three paraphrase dictionaries including
PATTY (Nakashole et al.), POLY (Grycner and

Weikum, 2016), and PPDB (Ganitkevitch et al.,
2013). Following previous work (Trisedya et al.,
2019), we replace the extracted predicate with the
correct predicate ID if one of the paraphrases of the
correct predicate appears in the extracted predicate.
Otherwise, we replace the extracted predicate with
"NA" to indicate an unrecognized predicate.

Secondly, we compare our proposed model
with end-to-end models, including Single Atten-
tion model (Bahdanau et al., 2015), Transformer
model (Vaswani et al., 2017) and N-gram Atten-
tion model (Trisedya et al., 2019). Compared with
the single attention model, the N-gram attention
model computes the n-gram combination of atten-
tion weight to capture the verbal or noun phrase
context. Note that all of these end-to-end models
are based on the encoder-decoder framework and
are required to sort the ground truth facts. Follow-
ing previous work (Trisedya et al., 2019), we build
the ground truth sequence according to the inherent
order in these datasets.

3.4 Main Results

To start, we address the research question RQ1.
Table 3 shows the results of our proposed model
against baselines on two benchmark datasets.

Taken overall, our proposed model substantially
outperforms baselines on these datasets. In WIKI,
our proposed model achieves 8.51%, 9.10% and
8.84% improvements in Precision, Recall and F1
score respectively over the current SoTA method,
N-gram Attention. In GEO, our proposed model
achieves the SoTA results and there is 18.73%,
16.70% and 17.72% improvement in Precision, Re-
call and F1 score compared with the best existing
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model. Such significant improvements demonstrate
the effectiveness of our proposed method.

Meanwhile, we observe that pipeline models
struggle to achieve satisfactory results in KBP. To
further show the effect of error propagation, we
first examine the performance of the entity discov-
ery and entity linking module. Through experi-
ments, AIDA can only get 43.02% (WIKI) and
54.75% (GEO) F1 score, and NeuralEL achieves
45.92% (WIKI) and 67.62% (GEO) in F1 score.
Then, we remove the entity disambiguation pre-
processing step by allowing the CNN model to
access golden entities. In this setup, CNN achieves
81.92% and 75.82% in F1 score over the WIKI and
GEO datasets, respectively. The poor experimental
results indicate that mistakes made by entity dis-
covery and linking modules are propagated to the
final output of the system, negatively affecting the
overall performance of pipeline models.

3.5 Analysis on Speed

Model Training Time Test Time

Ours 689.82 49.97
Transformer 793.84 (×1.15) 157.86 (×3.16)

Single Attention 941.58 (×1.36) 100.17 (×2.00)

Table 4: The performance of models in training and
testing time. The time duration is measured in seconds.

Next, we examine the speed of models to an-
swer the research question RQ2. As a basic NLP
tool, a high speed of both training and inference
is required. For a fair comparison, Transformer,
Single Attention, and our proposed model are im-
plemented under the same experimental conditions.
We randomly select 10 training and testing epochs
as samples. The average time of training and test-
ing is shown in Table 4. From the table, we find that
our proposed model is more efficient than Single
Attention and Transformer in both training and in-
ference. The reason behind that is Single Attention
and Transformer are all based on autoregressive
decoders, which generate each predicted element
conditioned on the sequence previously generated.
This process is not parallelizable. However, our
proposed model leverages a non-autoregressive de-
coder, which does not have the constraint of an
autoregressive factorization and can generate all
elements in one shot. With such a parallelizable
decoder, our proposed model is very fast in both
training and inference.

Settings Precision Recall F1 ∆

Bipartite Matching Loss,
Number of Decoder Layer=2

83.00 77.31 80.06 -

Bipartite Matching Loss,
Random Embeddings,
Number of Decoder Layer = 2

80.34 71.03 75.40 ↓ 4.66

Bipartitie Matching Loss,
Number of Decoder Layer=3

82.76 77.83 80.22 ↑ 0.16

Bipartite Matching Loss,
Number of Decoder Layer=1

81.42 75.41 78.30 ↓ 1.76

Cross-Entropy Loss,
Fixed Order,
Number of Decoder Layer=2

78.66 69.15 73.60 ↓ 6.49

Cross-Entropy Loss,
Random Order,
Number of Decoder Layer=2

77.54 66.62 71.66 ↓ 8.40

Table 5: Results of ablation studies on WIKI dataset.

3.6 Ablation Studies

In this section, we turn to the research question
RQ3. We conduct various ablation studies to in-
vestigate the effectiveness of the pretrained em-
beddings, the non-autoregressive decoder and the
bipartite matching loss.

