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Abstract

Question generation has recently shown im-
pressive results in customizing question an-
swering (QA) systems to new domains. These
approaches circumvent the need for manu-
ally annotated training data from the new do-
main and, instead, generate synthetic question-
answer pairs that are used for training. How-
ever, existing methods for question generation
rely on large amounts of synthetically gen-
erated datasets and costly computational re-
sources, which render these techniques widely
inaccessible when the text corpora is of lim-
ited size. This is problematic as many niche
domains rely on small text corpora, which nat-
urally restricts the amount of synthetic data
that can be generated. In this paper, we pro-
pose a novel framework for domain adaptation
called contrastive domain adaptation for QA
(CAQA). Specifically, CAQA combines tech-
niques from question generation and domain-
invariant learning to answer out-of-domain
questions in settings with limited text corpora.
Here, we train a QA system on both source
data and generated data from the target domain
with a contrastive adaptation loss that is incor-
porated in the training objective. By combin-
ing techniques from question generation and
domain-invariant learning, our model achieved
considerable improvements compared to state-
of-the-art baselines.

1 Introduction

Question answering (QA) systems generate an-
swers to questions over text. Formally, such sys-
tems are nowadays trained end-to-end to predict
answers conditional on an input question and a con-
text paragraph (e.g., Seo et al., 2016; Chen et al.,
2017a; Devlin et al., 2019). Therein, every QA
sample is a 3-tuple consisting of a question, a con-
text, and an answer. In this paper, we consider the
subproblem of extractive QA, where the task is to
extract answer spans from an unstructured context
information for a given question as input. In extrac-

Figure 1: Overview of a common framework for QA
domain adaptation. A question generation model is
used to generate synthetic target data, which can be
used for training the QA model with source data. The
resulting QA model can answer target questions upon
deployment.

tive QA, both question and context are represented
by running text, while the answer is defined by a
start position and an end position in the context.

An existing challenge for extractive QA systems
is the distributional change between training data
(source domain) and test data (target domain). If
there is such a distribution change, the performance
on test data is likely to be impaired. In practice,
this issue occurs due to the fact that users, for in-
stance, formulate text in highly diverse language
or use QA for previously unseen domains (Hazen
et al., 2019; Miller et al., 2020). As a result, out-of-
domain (OOD) samples occur that diverge from the
training corpora of QA systems (i.e., which can be
traced back to the invariance of the training data)
and, upon deployment, lead to a drastic drop in the
accuracy of QA systems.

One solution to the above-mentioned challenge
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of a domain shift is to generate synthetic data from
the corpora of the target domain using models for
question generations and then use the synthetic
data during training (e.g., Lee et al., 2020; Shakeri
et al., 2020). For this purpose, generative mod-
els have been adopted to produce synthetic data
as surrogates from target domain, so that the QA
system can be trained with both data from the
source domain and synthetic data, which helps to
achieve better results on the out-of-domain data dis-
tribution (Puri et al., 2020; Lee et al., 2020; Shak-
eri et al., 2020), see Figure 1 for an overview of
such approach. Nevertheless, large quantities of
synthetic data require intensive computational re-
sources. Moreover, many niche domains rely upon
limited text corpora. Their limited size puts bar-
riers to the amount of synthetic data that can be
generated and, as well shall see later, render the
aforementioned approach for limited text corpora
largely ineffective.

In computer vision, some works draw upon an-
other approach for domain adaptation, namely dis-
crepancy reduction of representations (Long et al.,
2013; Tzeng et al., 2014; Long et al., 2015, 2017;
Kang et al., 2019). Here, an adaptation loss or ad-
versarial training approaches are often designed to
learn domain-invariant features, so that the model
can transfer learnt knowledge from the source do-
main to the target domain. However, the afore-
mentioned approach for domain adaptation was
designed for computer vision tasks, and, to the best
of our knowledge, has not yet been tailored for QA.

In this paper, we develop a framework for an-
swering out-of-domain questions in QA settings
with limited text corpora. We refer to our proposed
framework as contrastive domain adaptation for
question answering (CAQA). CAQA combines
question generation and contrastive domain adap-
tation to learn domain-invariant features, so that it
can capture both domains and thus transfer knowl-
edge to the target distribution. This is in contrast to
existing question generation where synthetic data
is solely used for joint training with the source data
but without explicitly accounting for domain shifts,
thus explaining why CAQA improves the perfor-
mance in answering out-of-domain questions. For
this, we propose a novel contrastive adaptation loss
that is tailored to QA. The contrastive adaptation
loss uses maximum mean discrepancy (MMD) to
measure the discrepancy in the representation be-
tween source and target features, which is reduced

while it simultaneously separates answer tokens for
answer extraction.1

The main contributions of our work are:
1. We propose a novel framework for domain

adaptation in QA called CAQA. To the best of
our knowledge, this is the first use of contrastive
approaches for learning domain-invariant fea-
tures in QA systems.

