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Abstract

It is often challenging to solve a complex prob-
lem from scratch, but much easier if we can
access other similar problems with their solu-
tions — a paradigm known as case-based rea-
soning (CBR). We propose a neuro-symbolic
CBR approach (CBR-KBQA) for question an-
swering over large knowledge bases. CBR-
KBQA consists of a nonparametric memory
that stores cases (question and logical forms)
and a parametric model that can generate a
logical form for a new question by retrieving
cases that are relevant to it. On several KBQA
datasets that contain complex questions, CBR-
KBQA achieves competitive performance. For
example, on the COMPLEXWEBQUESTIONS
dataset, CBR-KBQA outperforms the current
state of the art by 11% on accuracy. Further-
more, we show that CBR-KBQA is capable of
using new cases without any further training:
by incorporating a few human-labeled exam-
ples in the case memory, CBR-KBQA is able to
successfully generate logical forms containing
unseen KB entities as well as relations.

1 Introduction

Humans often solve a new problem by recollecting
and adapting the solution to multiple related prob-
lems that they have encountered in the past (Ross,
1984; Lancaster and Kolodner, 1987; Schmidt
et al., 1990). In classical artificial intelligence (AI),
case-based reasoning (CBR) pioneered by Schank
(1982), tries to incorporate such model of reason-
ing in AI systems (Kolodner, 1983; Rissland, 1983;
Leake, 1996). A sketch of a CBR system (Aamodt
and Plaza, 1994) comprises of — (i) a retrieval
module, in which ‘cases’ that are similar to the
given problem are retrieved, (ii) a reuse module,
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where the solutions of the retrieved cases are re-
used to synthesize a new solution. Often, the new
solution does not work and needs more revision,
which is handled by a (iii) revise module.

In its early days, the components of CBR were
implemented with symbolic systems, which had
their limitations. For example, finding similar cases
and synthesizing new solutions from them is a chal-
lenging task for a CBR system implemented with
symbolic components. However, with the recent
advancements in representation learning (LeCun
et al., 2015), the performance of ML systems have
improved substantially on a range of practical tasks.

Given a query, CBR-KBQA uses a neural re-
triever to retrieve other similar queries (and their
logical forms) from a case memory (e.g. training
set). Next, CBR-KBQA generates a logical form for
the given query by learning to reuse various com-
ponents of the logical forms of the retrieved cases.
However, often the generated logical form does not
produce the right answer when executed against
a knowledge base (KB). This can happen because
one or more KB relations needed are never present
in the retrieved cases or because KBs are woefully
incomplete (Min et al., 2013) (Figure 1). To allevi-
ate such cases, CBR-KBQA has an additional revise
step that aligns the generated relations in the logi-
cal form to the query entities’ local neighborhood
in the KB. To achieve this, we take advantage of
pre-trained relation embeddings from KB comple-
tion techniques (e.g. Trans-E (Bordes et al., 2013))
that learn the structure of the KB.

It has been shown that neural seq2seq models do
not generalize well to novel combinations of pre-
viously seen input (Lake and Baroni, 2018; Loula
et al., 2018). However, CBR-KBQA has the abil-
ity to reuse relations from multiple retrieved cases,
even if each case contains only partial logic to an-
swer the query. We show that CBR-KBQA is effec-
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Figure 1: CBR-KBQA derives the logical form (LF) for a new query from the LFs of other retrieved queries from
the case-memory. However, the derived LF might not execute because of missing edges in the KB. The revise step
aligns any such missing edges (relations) with existing semantically-similar edges in the KB.

tive for questions that need novel combination of
KB relations, achieving competitive results on mul-
tiple KBQA benchmarks such as WebQuestionsSP
(Yih et al., 2016), ComplexWebQuestions (CWQ)
(Talmor and Berant, 2018) and CompositionalFree-
baseQuestions (CFQ) (Keysers et al., 2020). For
example, on the hidden test-set of the challenging
CWQ dataset, CBR-KBQA outperforms the best
system by over 11% points.

We further demonstrate that CBR-KBQA, with-
out the need of any further fine-tuning, also general-
izes to queries that need relations which were never
seen in the training set. This is possible due to CBR-
KBQA’s nonparametric approach which allows one
to inject relevant simple cases during inference, al-
lowing it to reuse new relations from those cases.
In a controlled human-in-the-loop experiment, we
show that CBR-KBQA can correctly answer such
questions when an expert (e.g. database administra-
tor) injects a few simple cases to the case memory.
CBR-KBQA is able to retrieve those examples from
the memory and use the unseen relations to com-
pose new logical forms for the given query.

Generalization to unseen KB relations, without
any re-training, is out of scope for current neu-
ral models. Currently, the popular approach to
handle such cases is to re-train or fine-tune the
model on new examples. This process is not only
time-consuming and laborious but models also suf-
fer from catastrophic forgetting (Hinton and Plaut,
1987; Kirkpatrick et al., 2017), making wrong pre-
dictions on examples which it previously predicted
correctly. We believe that the controllable proper-
ties of CBR-KBQA are essential for QA models to
be deployed in real-world settings and hope that our

work will inspire further research in this direction.
Recent works such as REALM (Guu et al., 2020)

and RAG (Lewis et al., 2020b) retrieve relevant
paragraphs from a nonparametric memory for an-
swering questions. CBR-KBQA, in contrast, re-
trieves similar queries w.r.t the input query and
uses the relational similarity between their logical
forms to derive a logical form for the new query.
CBR-KBQA is also similar to the recent retrieve
and edit framework (Hashimoto et al., 2018) for
generating structured output. However, unlike us
they condition on only a single retrieved example
and hence is unlikely to be able to handle com-
plex questions that need reuse of partial logic from
multiple questions. Moreover, unlike CBR-KBQA,
retrieve and edit does not have a component that
can explicitly revise an initially generated output.

The contributions of our paper are as follows —
(a) We present a neural CBR approach for KBQA
capable of generating complex logical forms condi-
tioned on similar retrieved questions and their logi-
cal forms. (b) Since CBR-KBQA explicitly learns
to reuse cases, we show it is able to generalize to
unseen relations at test time, when relevant cases
are provided. (c) We also show the efficacy of our
revise step of CBR-KBQA which allows to correct
generated output by aligning it to local neighbor-
hood of the query entity. (d) Lastly, we show that
CBR-KBQA significantly outperforms other com-
petitive models on several KBQA benchmarks.