First, instead of using pretrained embeddings,
we randomly initialize all embeddings. From Table
5, we can observe that there is a significant per-
formance drop (↓ 4.66%) by using randomly ini-
tialized embeddings. Next, we examine the effec-
tiveness of the non-autoregressive decoder. From
Table 5, we find that increasing the number of lay-
ers of the non-autoregressive decoder can achieve
better results. When the number of decoder layers
is set to 1, 2, and 3, the best results are 78.30%,
80.06% and 80.22%, respectively. We conjecture
this is largely due to that with the deepening of
the decoder layers, more multi-head self-attention
modules allow for better modeling of relationships
between fact queries, and more multi-head inter
attention modules allow for more complete inte-
gration of sentence information into fact queries.
Finally, we compare bipartite matching loss with
widely used cross-entropy loss. In cross-entropy
loss, we adopt two strategies to sort golden facts
in training: Fix Order and Random Order. Fix
Order means we randomly select one valid order
before training and keep the order unchanged dur-
ing training. Random Order means we randomly
sort golden facts for each sentence in every training
epoch. From the results, we find that: (1) Com-
pared with the Fix Order strategy, simply shuffling
(Random Order) will not improve the performance.
(2) Compared with Fix Order and Random Order,
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Figure 2: Detailed results on sentences that contain a
different number of facts. We divide the sentences of
the WIKI test set into 4 subclasses. Each class contains
sentences that mention 1,2,3,or 4 facts.

introducing bipartite matching loss gains 6.49%
and 8.40% improvements in F1 score, which veri-
fies the effectiveness of bipartite matching loss.

3.7 Detailed Results on Sentences with
Different Number of Facts

Finally, we answer the research question RQ4. We
compare the models’ ability on sentences that men-
tion a different number of facts. We divide the
sentences in the WIKI test set into 4 subclasses.
Each class contains sentences that mention 1,2,3,or
4 facts. The results are shown in Figure 2. From the
results, we can observe that: (1) Compared with
the other models, our proposed model achieves
the highest performance in all cases. Such results
demonstrate the ability of our proposed model in
handling multiple facts. (2) When extracting facts
from sentences that mention 1 fact or 2 facts, most
models can achieve the best performance. How-
ever, when the number of facts increases, the per-
formance of models decreases significantly.

4 Related Work

Knowledge Base Population. Traditionally, KBP
has been tackled with pipeline models (Shin et al.,
2015; Angeli et al., 2015; Zhang et al., 2017; Cha-
ganty et al., 2017; Mesquita et al., 2019).The main
shortcoming of pipeline systems is error propaga-
tion. End-to-end systems (Liu et al., 2018; Trisedya
et al., 2019) are a promising solution for addressing
error propagation. These methods are all based on
the seq2seq framework. However, a roadblock for

the advancement of this line of research is that an
inexistent order of facts must be introduced to train
the seq2seq model. In this paper, we introduce set
generation networks to overcome this roadblock.

Non-Autoregressive Model for Generation. Gu
et al. (2018) began to explore non-autoregressive
model, the aim of which is to generate sequences in
a parallel manner. Since then, there is rich literature
devoted to this topic, such as Lee et al. (2018); Ma
et al. (2019); Ren et al. (2020); Ran et al. (2020);
Kong et al. (2020). Nowadays, non-autoregressive
models are widely explored in natural language and
speech processing tasks such as neural machine
translation (Lee et al., 2018; Ma et al., 2019) and
automatic speech recognition (Chen et al., 2019;
Tian et al., 2020; Bai et al., 2020). To the best
of our knowledge, this is the first work to apply
the non-autoregressive model to knowledge base
population. In this work, we resort to the non-
autoregressive model to generate the set of rela-
tional facts in one shot.

Set Prediction. The problem with predicting sets
is that the output order of the elements is arbitrary,
so computing an element-wise loss does not make
sense; there is no guarantee that the elements in
the target set happen to be in the same order as
they were generated. Assignment-based losses are
a popular choice on point clouds (Fan et al., 2017;
Yang et al., 2018) and object detection (Carion
et al., 2020; Zhu et al., 2020; Yao et al., 2021). An
alternative approach is to perform the set genera-
tion sequentially (Stewart et al., 2016; You et al.,
2018). Furthermore, Zhang et al. (2019) develop
a FSPool-based set prediction method. In this pa-
per, we formulate the end-to-end knowledge base
population task as a set generation problem

5 Conclusion

In this paper, we introduce set generation net-
works for end-to-end KBP. Compared with previ-
ous seq2seq models, we formulate the KBP task as
a set generation problem. In such a way, the model
will be relieved of predicting the order between
multiple facts. To solve the set generation problem,
We combine non-autoregressive parallel decoding
with the bipartite matching loss function. To val-
idate the effectiveness of the proposed networks,
we conduct extensive experiments. Experimental
results show our proposed networks outperform
current SoTA baselines over different scenarios.
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