2. Our CAQA framework is particularly effective
for limited text corpora. In such settings, we
show that CAQA can transfer knowledge to
target domain without additional training cost.

3. We demonstrate that CAQA can effectively an-
swer out-of-domain questions. CAQA outper-
forms the current state-of-the-art baselines for
domain adaptation by a significant margin.

2 Related Work

The performance of extractive question answer-
ing systems (e.g., Chen et al., 2017b; Kratzwald
et al., 2019; Zhang et al., 2020) is known to deterio-
rate when the training data (source domain) differs
from the data used during testing (target domain)
(Talmor and Berant, 2019). Approaches to adapt
QA systems to a certain domain can be divided in
(1) supervised approaches, where one has access
to labeled data from the target domain (i.e., trans-
fer learning; Kratzwald and Feuerriegel, 2019), or
(2) unsupervised approaches, where no labeled in-
formation is accessible. The latter is our focus.
Unsupervised approaches are primarily based on
question generation techniques where one gener-
ates synthetic training data for the target domain.

Question generation (QG): Question genera-
tion (Rus et al., 2010) is the task of generating
synthetic QA pairs from raw text data. Several ap-
proaches have been developed to generate synthetic
questions in QA. Du et al. (2017) propose an end-
to-end seq2seq encoder-decoder for the generation.
Recently, question generation and answer genera-
tion are observed as dual tasks and combined in
various ways. Tang et al. (2017) train both simul-
taneously; Golub et al. (2017) split the process in
two consecutive stages; and Tang et al. (2018) use
policy gradient to improve between-task learning.

Question generation is a common technique for
domain adaptation in QA. Here, the generated ques-
tions are used to fine-tune QA systems to the new
target domain (Dhingra et al., 2018). Oftentimes,

1The code from our CAQA framework is publicly available
via https://github.com/Yueeeeeeee/CAQA

https://github.com/Yueeeeeeee/CAQA
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only a subset of generated questions is selected to
increase the quality of the generated data. Com-
mon approaches are based on curriculum learning
(Sachan and Xing, 2018); roundtrip consistency,
where samples are selected when the predicted an-
swers match the generated answer (Alberti et al.,
2019); iterative refinement (Li et al., 2020); and
conditional priors (Lee et al., 2020).

Unsupervised domain adaptation: A large
body of work on unsupervised domain adaptation
has been done in the area of computer vision, where
the representation discrepancy between a labeled
source dataset and an unlabeled target dataset is
reduced (e.g., Tzeng et al., 2014; Saito et al., 2018;
Long et al., 2015). Recent approaches are often
based on adversarial learning, where one minimizes
the distance between feature distributions in both
both the source and target domain, while simulta-
neously minimizing the error in the labeled source
domain (e.g., Long et al., 2017; Tzeng et al., 2017).
Moreover, adversarial training is also applied to
train generalized QA systems across domains to
improve performance on the data distribution of
the target domain (Lee et al., 2019).

Unlike adversarial approaches, contrastive meth-
ods (i.e., Hadsell et al., 2006) utilize a special loss
that reduces the discrepancy of samples from the
same class (‘pulled together’) and that increases
the distances for samples from different classes
(‘pushed apart’). This is achieved by using either
pair-wise distance metrics (Hadsell et al., 2006),
or a triplet loss and clustering techniques (Schroff
et al., 2015; Cheng et al., 2016). Recently, a con-
trastive adaptation network (CAN) has been shown
to achieve state-of-the-art performance by using
maximum mean discrepancy to build an objec-
tive function that maximizes inter-class distances
and minimizes intra-class distances with the help
of pseudo-labeling and iterative refinement (Kang
et al., 2019). Yet, it is hitherto unclear how this
technique can be used to improve domain adapta-
tion in QA.

3 The CAQA Framework: Contrastive
Domain Adaptation for QA

3.1 Setup

Input: Our framework is based on QA data un-
der a distributional change. Thus let Ds denote
the source domain and Dt the target domain. We
expected a distributional change, that is, both do-
mains are different (i.e., Ds 6= Dt). Formally, the

input is given by:

• Training data from source domain: We are given
labeled data from the source domain Xs. Each
sample x(i)

s ∈ Xs from the source domain Ds

comprises of a 3-tuple with a question x(i)
s,q, a

context x(i)
s,c, and an answer x(i)

s,a.

• Target contexts: We have access to target domain
data. Yet, of note, the data is unlabeled. That
is, we have only access to the contexts. We fur-
ther assume that the amount of target contexts is
limited. LetX

′
t denote the unlabeled target data,

where each sample x(i)
t ∈ X

′
t from the target

domain Dt consists of only a context x(i)
t,c .