2 Model

This section describes the implementation of var-
ious modules of CBR-KBQA. In CBR, a case is
defined as an abstract representation of a problem
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along with its solution. In our KBQA setting, a
case is a natural language query paired with an ex-
ecutable logical form. The practical importance of
KBQA has led to the creation of an array of recent
datasets (Zelle and Mooney, 1996; Bordes et al.,
2015; Su et al., 2016; Yih et al., 2016; Zhong et al.,
2017a; Ngomo, 2018; Yu et al., 2018; Talmor and
Berant, 2018, inter-alia). In these datasets, a ques-
tion is paired with an executable logical form such
as SPARQL, SQL, S-expression or graph query. All
of these forms have equal representational capac-
ity and are interchangeable (Su et al., 2016). Fig-
ure 2 shows an example of two equivalent logical
forms. For our experiments, we consider SPARQL

programs as our logical form.
Formal definition of task: let q be a natural lan-
guage query and letK be a symbolic KB that needs
to be queried to retrieve an answer list A contain-
ing the answer(s) for q. We also assume access to a
training set D = {(q1, `1), (q2, `2), . . . (qN , `N )}
of queries and their corresponding logical forms
where qi, `i represents query and its corresponding
logical form, respectively. A logical form is an exe-
cutable query containing entities, relations and free
variables (Figure 2). CBR-KBQA first retrieves K
similar casesDq fromD (§ 2.1). It then generates a
intermediate logical form `inter by learning to reuse
components of the logical forms of the retrieved
cases (§ 2.2). Next, the logical form `inter is revised
to output the final logical form ` by aligning to the
relations present in the neighborhood subgraph of
the query entity to recover from any spurious rela-
tions generated in the reuse step (§ 2.3). Finally, `
is executed against K and the list of answer entities
are returned. We evaluate our KBQA system by
calculating the accuracy of the retrieved answer list
w.r.t a held-out set of queries.

2.1 Retrieve

The retrieval module computes dense representa-
tion of the given query and uses it to retrieve other
similar query representation from a training set.
Inspired by the recent advances in neural dense
passage retrieval (Das et al., 2019; Karpukhin et al.,
2020), we use a ROBERTA-base encoder to encode
each question independently. Also, we want to
retrieve questions that have high relational simi-
larity instead of questions which share the same
entities (e.g. we prefer to score the query pair
(Who is Justin Bieber’s brother?, Who is Rihanna’s
brother?), higher than (Who is Justin Bieber’s

brother?, Who is Justin Bieber’s father?)). To mini-
mize the effect of entities during retrieval, we use
a named entity tagger1 to detect spans of entities
and mask them with [BLANK] symbol with a prob-
ability pmask, during training. The entity masking
strategy has previously been successfully used in
learning entity-independent relational representa-
tions (Soares et al., 2019). The similarity score
between two queries is given by the inner product
between their normalized vector representations
(cosine similarity), where each representation, fol-
lowing standard practice (Guu et al., 2020), is ob-
tained from the encoding of the initial [CLS] token
of the query.

Fine-tuning question retriever: In passage re-
trieval, training data is gathered via distant super-
vision in which passages containing the answer is
marked as a positive example for training. Since
in our setup, we need to retrieve similar questions,
we use the available logical forms as a source of
distant supervision. Specifically, a question pair is
weighed by the amount of overlap (w.r.t KB rela-
tions) it has in their corresponding logical queries.
Following DPR (Karpukhin et al., 2020), we en-
sure there is at least one positive example for each
query during training and use a weighted negative
log-likelihood loss where the weights are computed
by the F1 score between the set of relations present
in the corresponding logical forms. Concretely,
let (q1, q2, . . . , qB) denote all questions in a mini-
batch. The loss function is:

L = −
∑
i,j

wi,j log
exp(sim(qi,qj))∑
j exp(sim(qi,qj))

Here, qi ∈ Rd denotes the vector representation
of query qi and sim(qi,qj) = q>i qj. wi,j is com-
puted as the F1 overlap between relations in the
logical pairs of qi and qj . We pre-compute and
cache the query representations of the training set
D. For query q, we return the top-k similar queries
in D w.r.t q and pass it to the reuse module.

2.2 Reuse
The reuse step generates an intermediate logical
form from the k cases that are fed to it as input
from the retriever module. Pre-trained encoder-
decoder transformer models such as BART (Lewis
et al., 2020a) and T5 (Raffel et al., 2020) have en-
joyed dramatic success on semantic parsing (Lin

1https://cloud.google.com/
natural-language

https://cloud.google.com/natural-language
https://cloud.google.com/natural-language
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NL: What do  jamaican people speak?
SPARQL: select distinct ?x where { m.03_r3 
location.country.languages_spoken ?x }
Graph-query:

 

jamaica location.country.
languages_spoken

type:lang

Figure 2: An example of a SPARQL logical form for a
simple query and its equivalent graph-query.

et al., 2018; Hwang et al., 2019; Shaw et al., 2020;
Suhr et al., 2020). We take a similar approach
in generating an intermediate logical form condi-
tioned on the retrieved cases. However, one of the
core limitation of transformer-based models is its
quadratic dependency (in terms of memory), be-
cause of full-attention, which severely limits the
sequence length it can operate on. For example,
BART and T5 only supports sequence length of 512
tokens in its encoder. Recall that for us, a case is a
query from the train set and an executable SPARQL

program, which can be arbitrarily long.
To increase the number of input cases, we lever-

age a recently proposed sparse-attention trans-
former architecture — BIGBIRD (Zaheer et al.,
2020). Instead of having each token attend to all in-
put tokens as in a standard transformer, each token
attends to only nearby tokens. Additionally, a small
set of global tokens attend to all tokens in the input.
This reduces the transformer’s memory complexity
from quadratic to linear, and empirically, BIGBIRD

enables us to use many more cases.
Description of input: The input query q and

cases Dq = {(q′1, `′1), (q′2, `′2), . . . (q′k, `′k)}
are concatenated on the encoder
side. Specifically, InputENC(q,Dq) =
q[SEP]q′1[SEP]`

′
1, . . . qk

′[SEP]`k
′, where

[SEP] denotes the standard separator token. Each
logical form also contain the KB entity id of each
entities in the question (e.g. m.03_r3 for Jamaica
in Figure 2). We append the entity id after the
surface form of the entity mention in the question
string. For example, the query in Figure 2 becomes
"What do Jamaican m.03_r3 people speak?".

Training is done using a standard seq2seq cross-
entropy objective. Large deep neural networks
usually benefit from “good” initialization points
(Frankle and Carbin, 2019) and being able to uti-
lize pre-trained weights is critical for seq2seq mod-
els. We find it helpful to have a regularization

term that minimizes the Kullback–Leibler diver-
gence (KLD) between output softmax layers of
(1) when only the query q is presented (i.e not us-
ing cases), and (2) when query and cases (Dq) are
available (Yu et al., 2013). Formally, let f be the
seq2seq model, let σ = softmax(f(q,Dq)) and
σ′ = softmax(f(q)) be the decoder’s prediction
distribution with and without cases, respectively.
The following KLD term is added to the seq2seq
cross-entropy loss

L = LCE(f(q,Dq), lq) + λT KLD(σ, σ′)

where λT ∈ [0, 1] is a hyper-parameter. Intuitively,
this term regularizes the prediction of f(q,Dq) not
to deviate too far away from that of the f(q) and
we found this to work better than initializing with
a model not using cases.

2.3 Revise

In the previous step, the model explicitly reuses
the relations present in Dq, nonetheless, there is no
guarantee that the query relations inDq will contain
the relations required to answer the original query q.
This can happen when the domain of q and domain
of cases in Dq are different even when the relations
are semantically similar. For example, in Figure 1
although the retrieved relations in NN queries are
semantically similar, there is a domain mismatch
(person v/s fictional characters). Similarly, large
KBs are very incomplete (Min et al., 2013), so
querying with a valid relation might require an edge
that is missing in the KB leading to intermediate
logical forms which do not execute.

To alleviate this problem and to make the queries
executable, we explicitly align the generated rela-
tions with relations (edges) present in the local
neighborhood of the query entity in the KG. We
propose the following alignment models:

Using pre-trained KB embeddings: KB com-
pletion is an extensively studied research field
(Nickel et al., 2011; Bordes et al., 2013; Socher
et al., 2013; Velickovic et al., 2018; Sun et al.,
2019b) and several methods have been developed
that learn low dimensional representation of rela-
tions such that similar relations are closer to each
other in the embedding space. We take advantage
of the pre-trained relations obtained from TransE
(Bordes et al., 2013), a widely used model for KB
completion. For each predicted relation, we find
the most similar (outgoing or incoming) relation
edge (in terms of cosine similarity) that exists in the
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Model P R F1 Acc

Weakly supervised models

GraftNet (Sun et al., 2018) - - 66.4† -
PullNet (Sun et al., 2019a) - - 68.1† -
EmbedKGQA (Saxena et al., 2020) - - 66.6† -

Supervised models

STAGG (Yih et al., 2016) 70.9 80.3 71.7 63.9
T5-11B (Raffel et al., 2020) 62.1 62.6 61.5 56.5
T5-11B + Revise 63.6 64.3 63.0 57.7
CBR-KBQA (Ours) 73.1 75.1 72.8 69.9

Table 1: Performance on the WebQSP dataset. Graft-
Net, PullNet and EmbedKGQA produces a ranking of
KG entities hence evaluation is in Hits@k (see text
for description). CBR-KBQA significantly outperforms
baseline models in the strict exact match accuracy met-
ric. † Models report hits@1 instead of F1

KB for that entity and align with it. If the predicted
edge exists in the KB, it trivially aligns with itself.
There can be multiple missing edges that needs
alignment (Figure 1) and we find it more effective
to do beam-search instead of greedy-matching the
most similar edge at each step.

Using similarity in surface forms: Simi-
lar relations (even across domains) have over-
lap in their surface forms (e.g. ‘siblings’ is
common term in both ‘person.siblings’ and ‘fic-
tional_character.siblings’). Therefore, word em-
beddings obtained by encoding these words should
be similar. This observation has been successfully
utilized in previous works (Toutanova and Chen,
2015; Hwang et al., 2019). We similarly encode the
predicted relation and all the outgoing or incoming
edges with ROBERTA-base model. Following stan-
dard practices, relation strings are prepended with
a [CLS] token and the word pieces are encoded with
the ROBERTA-base model and the output embed-
ding of the [CLS] token is considered as the relation
representation. Similarity between two relation
representations is computed by cosine similarity.

Our alignment is simple and requires no learning.
By aligning only to individual edges in the KB, we
make sure that we do not change the structure of the
generated LF. We leave the exploration of learning
to align single edges in the program to sequence of
edges (paths) in the KB as future work.

3 Experiments

Data: For all our experiments, the underlying KB
is full Freebase containing over 45 million entities
(nodes) and 3 billion facts (edges) (Bollacker et al.,
2008). We test CBR-KBQA on three datasets — We-

Dataset Precision Recall F1

WebQSP 0.761 0.819 0.789
CWQ 0.707 0.910 0.796

Table 2: Entity linking performance on various datasets

bQSP (Yih et al., 2016), CWQ (Talmor and Berant,
2018) and CFQ (Keysers et al., 2020). Please refer
to §A.1 for a detailed description of each datasets.
Hyperparameters: All hyperparameters are set by
tuning on the valdation set for each dataset. We ini-
tialize our retriever with the pre-trained ROBERTA-
base weights. We set pmask = 0.2 for CWQ and
0.5 for the remaining datasets. We use a BIGBIRD

generator network with 6 encoding and 6 decod-
ing sparse-attention layers, which we initialize with
pre-trained BART-base weights. We use k=20 cases
and decode with a beam size of 5. Initial learn-
ing rate is set to 5× 10−5 and is decayed linearly
through training. Further details for the EMNLP
reproducibility checklist is given in §A.2.

3.1 Entity Linking

The first step required to generate an executable
LF for a NL query is to identify and link the enti-
ties present in the query. For our experiments, we
use a combination of an off-the-shelf entity linker
and a large mapping of mentions to surface forms.
For the off-the-shelf linker, we use a recently pro-
posed high precision entity linker ELQ (Li et al.,
2020). To further improve recall of our system,
we first identify mention spans of entities in the
question by tagging it with a NER2 system. Next,
we link entities not linked by ELQ by exact match-
ing with surface form annotated in FACC1 project
(Gabrilovich et al., 2013). Our entity linking results
are shown in Table 2.

3.2 KBQA Results

This section reports the performance of CBR-KBQA

on various benchmarks. We report the strict exact
match accuracy where we compare the list of pre-
dicted answers by executing the generated SPARQL

program to the list of gold answers3. A question
is answered correctly if the two list match exactly.
We also report the precision, recall and the F1 score
to be comparable to the baselines. Models such as
GraftNet (Sun et al., 2018) and PullNet (Sun et al.,

2https://cloud.google.com/
natural-language

3We generate the gold answer entities by executing the
gold SPARQL query against our Freebase KB

https://cloud.google.com/natural-language
https://cloud.google.com/natural-language
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Model P R F1 Acc

Weakly supervised models

KBQA-GST (Lan et al., 2019) - - - 39.4
QGG (Lan and Jiang, 2020) - - - 44.1
PullNet (Sun et al., 2019a) - - - 45.9
DynAS (Alibaba Group) - - - 50.0

Supervised models

T5-11B (Raffel et al., 2020) 55.2 55.4 54.6 52.4
T5-11B + Revise 58.7 59.6 58.2 55.6
CBR-KBQA (Ours) 70.4 71.9 70.0 67.1

Table 3: Performance on the hidden test set of CWQ.