Objective: Upon deployment, we aim at maxi-
mizing the performance of the QA system when
answering questions from the target domain Dt,
that is, minimizing the cross-entropy loss of the
QA system f for Xt from the target domain Dt,
i.e.,

f∗ = argmin
f

|Xt|∑
i=1

Lce(f(x(i)
t,c,x

(i)
t,q),x

(i)
t,a). (1)

However, actual question-answer pairs from the
target domain are unknown until deployment. Fur-
thermore, we expect that the available contexts are
limited in size, which we refer to as limited text
corpora. For instance, our experiments later in-
volve only 5 QA pairs per context and, overall, 10k
paragraphs as context.

Overview: The proposed CAQA framework has
three main components (see Figure 2): (1) a ques-
tion generation model, (2) a QA model, and (3) a
contrastive adaptation loss for domain adapta-
tion, as described in the following. We refer to
the question generation model via fgen and to
the QA model via f . The question generation
model fgen is used for generate synthetic QA data
Xt = fgen(X

′
t). This yields additional QA pairs

consisting of x(i)
t,q and x(i)

t,a for x(i)
t,c ∈ X

′
t . Then,

we use both source dataXs and synthetic dataXt

to train the QA model via our proposed contrastive
adaptation loss. The idea behind it is to help trans-
fer knowledge to the target domain via discrepancy
reduction and answer separation.

3.2 Question Generation
The question generation (QG) model QAGen-T5
is designed as follows. The QG model takes a
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Figure 2: Overview of the proposed CAQA framework. A question generation model is used to generate synthetic
data, which are then used for training the QA model using the contrastive adaptation loss. The resulting QA model
is thus designed to handle QA data from the target domain upon deployment.

context as input and then involves two steps: (i) it
first generates a question xq based on context xc
in the target domain, and then (ii) a corresponding
answer xa conditioned on given xc and xq. Using
a two-step generation of questions and answers
to build synthetic data is consistent with earlier
literature on QG (e.g., Lee et al., 2020; Shakeri
et al., 2020) and thus facilitates larger capacity
while facilitating comparability. The maximum
number k of synthetic QA data is determined later.

In our QG model, we utilize a text-to-text trans-
fer transformer (T5) encoder-decoder transformer
(Raffel et al., 2019). This transformer is able of
performing multiple downstream tasks due to its
the multi-task pretraining approach. This is bene-
ficial in our case as we later use T5 transformers
for conditional generation of two different outputs
xq and xa, respectively. Specifically, we use two
T5 transformers for generating end-to-end (i) the
question and (ii) the answer. We later refer to the
combined variant for QG as ‘QAGen-T5’.

Our QAGen-T5 is fed with the following in-
put/output. The input to generate questions is only
a context paragraph, and, therefore, we prepend
the token generate question: in the begin-
ning (which is then followed by the context para-
graph). For answer generation, input using both
a question and a context is specified via tokens

question: and context:. The output varies
across (i) question and (ii) answer. For (i), the out-
put xq are questions divided by the [SEP] token
(e.g., input: ‘generate question: python is a pro-
gramming language...’ output: ‘when was python
released?’). For (ii), the output xa is an answer,
for which we specify question and context informa-
tion in the input by inserting tokens question:
and context: (e.g., the input becomes ‘ques-
tion: when was python released? context: python
is a programming language...’). The output is the
decoded answer.

QAGen-T5 is trained as follows. For (i) and (ii),
we separately minimize the negative log likelihood
of output sequences via

Lqg(X) =

|X|∑
i=1

− log pθqg(x
(i)
q | x(i)

c ), (2)

Lag(X) =

|X|∑
i=1

− log pθag(x
(i)
a | x(i)

c ,x
(i)
q ), (3)

where x(i)
q , x(i)

a , and x(i)
c refer to question, answer,

and context in the i-th sample ofX . Fine-tuning is
done as follows. Both T5 models inside QAGen-T5
are fine-tuned on SQuAD separately. For select-
ing QA pairs, we draw upon LM-filtering (Shak-
eri et al., 2020) to select the best k QA pairs per
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Figure 3: The 2D PCA visualization of BERT-encoder
output on a SQuAD example. Answer tokens are in red
and question tokens in cyan (all other tokens in orange).

context (e.g., k = 5 is selected later in our experi-
ments). We compute the LM scores for the answer
by multiplying the scores of each token over the
output length. This ensures that only synthetic QA
samples are generated where the combination of
both question and answer has a high likelihood.

3.3 QA Model

Our QA model is set to BERT-QA (Devlin et al.,
2019). BERT-QA consists of two components: the
BERT-encoder and an answer classifier. The BERT-
encoder extracts features from input tokens, while
the answer classifier outputs two probability dis-
tributions for start and end positions to form an-
swer spans based on the token features extracted
by BERT-encoder. In our paper, the BERT-encoder
is identical to the original BERT model and has
an embedding component as well as transformer
blocks (Devlin et al., 2019).

BERT-QA is trained using a cross-entropy loss
Lce to predict correct answer spans, yet addition-
ally using our contrastive adaptation loss as de-
scribed in the following.