2019a) rank answer entities and return the top entity
as answer (Hits@1 in table 1). This is undesirable
for questions that have multiple entities as answers
(e.g. “Name the countries bordering the U.S.?”).
We also report performance of models that only
depend on the query and answer pair during train-
ing and do not depend on LF supervision (weakly-
supervised setting). Unsurprisingly, models trained
with explicit LF supervision perform better than
weakly supervised models. Our main baseline is a
massive pre-trained seq2seq model with orders of
magnitude more number of parameters — T5-11B
(Raffel et al., 2020). T5 has recently been shown to
be effective for compositional KBQA (Furrer et al.,
2020). For each dataset, we fine-tune the T5 model
on the query and the LF pairs.

Table 1 reports results of various models on We-
bQSP. All reported model except CBR-KBQA and
T5-11B directly operate on the KB (e.g. traverse
KB paths starting from the query entity) to generate
the LF or the answer. As a result, models such as
STAGG tend to enjoy much higher recall. On the
other hand, much of our logical query is generated
by reusing components of similar cases. We also
report the results of ‘aligning’ the LF produced
by T5 using our revise step. As shown in Table 1,
CBR-KBQA outperforms all other models signifi-
cantly and improves on the strict exact-match ac-
curacy by more than 6 points w.r.t. the best model.
Revise step also improves on the performance of
T5 suggesting that it is generally applicable. Ta-
ble 3 reports performance on the hidden test set
of CWQ4, which was built by extending WebQSP

4The result of our model in the official
leaderboard (https://www.tau-nlp.org/
compwebq-leaderboard) is higher (70.4 vs 67.1).
This is because the official evaluation script assigns full score
if any of the correct answer entities are returned even if there
are multiple correct answers for a question. In the paper we
report strict exact-match accuracy.

Model MCD1 MCD2 MCD3 MCD-mean

T5-11B 72.9 69.2 62.0 67.7
CBR-KBQA 87.8 75.1 71.5 78.1

Table 4: Performance (accuracy) on the CFQ dataset.

questions with the goal of making a more complex
multi-hop questions. It is encouraging to see that
CBR-KBQA outperforms all other baselines on this
challenging dataset by a significant margin. Fi-
nally, we report results on CFQ in Table 4. On
error analysis, we found that on several questions
which are yes/no type, our model was predicting
the list of correct entities instead of predicting a
yes or no. We created a rule-based binary classi-
fier that predicts the type of question (yes/no or
other). If the question was predicted as a yes/no,
we would output a yes if the length of the predicted
answer list was greater than zero and no otherwise.
(If the model was already predicting a yes/no, we
keep the original answer unchanged). We report
results on all the three MCD splits of the dataset
and compare with the T5-11B model of Furrer et al.
(2020) and we find that our model outperforms
T5-11B on this dataset as well. It is encouraging
to see that CBR-KBQA, even though containing
order-of-magnitudes less parameters than T5-11B,
outperforms it on all benchmarks showing that it
is possible for smaller models with less carbon
footprint and added reasoning capabilities to out-
perform massive pre-trained LMs.

3.3 Efficacy of Revise step

Table 5 show that the revise step is useful for CBR-
KBQA on multiple datasets. We also show that the
T5 model also benefits from the alignment in revise
step with more than 3 points improvement in F1
score on the CWQ dataset. We find that TransE
alignment outperforms ROBERTA based alignment,
suggesting that graph structure information is more
useful than surface form similarity for aligning
relations. Moreover, relation names are usually
short strings, so they do not provide enough context
for LMs to form good representations.

Next we demonstrate the advantage of the non-
parametric property of CBR-KBQA— ability to fix
an initial wrong prediction by allowing new cases
to be injected to the case-memory. This allows
CBR-KBQA to generalize to queries which needs
relation never seen during training. Due to space
constraints, we report other results (e.g. retriever
performance), ablations and other analysis in §B.

https://www.tau-nlp.org/compwebq-leaderboard
https://www.tau-nlp.org/compwebq-leaderboard
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WebQSP Accuracy(%) ∆

CBR-KBQA (before Revise) 69.43 –
+Revise (Roberta) 69.49 +0.06
+Revise (TransE) 70.00 +0.57

CWQ Accuracy(%) ∆

CBR-KBQA (before Revise) 65.95 –
+Revise (Roberta) 66.32 +0.37
+Revise (TransE) 67.11 +1.16

Table 5: Impacts of the revise step. We show that the
revise step consistently improves the accuracy on We-
bQSP and CWQ, especially with the TransE pretrained
embeddings.

3.4 Point-Fixes to Model Predictions

Modern QA systems built on top of large LMs do
not provide us the opportunity to debug an erro-
neous prediction. The current approach is to fine-
tune the model on new data. However, this process
is time-consuming and impractical for production
settings. Moreover, it has been shown (and as we
will empirically demonstrate) that this approach
leads to catastrophic forgetting where the model
forgets what it had learned before. (McCloskey
and Cohen, 1989; Kirkpatrick et al., 2017). On
the other hand, CBR-KBQA adopts a nonparamet-
ric approach and allows inspection of the retrieved
nearest neighbors for a query. Moreover, one could
inject a new relevant case into the case-memory
(KNN-index), which could be picked up by the
retriever and used by the reuse module to fix an
erroneous prediction.
3.4.1 Performance on Unseen Relations
We consider the case when the model generates
a wrong LF for a given query. We create a con-
trolled setup by removing all queries from the
training set of WebQSP which contain the (peo-
ple.person.education) relation. This led to a re-
moval of 136 queries from the train set and ensured
that the model failed to correctly answer the 86
queries (held-out) in the test set which contained
the removed relation in its LF.

We compare to a baseline transformer model
(which do not use cases) as our baseline. As shown
in Table 6, both baseline and CBR-KBQA do not
perform well without any relevant cases since a
required KB relation was missing during training.
Next, we add the 136 training instances back to the
training set and recompute the KNN index. This
process involves encoding the newly added NL
queries and recomputing the KNN index, a pro-
cess which is computationally much cheaper than
re-training the model again. Row 5 in Table 6

What colors do the school where Donald Stanley 
Marshall is grad student use?

SELECT DISTINCT ?x WHERE
?c educational_institution.students_graduates ?k
?c education.student Donald Stanley Marshall 
?c educational_institution.mascot ?x

Initial Prediction

What are Worcester 
Warrior’s colors?