3.4 Contrastive Adaptation Loss

We now introduce our contrastive adaptation loss,
which we use for training the QA model. The
idea in our proposed contrastive adaptation loss is
two-fold: (i) We decrease the discrepancy among
answer tokens and among other tokens, respec-
tively (‘intra-class’). This should thus encourage
the model to learn domain-invariant features that
are characteristic for both the source domain and
the target domain. (ii) We enlarge the answer–
context and answer–question discrepancy in feature

representations (‘inter-class’).
Our approach is somewhat analogous yet differ-

ent to contrastive domain adaptation in computer
vision, where also the intra-class discrepancy is re-
duced, while the inter-class discrepancy is enlarged
(Kang et al., 2019). In computer vision, the labels
are clearly defined (e.g., object class), such labels
are not available in QA. A natural way would be
to see each pair of start/end location of an answer
span as a separate class. Yet the corresponding
space would be extremely large and would not rep-
resent specific semantic information. Instead, we
build upon a different notion of classes: we treat
all answer tokens as one class and the combined
set of question and context tokens as a separate
class. When we then reduce intra-class discrepancy
and enlarge inter-class discrepancy, knowledge is
transferred from source to target domain.

We focus on the discrepancy between answer
and the other tokens since a trained QA model can
well separate answer tokens in the source domain;
see Figure 3. The plot shows a principle component
analysis (PCA) visualizing the BERT-encoder out-
put of a SQuAD example (van Aken et al., 2019).
Answer tokens are well separated from all other to-
kens in this case, nevertheless, the same QA model
can fail to perform answer separation in an unseen
domain; see examples in Appendix D. Therefore,
we apply contrastive adaptation on the token level
and define classes by token types. Ideally, this re-
duces feature discrepancy between domains and,
by separating answer tokens. Both should help
improving the performance on out-of-domain data.

Discrepancy: In our contrastive adaptation loss,
we measure the discrepancy among token classes
using maximum mean discrepancy (MMD). MMD
measures the distance between two data distribu-
tions based on the samples drawn from them (Gret-
ton et al., 2012). Empirically, we compute the
distance D between tokens X and Y represented
by their mean embeddings in reproducing kernel
Hilbert spaceH, i.e.,

D = sup
f∈H

( 1

|X|

|X|∑
i=1

f(xi)−
1

|Y |

|Y |∑
i=1

f(yi)
)
. (4)

MMD can be simplified by choosing a unit ball in
H, such that D(X,Y )2 = ‖µx − µy‖2H, where
µx and µy represent the sample mean embed-
dings. Similar to (Long et al., 2015), we adopt
Gaussian kernel with multiple bandwidths to es-
timate distances two samples, i.e., k(xi,xj) =
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exp(−‖xi−xj‖2
γ ).

Contrastive adaptation loss: We define the
contrastive adaptation loss of a mixed batch X
with samples from both the source domain and the
target domain as

Lcon(X) =
1

|X|2

|X|∑
i=1

|X|∑
j=1

k(φ(x(i)
a ), φ(x(j)

a ))

+
1

|X|2

|X|∑
i=1

|X|∑
j=1

k(φ(x(i)
cq ), φ(x

(j)
cq ))

− 1

|X|2

|X|∑
i=1

|X|∑
j=1

k(φ(x(i)
a ), φ(x(j)

cq )),

(5)
where xa is the mean vector of answer tokens,
whilexcq is the mean vector of the context/question
tokens. Further, φ is a feature extractor (i.e., the
BERT-encoder). Equation (5) fulfills our objec-
tives (i) and (ii) from above. The first two terms
estimate the mean distance among all answers to-
kens and the other tokens, respectively, This should
thus fulfill objective (i): to minimize the intra-class
discrepancy. The last term maximizes the distance
between answer and rest tokens (i.e., by taking the
negative distance) and enables an easier answer ex-
traction. This should thus fulfill objective (ii): to
maximize the inter-class discrepancy.

Overall objective: We now combine both the
cross-entropy loss from BERT-QA and the above
contrastive adaptation loss into a single optimiza-
tion objective for the QA model:

Lqa(X) = Lce(X) + βLcon(X), (6)

where Lce is the cross-entropy loss for the training
QA model to predict correct answer spans. Here,
β is hyperparameter that we choose empirically.

In our experiments, we sample mixed mini-
batches and compute the overall loss to update
the QA model. We encourage correct answer ex-
traction by maximizing the representation distance
between answer tokens and the other tokens. Addi-
tionally, we apply Gaussian noise at different scales
σ on the token embeddings to learn a smooth and
generalized feature space (Cai et al., 2019).

4 Experiment Setup

4.1 Datasets
In our experiments, we use SQuAD v1.1 as our
source domain dataset (Rajpurkar et al., 2016).

For the target domain we adopt four other datasets
from MRQA (Fisch et al., 2019). This allows us
to evaluate the performance in answering out-of-
domain questions. For target domain datasets,
only context paragraphs are accessible for ques-
tion generation. In this paper, we use TriviaQA
(Joshi et al., 2017), HotpotQA (Yang et al., 2018),
NaturalQuestions (Kwiatkowski et al., 2019), and
SearchQA (Dunn et al., 2017). For more details,
see Appendix A.1.