SELECT DISTINCT ?x WHERE 
Worcester_Warrior 
educational_institution.colors ?x

Model prediction after adding cases

Expert adds relevant simple case to the KNN index

SELECT DISTINCT ?x WHERE
?c educational_institution.students_graduates ?k
?c education.student Donald Stanley Marshall 
?c educational_institution.colors ?x

Figure 3: An expert point-fixes a model prediction by
adding a simple case to the KNN index. Initial predic-
tion was incorrect as no query with the relation (educa-
tional_institution.colors) was present in the train set. CBR-
KBQA retrieves the case from the KNN index and fixes the
erroneous prediction without requiring any re-training.

shows the new result. On addition of the new cases,
CBR-KBQA can seamlessly use them and copy the
unseen relation to predict the correct LF, reaching
70.6% accuracy on the 86 held-out queries.

In contrast, the baseline transformer must be
fine-tuned on the new cases to handle the new rela-
tion, which is computationally more expensive than
adding the cases to our index. Moreover, just fine-
tuning on the new instances leads to catastrophic
forgetting as seen in row 2 of Table 6 where the
baseline model’s performance on the initial set de-
creases drastically. We find it necessary to carefully
fine-tune the model on new examples alongside
original training examples (in a 1:2 proportion).
However, it still converges to a performance which
is lower than its original performance and much
lower than the performance of CBR-KBQA.

3.4.2 Human-in-the-Loop Experiment

During error analysis, we realized that there are
queries in the test set of WebQSP that contain KB
relations in their LFs which were never seen dur-
ing training5. That means models will never be
able to predict the correct LF for the query because
of the unseen relation. We conduct a human-in-
the-loop experiment (Figure 3) in which users add
simple ‘cases’ to point-fix erroneous predictions of
CBR-KBQA for those queries. A simple case is a

5There are 94 different unseen relations in test set.
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Scenario Initial Set Held-Out

Transformer 59.6 0.0
+ Fine-tune on additional cases only (100 gradient steps) 1.3 76.3
+ Fine-tune on additional cases and original data (300 gradient steps) 53.1 57.6

CBR-KBQA (Ours) 69.4 0.0
+ Adding additional cases to index (0 gradient steps; 2 sec) 69.4 70.6

Table 6: Robustness and controllability of our method against black-box transformers. CBR-KBQA can easily and quickly adopt
to new relations given cases about it, whereas heavily parameterized transformer is not stable, and can undergo catastrophic
forgetting when we try to add new relation information intro its parameters.

Scenario P R F1 Acc

CBR-KBQA (Ours) 0.0 0.0 0.0 0.0
+ additional cases 36.54 38.59 36.39 32.89

Table 7: Results for H-I-T-L experiment. After adding a few
cases, we see that we can get the accuracy of OOV questions to
improve considerably, without needing to re-train the model.

Data # Total Q # Q that need
comp. reasoning

# Correct

T5 CBR

CWQ 3531 639 205 270
CFQ 11968 6541 3351 3886

Table 8: We compare the performance of models on questions
that need novel combinations of relations not seen during
training.

NL query paired with a program which only con-
tain one KB relation. Table 15 (Appendix D) shows
some example of such cases. Because of the simple
nature of the questions, these cases can be created
manually (by a user who is knowledgeable about
the KB schema) or automatically curated from data
sources such as SimpleQuestions (Bordes et al.,
2015) which is a large collection of NL queries that
can be a mapped to a single KB edge. Table 14 in
Appendix D shows various statistics of the missing
relations and the number of cases added by humans
and from SimpleQuestions. The cases are added
to the original KNN-index. By adding a few cases,
the performance increases from 0 to 36 F1 (Ta-
ble 7) without requiring any training. Note unlike
the previous controlled experiment in §3.4.1, we
add around 3.87 cases for each unseen relation6.
Importance of this result: We believe that flexibil-
ity of models to fix predictions (without training) is
an important desideratum for QA systems deployed
in production settings and we hope our results will
inspire future research in this direction.

3.5 Further Analysis

We analyze questions in the evaluation set which re-
quire novel combinations of relations never seen in

6In §3.4.1, we added 136 cases (v/s 3.87) for one relation.
This is why the accuracy in Table 6 is higher w.r.t Table 7.

WebQSP CWQ

Baseline (K = 0) 67.2 65.8
CBR-KBQA (K = 20) 69.9 67.1

- KL term in loss 68.1 66.7

Table 9: Ablation experiment with a baseline model
that do not use cases and also when the KL divergence
term (§2.2) is not used in loss function of reuse step .
The numbers denote exact match accuracy.

# nearest neighbors Accuracy

K = 0 67.20
K = 1 68.45
K = 10 69.23
K = 20 69.98

Table 10: Performance on WebQSP on varying number
of nearest neigbors

the training set. This means, in order for our model
to answer these questions correctly, it would have
to retrieve relevant nearest neighbor (NN) questions
from the training set and copy the required rela-
tions from the logical form of multiple NN queries.
Table 8 shows that our model outperforms the com-
petitive T5 baseline. Also as we saw in the last
section, our model is able to quickly adapt to re-
lations never seen in the training set altogether by
picking them up from newly added cases.

We also compare with a model with the same
reuse component of CBR-KBQA but is trained and
tested without retrieving any cases from the case-
memory (Table 9). Even though the baseline model
is competitive, having similar cases is beneficial,
especially for the WebQSP dataset. We also report
the results when we only use cross-entropy loss
for training the BIGBIRD model and not the KL-
divergence term. Table 10 reports the performance
of CBR-KBQA using different number of retrieved
cases. It is encouraging to see the the performance
improves with increasing number of cases.

4 Related Work
Retrieval augmented QA models (Chen et al.,
2017; Guu et al., 2020; Lewis et al., 2020b) aug-
ments a reader model with a retriever to find rel-
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evant paragraphs from a nonparametric memory.
In contrast, our CBR approach retrieves similar
queries and uses their logical forms to derive a new
solution. Recently Lewis et al. (2020c) proposed a
model that finds a nearest neighbor (NN) question
in the training set and returns the answer to that
question. While this model would be helpful if the
exact question or its paraphrase is present in the
training set, it will not generalize to other scenarios.
CBR-KBQA, on the other hand, learns to reason
with the retrieved programs of multiple retrieved
NN queries and generates a new program for the
given query and hence is able to generalize even if
the query paraphrase is not present in the train set.
Retrieve and edit: CBR-KBQA shares similar-
ities with the RETRIEVE-AND-EDIT framework
(Hashimoto et al., 2018) which utilizes retrieved
nearest neighbor for structured prediction. How-
ever, unlike our method they only retrieve a single
nearest neighbor and will unlikely be able to gener-
ate programs for questions requiring relations from
multiple nearest neighbors.
Generalizing to unseen database schemas:
There has been work in program synthesis that gen-
erates SQL programs for unseen database schemas
(Wang et al., 2020; Lin et al., 2020). However,
these work operate on web or Wikipedia tables
with small schemas. For example, in WikiTable-
Questions (Pasupat and Liang, 2015) the average.
number of columns in a table is 5.8 and in Spider
dataset (Yu et al., 2018), the average number of
columns is 28.1. On the other hand, our model
has to consider all possible Freebase relations (in
thousands). Previous work perform schema-aware
encoding which is not possible in our case because
of the large number of relations. The retrieve step
of CBR-KBQA can be seen as a pruning step which
narrows the number of candidate relations by re-
trieving relevant questions and their logical forms.
Case-based Reasoning for KB completion: Re-
cently, a CBR based KB reasoning approach was
proposed by Das et al. (2020a,b). They retrieve sim-
ilar entities and then find KB reasoning paths from
them. However, their approach does not handle
complex natural language queries and only operate
on structured triple queries. Additionally, the logi-
cal forms handled by our model have much more
expressive power than knowledge base paths.
Program Synthesis and Repair: Repairing / re-
vising generated programs has been studied in the
field of program synthesis. For example, prior

work repairs a program based on syntax of the un-
derlying language (Le et al., 2017), by generating
sketches (Hua et al., 2018). More recently, Gupta
et al. (2020) proposes a framework in which they
use a program debugger to revise the program gen-
erated by a neural program synthesizer. However,
none of these works take advantage of the similarity
between semantic relations present in the knowl-
edge base, and hence, unlike us, they do not use
embeddings of similar relation to align relations.
More generally, many prior efforts have employed
neural models to generate SPARQL-like code for
semantic parsing (Dong and Lapata, 2016; Balog
et al., 2016; Zhong et al., 2017a), SQL queries
over relational databases (Zhong et al., 2017b),
program-structured neural network layouts (An-
dreas et al., 2016), or even proofs for mathematical
theorems (Polu and Sutskever, 2020). Our work dif-
fers in our use of the programs of multiple retrieved
similar queries to generate the target program.
K-NN approach in other NLP applications:
Khandelwal et al. (2020) demonstrate improve-
ments in language modeling by utilizing explicit
examples from training data. There has been work
in machine translation (Zhang et al., 2018; Gu et al.,
2018; Khandelwal et al., 2021) that uses nearest
neighbor translation pair to guide the decoding pro-
cess. Recently, Hossain et al. (2020) proposed a
retrieve-edit-rerank approach for text generation in
which each retrieved candidate from the training
set is edited independently and then re-ranked. In
contrast, CBR-KBQA generates the program jointly
from all the retrieved cases and is more suitable
for questions which needs copying relations from
multiple nearest neighbors. Please refer to (§E) for
further related work.

5 Limitations and Future Work
To the best of our knowledge, we are the first to
propose a neuralized CBR approach for KBQA.
We showed that our model is effective in handling
complex questions over KBs, but our work also
has several limitations. First, our model relies on
the availability of supervised logical forms such as
SPARQL queries, which can be expensive to anno-
tate at scale. In the future, we plan to explore ways
to directly learn from question-answer pairs (Be-
rant et al., 2013; Liang et al., 2016). Even though,
CBR-KBQA is modular and has several advantages,
the retrieve and reuse components of our model are
trained separately. In future, we plan to explore
avenues for end to end learning for CBR.
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Dataset Train Valid Test

WebQSP 2,798 300 1,639
CWQ 27,639 3,519 3,531
CFQ 95,743 11,968 11,968

Table 11: Dataset statistics

A EMNLP Reproducibility Checklist

A.1 Data
WebQSP contains 4737 NL questions belonging to
56 domains covering 661 unique relations. Most
questions need up to 2 hops of reasoning, where
each hop is a KB edge. COMPLEXWEBQUES-
TIONS (CWQ) is generated by extending the We-
bQSP dataset with the goal of making it a more
complex multi-hop dataset. There are four types of
questions: composition (45%), conjunction (45%),
comparative (5%), and superlative (5%). Answer-
ing these questions requires up to 4 hops of rea-
soning in the KB, making the dataset challenging.
Compositional Freebase Questions (CFQ) is a re-
cently proposed benchmark explicitly developed
for measuring compositional generalization. For all
the datasets above, the logical form (LF) for each
NL question is a SPARQL query that can be exe-
cuted against the Freebase KB to obtain the answer
entity.

A.2 Hyperparameters
The WebQSP dataset does not contain a valida-
tion split, so we choose 300 training instances to
form the validation set. We use grid-search (unless
explicitly mentioned) to set the hyperparameters
listed below.
Case Retriever: We initialize our retriever with
the pre-trained ROBERTA-base weights. We set the
initial learning rate to 5 × 10−5 and decay it lin-
early throughout training. We evaluate the retriever
based on the percentage of gold LF relations in the
LFs of the top-k retrieved cases (recall@k). We
train for 10 epochs and use the best checkpoint
based on recall@20 on the validation set. We set
train and validation batch sizes to 32.

For pmask, we try values from [0, 0.2, 0.4, 0.5,
0.7, 0.9, 1]. When training the retriever, we found
pmask = 0.2 works best for COMPLEXWEBQUES-
TIONS and pmask = 0.5 for the remaining datasets.

Seq2Seq Generator: We use a BIGBIRD gen-
erator network with 6 encoding and 6 decoding
sparse-attention layers, which we initialize with

Dataset Validation Acc

WebQSP 71.5
CWQ 82.8
CFQ 69.9

Table 12: Validation set accuracy of models corre-
sponding to the results reported in the paper

pre-trained BART-base weights. We set the ini-
tial learning rate to 5× 10−5 and decay it linearly
throughout training. Accuracy after the execution
of generated programs on the validation set is used
to select the optimal setting and model checkpoint.

For λT , we perform random search in range [0,
1]. We finally use λT=1.0 for all datasets. For k
(number of cases), we search over the values [1, 3,
5, 7, 10, 20]. For all datasets, we use k=20 cases
and decode with a beam size of 5 for decoding. The
WebQSP model was trained for 15K gradient steps
and all other models were trained for 40K gradient
steps.

Computing infrastructure: We perform our ex-
periments on a GPU cluster managed by SLURM.
The case retriever was trained and evaluated on
NVIDIA GeForce RTX 2080 Ti GPU. The models
for the Reuse step were trained and evaluated on
NVIDIA GeForce RTX 8000 GPUs. Revise runs
on NVIDIA GeForce RTX 2080 Ti GPU when
using ROBERTA for alignment and runs only on
CPU when using TRANSE. We report validation
set scores in Table 12.