4.2 Baselines
We draw upon the following state-of-the-art base-
lines for question generation: Info-HCVAE (Lee
et al., 2020), AQGen (Shakeri et al., 2020), and QA-
Gen (Shakeri et al., 2020). These are used to gen-
erate synthetic QA data in order to train BERT-QA
as the underlying QA model (i.e., the QA model
is the same as in CAQA, the only difference is
in how synthetic QA data is generated and how
the QA model is trained). For more details, see
Appendix A.2.

Additionally, we train BERT-QA (Devlin et al.,
2019) on SQuAD and target datasets, respec-
tively. This is to evaluate its base performance
with zero knowledge of the target domain (‘lower
bound’) and supervised training performance (‘up-
per bound’) on target datasets. We further report
QAGen-T5 as an ablation study reflecting CAQA
without the contrastive adaptation loss.

4.3 Training and Evaluation
Training:

We perform experiments based on limited text
corpora: we only allow 5 QA pairs per context
and 10k context paragraphs in total to be gener-
ated as the surrogate dataset. As such, no intensive
computational resources are required for QA do-
main adaptation. First, we randomly select 10k
context paragraphs and generate QA pairs with all
mentioned generative models as synthetic data (ab-
breviated as ‘10k Syn’). Then, QA pairs are filtered
using roundtrip consistency (baseline models) or
LM-filtering (QAGen-T5), such that max. 5 QA
pairs are preserved for each context. The final train-
ing data is then given by the combination of the
generated target QA pairs and the SQuAD train-
ing set (‘S + 10k Syn’). Based on this, we train
BERT-QA on it and evaluate the model on target
dev sets.

Evaluation: For evaluation, we adopt two met-
rics: exact match (EM) and F1 score (F1). We



9581

Model Training data TriviaQA HotpotQA NaturalQ. SearchQA
EM / F1 EM / F1 EM / F1 EM / F1

(I) Performance on target datasets w/o domain adaptation
BERT-QA SQuAD 50.84/60.48 43.57/61.09 45.14/59.35 19.66/27.90

(II) Performance on target datasets w/ supervised training
BERT-QA 10k Target 55.86/62.14 49.30/66.23 55.26/68.19 62.48/69.39
BERT-QA All Target 65.28/70.80 57.69/74.78 67.25/79.03 72.46/78.76

(III) Performance on target datasets w/ question generation
Info-HCVAE S + 10k Syn 45.66/55.28 39.47/55.60 37.12/51.17 17.41/24.24
AQGen S + 10k Syn 51.41/60.60 44.79/59.99 40.78/54.02 34.03/42.08
QAGen S + 10k Syn 50.52/59.79 45.67/60.88 44.13/57.84 29.59/36.63
QAGen-T5 (proposed) S + 10k Syn 54.32/62.74 46.50/62.03 46.48/60.65 32.54/39.44
CAQA (proposed) S + 10k Syn 55.17/63.23 46.37/61.57 48.55/62.60 36.05/42.94

Table 1: Main results comparing question-answering performance on out-of-domain data.

compute these metrics on target dev sets to evalu-
ate the out-of-domain performance of the trained
QA systems. For details, see Appendix A.3.

5 Results

5.1 Performance on Target Questions
Table 1 reports the main results. The table in-
cludes several baselines: (I) BERT-QA using only
SQuAD as naïve baseline without domain adapta-
tion (‘lower bound’); (II) BERT-QA with super-
vised learning and thus access to the target data,
which are otherwise not used (‘upper bound’); and
(III) several state-of-the-art baselines for question
generation.

We make the following observations: (1) The
naïve baseline is consistently outperformed by our
proposed CAQA framework. Compared to the
SQuAD baseline, CAQA leads to a performance
improvement in EM of at least 2.80% and can go
as high as 16.39%, and an improvement in F1 of at
least 0.48% and up to 15.04%. (2) The naïve base-
line provides a challenge for several question gener-
ation baselines from the literature, which are often
inferior in our setting with limited text corpora.
(3) The best-performing approach is our CAQA
framework for three out of four datasets. For one
dataset (HotpotQA), it is our QAGen-T5 variant
without contrastive adaptation loss. However, the
performance of CAQA is of similar magnitude and
is clearly ranked second. (4) By comparing CAQA
and QAGen-T5, we yield an ablation study quan-
tifying the gain that should be attributed to using
a contrastive adaptation loss. Here, we find dis-
tinctive performance improvements due to our con-
trastive adaptation loss for three out of four datasets.

(5) Compared to the question generation baselines,
our CAQA framework is superior. Compared to
AQGen, the average improvements in EM and F1
are 3.78% and 3.41%, respectively, and, compared
QAGen, the average improvements are 4.06% and
3.80%, respectively. (6) In the case of TriviaQA
and HotpotQA, the performance of CAQA is close
to that of supervised training results using 10k para-
graphs from the target datasets. We discuss reasons
reasons for performance variations across datasets
in Section 6.