B Further Experiments and Analysis

B.1 Performance of Retriever

We compare the performance of our trained re-
triever with a ROBERTA-base model. We found
that ROBERTA model even without any fine-tuning
performs well at retrieval. However, fine-tuning
ROBERTA with our distant supervision objective
improved the overall recall, e.g., from 86.6% to
90.4% on WEBQUESTIONSSP and from 94.8% to
98.4% on CFQ.

B.2 Performance on Unseen Entities

In Table 7 we showed CBR-KBQA is effective for
unseen relations. But what about unseen enti-
ties in the test set?. On analysis we found that
in WebQSP, CBR-KBQA can copy unseen enti-
ties correctly 86.8% (539/621) from the question.
This is +1.9% improvement from baseline trans-
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former model which is able to copy correctly 84.9%
(527/621) of the time. Note that unseen entities can
be copied from the input NL query and we do not
need additional cases to be injected to KNN index.

B.3 Analysis of the Revise Step

In the revise step, we attempt to fix programs pre-
dicted by our reuse step that did not execute on the
knowledge base. The predicted program can be syn-
tactically incorrect or enforce conditions that lead
to an unsatisfiable query. In our work, we focus
on predicted programs that can be fixed by align-
ing clauses to relations in the local neighborhood
of query entities. We give examples of successful
alignments Table 16 as well as failed attempts at
alignment Table 17.

C Details on Held-Out Experiments

In this section, we include more details about our
held-out experiment described in section 3.4.1. The
goal of this experiment is to show that our approach
can generalize to unseen relations without requiring
any further training of the model. This is a relevant
setting to explore, because real-world knowledge
bases are often updated with new kinds of relations,
and we would like KBQA systems that adapt to
handle new information with minimal effort.

We explicitly hold-out all questions containing
a particular relation from the datasets. Table 13
shows the relation type and the number of ques-
tions that are removed as a result of removing the
relation.

Dataset Relation name Train Test

WebQSP people.person.education 136 86

Table 13: Relation type and the corresponding number
of NL queries that are held-out.

D Details on Automated Case Collection
and Human-in-the-Loop Experiments

While conducting analysis, we also noticed that
WebQSP has queries in the test set for which the
required relations are never present in the training
set. This gives us an opportunity to conduct real
human-in-the-loop experiments to demonstrate the
advantage of our model. To add more cases, we
resort to a mix of automated data collection and
human-in-the-loop strategy. For each of the miss-
ing relation, we first try to find NL queries present

Who developed the TCP/IP reference model?

SELECT DISTINCT ?x WHERE
TCP/IP ns:common.topic.notable_types ?x

Initial Prediction

Who 
invented the 
telephone?

SELECT DISTINCT ?x WHERE
telephone ns:base.argumentmaps.original_idea.innovator ?x

Model prediction after adding cases

Expert adds relevant simple case to the KNN index

SELECT DISTINCT ?x WHERE
TCP/IP ns:base.argumentmaps.original_idea.innovator ?x

Figure 4: An example query where our approach correctly
utilizes added H-I-L-T cases

in the SimpleQuestions (Bordes et al., 2015). Sim-
pleQuestions (SQ) is a large dataset containing
more than 100K NL questions that are ‘simple’
in nature — i.e. each NL query maps to a single
relation (fact) in the Freebase KB. For each miss-
ing relation type, we try to find questions in the
SQ dataset that can be mapped to the missing re-
lation. However, even SQ has missing coverage
in which case, we manually generate a question
and its corresponding SPARQL query by reading
the description of the relation. Table 14 shows the
number of questions in the evaluation set which at
least has a relation never seen during training and
also the number of cases that has been added. For
example, we7 were able to collect 292 questions
from SQ and we manually created 72 questions for
WebQSP. Overall, we add 3.87 new cases per query
relation for WebQSP.

Table 15 shows some example of cases added
manually or from SQ. We look up entity ids for
entities from the FACC1 alias table (§3.1). Also
note, that since we only add questions which are
simple in nature, the corresponding SPARQL query
can be easily constructed from the missing relation
type and the entity id.

Importance of this result: Through this experi-
ment, we demonstrate two important properties of
our model — interpretability and controllability.
Database schemas keep changing and new tables
keep getting added to a corporate database. When
our QA system gets a query wrong, by looking at
the retrieved K-nearest neighbors, users can deter-

7The H-I-T-L case addition was done by 2 graduate stu-
dents in the lab.
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Cases Added via
Dataset # missing relations # questions H-I-T-L SimpleQuestions Avg. # cases per relation

WebQSP 94 79 72 292 3.87

Table 14: Number of questions in the evaluation set that needs a relation which is not seen in the training set.
Note that, there can be multiple relations in a question that might not be seen during training. The last two
columns show the number of cases added both via human-in-the-loop (H-I-T-L) annotation and automatically
from SimpleQuestions dataset.

NL Query SPARQL Source

What is the Mexican Peso called? select ?x where { m.012ts8 finance.currency.currency_code ?x .} Manual
Who invented the telephone? select ?x where { m.0g_3r base.argumentmaps.original_idea.innovator ?x .} Manual
what area is wrvr broadcated in? select ?x where { m.025z9rx broadcast.broadcast.area_served ?x .} SQ
Where are Siamese cats originally from? select ?x where { m.012ts8 biology.animal_breed.place_of_origin ?x .} Manual

Table 15: Examples of few added questions and their corresponding SPARQL queries. Notice that the SPARQL
queries are very simple to create once we know the name of the missing relation. The source column indicate
whether the question was manually created or automatically added from Simple Questions (SQ) dataset.

What international organizations is China part of?

SELECT DISTINCT ?x WHERE
China ns:organization.organization.headquarters ?y
?y ns:location.mailing_address.citytown ?x

Initial Prediction

What international 
Organisations is the 

US a member of?

SELECT DISTINCT ?x WHERE 
US ns:organization.organization_member.member_of ?y .
?y ns:organization.organization_membership.organization 
?x

Model prediction after adding cases

Expert adds relevant simple case to the KNN index

SELECT DISTINCT ?x WHERE 
China ns:organization.organization_member.member_of ?y .
?y ns:organization.organization_membership.organization 
?x

Figure 5: An example query where our approach correctly
utilizes added H-I-L-T cases

mine (interpretability) that the required relation is
not present in the training set. By adding few cases
for the new relations, they can query the DB for
similar questions, without needing to train the QA
system (controllability). Current black-box NLP
models are not capable of doing such point-fixes
and our experiment is an initial attempt towards
building such systems.