Altogether, the results suggest that the proposed
combination of QAGen-T5 and contrastive adapta-
tion loss is effective in improving the performance
for out-of-domain data.

5.2 Sensitivity Analysis for Text Corpora Size

We now perform a sensitivity analysis studying how
the performance varies across different text corpora
sizes, that is, the number of context paragraphs gen-
erated. For this, we randomly select 10k, . . . , 50k
context paragraphs for training and then report two
variants: (i) the QG performance using QAGen-T5
with varying context numbers and (ii) our CAQA
with 10k context paragraphs. Here, results are re-
ported for TriviaQA and NaturalQuestions2.

For QAGen-T5, we see a comparatively large
improvement when increasing the size from 10k
to 20k context paragraphs. A small performance
improvement among QAGen-T5 can be obtained
when choosing 50k context paragraphs. In contrast
to that, CAQA is superior, even when using only
10k context paragraphs. Put simply, it does so

2A sensitivity analysis varying the number of QA pairs (k)
is reported using HotpotQA and SearchQA in Appendix B.2
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much with much fewer samples and thus without
additional costs due to extra computations. In sum,
this demonstrates the effectiveness of CAQA for
improving QA domain adaptation in settings with
limited text corpora.

Model Training data TriviaQA NaturalQ.
EM / F1 EM / F1

Performance w/o domain adaptation
BERT-QA SQuAD 50.84/60.48 45.14/59.35

Performance w/ question generation
QAGen-T5 S + 10k Syn 54.32/62.74 46.48/60.65
QAGen-T5 S + 20k Syn 53.73/62.45 47.98/61.90
QAGen-T5 S + 30k Syn 54.75/63.12 47.76/61.93
QAGen-T5 S + 40k Syn 54.82/63.09 48.47/62.55
QAGen-T5 S + 50k Syn 54.90/63.11 48.23/62.71
CAQA S + 10k Syn 55.17/63.23 48.55/62.60

Table 2: Sensitivity analysis across different corpora
sizes. Top: QAGen-T5 w/o contrastive adaptation loss;
below: CAQA with such loss.

5.3 Comparison: Training Baselines with
Contrastive Adaptation Loss

We perform a sensitivity analysis examining
whether the baselines models (Info-HCVAE, AQ-
Gen, and QAGen) can be improved when training
them using our contrastive domain adaptation. For
this, we repeat the above experiments with 10k
synthetic samples (i.e., S + 10k Syn). The only
difference is that we use our contrastive adaptation
loss. The results are in Table 3. Here, a positive
value means that the use of a contrastive adaptation
loss results in a performance gain (since everything
else is kept equal). Note that combining QAGen-T5
with our contrastive adaptation loss yields CAQA.
Overall, we see that the performance of almost
baselines can be improved due to our contrastive
adaptation loss.

Model TriviaQA HotpotQA
EM / F1 EM / F1

Info-HCVAE -0.33/-0.45 +0.03/+0.01
AQGen +0.21/+0.26 +0.86/+0.88
QAGen -0.09/-0.37 +0.42/+0.37
QAGen-T5 (=CAQA) +0.85/+0.49 +0.70/+0.69

Model NaturalQ. SearchQA
EM / F1 EM / F1

Info-HCVAE +0.66/+0.47 +1.01/+1.04
AQGen +1.90/+1.85 -0.25/-0.28
QAGen +1.23/+0.79 +4.89/+5.50
QAGen-T5 (=CAQA) +2.07/+1.95 +3.51/+3.50

Table 3: Performance improvements (absolute) when
training baselines with our proposed contrastive adap-
tation loss.

6 Discussion

We now discuss variations in the performance
across models and datasets. For this, we also inves-
tigate synthetic data generated by CAQA manually
(see Appendix C).

Why is the performance sometimes below the upper
bound (i.e., supervised training)?
We see two explanations for the performance gap
between supervised training and CAQA (as well as
the other baselines). (i) Despite domain adaptation,
some of the generated synthetic data cannot per-
fectly match the characteristics of the target domain
but still reveal differences. We found this behav-
ior, e.g., for NaturalQuestions. Here, the average
length of the synthetic answers are all below 3, as
compared to 4.35 the training set of NaturalQues-
tions. This may lead to a performance gap at test
time. (ii) The generated QA pairs are comparatively
homogeneous and lack the diversity of the target
domain. To examine this, we manually inspected
synthetic samples from CAQA (see Appendix C).
We found that the generated QA pairs cannot fully
capture the diversity that is otherwise common in
question formulation. For example, almost all ques-
tions in the synthetic data start with ‘What’, ‘When’,
and ‘Who’. In contrast, in NaturalQuestions, we
find many questions that we perceived as more di-
verse or event more difficult. Examples are ‘The
court aquitted Moninder Singh Pandher of what
crime?’ and ‘Why does queen elizabeth sign her
name elizabeth r?’. Such behavior is particularly
exacerbated for NaturalQuestions, which was in-
tentionally designed to introduce more variety in
question formulation, and, hence, our contrastive
domain adaptation approach might implicitly learn
some of the characteristics (as compared to the
state-of-the-art baselines).