E Further Related Work

KNN approach in other NLP applications (con-
tinued): Wiseman and Stratos (2019) achieved
accurate sequence labeling by explicitly and only
copying labels from retrieved neighbors. NN mod-
els have been used in a numbe NLP applications
such as POS tagging (Daelemans et al., 1996). An-

other recent line of work use training examples
at test time to improve language generation (We-
ston et al., 2018; Pandey et al., 2018; Cao et al.,
2018; Peng et al., 2019). Hua et al. (2020) re-
cently proposed a meta-learning approach which
utilizes cases retrieved w.r.t. the similarity of the
input. However, their main goal is to learn a bet-
ter parametric model (retriever and generator) from
neighboring cases rather than composing and fixing
cases to generate answers at test time.

Question Decomposition One strategy to an-
swer a complex question is to first break it down
into simpler subquestions, each of which can be
viewed as a natural language program describing
how to answer the question. This approach has
been shown to be effective as far back as IBM
Watson (Ferrucci et al., 2010) to more recent sys-
tems for answering questions about text (Das et al.,
2019; Min et al., 2019; Perez et al., 2020; Wolf-
son et al., 2020) or knowledge bases (Talmor and
Berant, 2018). These prior studies do not lever-
age case-based reasoning when generating decom-
positions and thus may also benefit from similar
techniques as proposed in our work.
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WebQSP

Question: when did kaley cuoco m.03kxp7 join charmed m.01f3p_ ?

Predicted SPARQL: SELECT DISTINCT ?x WHERE {
ns:m.03kxp7 ns:tv.tv_character.appeared_in_tv_program ?y .
?y ns:tv.regular_tv_appearance.from ?x .
?y ns:tv.regular_tv_appearance.series ns:m.01f3p_ .
}

Ground-truth SPARQL: SELECT DISTINCT ?x WHERE {
ns:m.03kxp7 ns:tv.tv_actor.starring_roles ?y .
?y ns:tv.regular_tv_appearance.from ?x .
?y ns:tv.regular_tv_appearance.s eries ns:m.01f3p_ .
}

Revised SPARQL: SELECT DISTINCT ?x WHERE {
ns:m.03kxp7 ns:tv.tv_actor.starring_roles ?y .
?y ns:tv.regular_tv_appearance.from ?x .
?y ns:tv.regular_tv_appearance.s eries ns:m.01f3p_ .
}

CWQ

Question: What text in the religion which include Zhang Jue m.02gjv7 as a key figure is considered to
be sacred m.02vt2rp ?

Predicted SPARQL: SELECT DISTINCT ?x WHERE {
?c ns:religion.religion.deities ns:m.02gjv7 .
?c ns:religion.religion.texts ?x .
. . . benign filters . . . }

Ground-truth SPARQL: SELECT DISTINCT ?x WHERE {
?c ns:religion.religion.notable_figures ns:m.02gjv7 .
?c ns:religion.religion.texts ?x .}

Revised SPARQL: SELECT DISTINCT ?x WHERE {
?c ns:religion.religion.notable_figures ns:m.02gjv7 .
?c ns:religion.religion.texts ?x .
. . . benign filters . . . }

Question: What is the mascot of the educational institution that has a sports team named the North
Dakota State Bison m.0c5s26 ?

Predicted SPARQL: SELECT DISTINCT ?x WHERE {
?c ns:education.educational_institution.sports_teams ns:m.0c5s26 .
?c ns:education.educational_institution.mascot ?x .
}

Ground-truth SPARQL: SELECT DISTINCT ?x WHERE {
?c ns:education.educational_institution.sports_teams ns:m.0c41_v .
?c ns:education.educational_institution.mascot ?x .
}

Revised SPARQL: SELECT DISTINCT ?x WHERE {
?c ns:education.educational_institution.athletics_brand ns:m.0c5s26 .
?c ns:education.educational_institution.mascot ?x .
}

Comments: The entity linker has tagged the bison as a university symbol (m.0c5s26) rather than the
Bison football team (m.0c41_v). Alignment helps the model recover from this by picking the
relation that connects the tagged entity to the university.

Table 16: Examples of successful alignment with TransE from the Revise stage.
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WebQSP

Question: who is gimli m.0h34n ’s father m.02pn7 in the hobbit m.0n4ck66

Predicted SPARQL: SELECT DISTINCT ?x WHERE {
ns:m.0h34n ns:people.person.parents ?x .
?x ns:people.person.gender ns:m.02pn7 .
?x ns:people.person.parents ?sk0 .
} ORDER BY xsd:datetime(?sk0) LIMIT 1

Ground-truth SPARQL:SELECT DISTINCT ?x WHERE {
ns:m.0h34n ns:fictional_universe.fictional_character.parents ?x .
?x ns:fictional_universe.fictional_character.gender ns:m.05zppz .
}

Predicted SPARQL: SELECT DISTINCT ?x WHERE {
ns:m.0h34n ns:fictional_universe.fictional_character.parents ?x .
?x ns:people.person.gender ns:m.02pn7 .
?x ns:people.person.parents ?sk0 .
} ORDER BY xsd:datetime(?sk0) LIMIT 1

Comments: In this example the prediction has an incorrect structure, so aligning an edge does not change
the outcome.

CWQ

Question: What political leader runs the country where the Panama m.05qx1 nian Balboa m.0200cp is
used?

Predicted SPARQL: SELECT DISTINCT ?x WHERE {
?c ns:location.country.currency_formerly_used ns:m.0200cp .
?c ns:government.governmental_jurisdiction.governing_officials ?y .
?y ns:government.government_position_held.office_holder ?x .
. . . benign filters . . . }

Ground-truth SPARQL:SELECT DISTINCT ?x WHERE {
?c ns:location.country.currency_used ns:m.0200cp .
?c ns:government.governmental_jurisdiction.governing_officials ?y .
?y ns:government.government_position_held.office_holder ?x .
?y ns:government.government_position_held.office_position_or_title
ns:m.0m57hp6 .
. . . benign filters . . . }

Revised SPARQL: SELECT DISTINCT ?x WHERE {
?c ns:location.country.currency_used ns:m.0200cp .
?c ns:government.governmental_jurisdiction.governing_officials ?y .
?y ns:government.government_position_held.office_holder ?x .
. . . benign filters . . . }

Target Answers: {m.06zmv9x}

Revised Answers: {m.02y8_r, m.06zmv9}

Comments: The original prediction has missing clauses so alignment produces more answers than target
program

Table 17: Examples of failed alignment with TransE from the Revise stage.