Why does the performance improvements vary
across datasets?
The different improvements with contrastive adap-
tation can be further attributed to the target domain
itself. When source and target datasets are simi-
lar, a model trained on the source dataset would
naturally have better performance on the target
dataset, but the improvements with contrastive
adaptation can be limited due to the small do-
main variation. In TriviaQA and HotpotQA, the
context paragraph originates – partially or com-
pletely – from Wikipedia and answer lengths are
similar. In contrast, NaturalQuestions have differ-
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ent text styles and sources including raw HTML
like ‘<Table>‘, SearchQA context involves web
articles and user contents, their average answer
lengths are different, amounting to 1.89 and 4.43
respectively. Additionally, supervised training re-
sults using 10k HotpotQA and TriviaQA yield mod-
erate improvements (5.02%, 5.73%), compared
to 10.12% and 42.82% in NaturalQuestions and
SearchQA. This also suggests that the difference
between the previous datasets and SQuAD is com-
paratively small. Similar trends can be found in Ta-
ble 3, where our contrastive adaptation on baseline
models proves to be more effective in NaturalQues-
tions and SearchQA. Therefore, the discrepancy
between source domain and target domain can be
crucial for domain adaptation results according to
our observations.

How does our contrastive adaptation loss affect the
discrepancy among answer tokens?
To further examine how the contrastive adaptation
loss improves the discrepancy among answers, we
draw upon methods in (van Aken et al., 2019) and
visualize the representations of the answer tokens
using PCA (see Appendix D). Based on it, we em-
pirically make the following observations. (i) In
correct predictions, answer tokens are separated
very well from questions and context tokens. (ii) In
incorrect predictions, the correct answer is either
not separated from the other tokens, or wrong to-
kens are separated and predicted as answers. In
the latter case, such behavior is termed as overcon-
fidence in out-of-domain data (cf. Kamath et al.,
2020). In sum, contrastive adaptation helps in sep-
arating tokens that are likely to be answers, though
sometimes incorrect tokens are identified as an-
swers, thereby worsening the problem of overconfi-
dence, which may explain the occasional decrease
in performance.

7 Conclusion

This work contributes a novel framework for do-
main adaptation of QA systems in settings with
limited text corpora. We develop CAQA in which
we combine techniques from from question gen-
eration and domain-invariant learning to answer
out-of-domain questions. Different from existing
works in question answering, we achieve this by
proposing a contrastive adaptation loss. Extensive
experiments show that CAQA is superior to other
state-of-the-art approaches by achieving a substan-
tially better performance on out-of-domain data.
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A Implementation Details

A.1 Datasets

In our experiments we used the following datasets,
for target datasets, we adopt modified versions from
MRQA (Fisch et al., 2019).

1. SQuAD (Rajpurkar et al., 2016) is a crowd-
sourced dataset with context passages from
Wikipedia and human-labeled question-answer
pairs. The adopted SQuAD v1.1 training set
has 18,885 context paragraphs and 86,588 QA
pairs.

2. TriviaQA (Joshi et al., 2017) is a large-scale QA
dataset that includes QA pairs and supporting
facts for supervised training.

3. HotpotQA (Yang et al., 2018) provides multi-
hop questions with human annotations (distrac-
tor paragraphs are excluded).

4. NaturalQuestions (Kwiatkowski et al., 2019)
contains actual questions from users issued to
the Google search engine. In the MRQA ver-
sion, short answers are adopted, while long an-
swers are used as context paragraphs.

5. SearchQA (Dunn et al., 2017) was constructed
through a pipeline that starts from existing QA
pairs and search for context information based
on crawled online search results.

A.2 Baselines

1. Info-HCVAE (Lee et al., 2020) leverages a hi-
erarchical variational autoencoder to encode
context paragraph. Latent variables for ques-
tions and answers are sampled from the latent
distributions conditional on a context. During
training, mutual information between question
and answer representations are maximized to
provide consistent QA pairs at test time.

2. AQGen (Shakeri et al., 2020) is a generative
baseline model for question generation. We
modify the AQGen architecture similar to the
QAGen2S in the original paper, namely using
encoder-decoders to separately generate answer
and question based on the input context infor-
mation.

3. QAGen is based on QAGen2S in (Shakeri et al.,
2020). Similar to AQGen, we exchange the task
and generate possible questions end-to-end in
the first step. Then, we generate answers based
on both questions and contexts.

A.3 Implementation

Baselines: For Info-HCVAE, AQGen, and QA-
Gen, we apply roundtrip filtering and limited the
maximum QA pairs per context to 5 (Alberti et al.,
2019). Info-HCVAE is trained for 20 epochs with
the default settings (Lee et al., 2020). For AQ-
Gen and QAGen, we implement the models based
on (Shakeri et al., 2020) and train for 10 epochs wit
the learning rate of 1 · 10−4 and the batch size of
16. The optimizer is set to AdamW without weight
decay and a linear warmup (Loshchilov and Hutter,
2017), we validate the model with SQuAD dev set
in training.

QAGen-T5: We apply LM-filtering as in (Shak-
eri et al., 2020) and select QA pairs with highest
scores for each context paragraph. QAGen-T5 mod-
els are trained similarly to AQGen and QAGen, we
separately keep the best QG and QA models ac-
cording to validation performance on the SQuAD
dev set.

QA model: We follow (Devlin et al., 2019; Ka-
math et al., 2020) and train BERT-QA with learning
rate of 3 ·10−5 for two epochs and with a batch size
of 16. The AdamW optimizer is adopted and no
linear warmup is used during training (Loshchilov
and Hutter, 2017).

Hyperparameter search: In our experiments,
we empirically search for hyperparameters β and σ
in the contrastive adaptation loss through additional
experiments. We experiment with different values
of β in the range [10−1, 10−2, 10−3] and Gaussian
noise N(0, σ) applied on all token embeddings
with standard deviation σ ranging from 0 to 10−2.
The best combination of β and σ as per the training
set is then selected, these numbers can be found in
Table 4.

Dataset Hyperparameter CAQA Results
β / σ EM / F1

TriviaQA 0.001/0.01 55.17/63.23
HotpotQA 0.001/0. 46.37/61.57
NaturalQ. 0.01/0.01 48.55/62.60
SearchQA 0.001/0.01 36.05/42.94

Table 4: Hyperparameter selection for each target
dataset in our main results.

All parameters that have not been mentioned
explicitly above were used as reported in their orig-
inal paper



9587

B Additional Results

B.1 Comparison Limited Text Corpora vs.
‘Large’ Text Corpora

In this section, we compare our setting based on
limited text corpora against the setting from the
literature involving ‘large’ text corpora. Hence,
we report the results from (a) the baseline models
trained on SQuAD data (i.e., ‘SQuAD’ as in our
main paper), (b) the baseline models using both
SQuAD the 10k synthetic text corpora (i.e., ‘S +
10k Syn’ as in our main paper) and (c) the baseline
models using both SQuAD the all provided text
corpora, results are from (Lee et al., 2020). We also
report (d), where ∼100k paragraphs are generated
as synthetic QA data, which we take from (Shakeri
et al., 2020). We refer to our implementation of (a)
and (b) by marking the models using a ‘*’.

The results are in Table 5 (TriviaQA) and Ta-
ble 6 (NaturalQuestions). As expected, the setting
(b) is responsible for a lower performance due to
the limited text corpora. The performance in (b), as
compared to (c) and (d), is lower by around 5% to
10%. Importantly, our proposed CAQA still outper-
forms (b) by a considerable margin. Hence, despite
using a considerable number sample of synthetic
QA data, our CAQA is superior.

Model TriviaQA
EM / F1

Performance on Target Domain w/o Domain Adaptation
(a) BERT-QA (Lee et al., 2020) 48.96/57.98
(a) BERT-QA* 50.84/60.48
Performance on Target Domain w/ Question Generation
(c) HCVAE (Lee et al., 2020) 50.14/59.21
(b) HCVAE* 45.66/55.28
(b) QAGen* 50.52/59.79

Table 5: BERT-QA and question generation results of
our implementation and original work(s) on TriviaQA.

Model NaturalQ.
EM / F1

Performance on Target Domain w/o Domain Adaptation
(a) BERT-QA (Lee et al., 2020) 42.77/57.29
(a) BERT-QA (Shakeri et al., 2020) 44.66/58.94
(a) BERT-QA* 45.14/59.35
Performance on Target Domain w/ Question Generation
(c) HCVAE (Lee et al., 2020) 48.19/62.21
(b) HCVAE* 37.12/51.17
(d) QAGen (Shakeri et al., 2020) 51.91/65.62
(b) QAGen* 44.13/57.84

Table 6: BERT-QA and question generation results
of our implementation and original work(s) on Natu-
ralQuestions

B.2 Sensitivity Analysis Varying the Number
of QA Pairs per Context

We now perform a sensitivity analysis in which
we vary the number of QA pairs per context (i.e.,
k). For this, we again adopt our CAQA framework
(with both QAGen-T5 model and contrastive adap-
tation loss) using a combination of the SQuAD
dataset and 10k context paragraphs. We vary the
number of QA pairs for each context in the range
k = 1, 3, 5, 7, and 9 QA pairs. The results are pre-
sented in Table 7. We note only some minor vari-
ation. The improvements tend to be larger when
increasing the number of QA pairs per context in
HotpotQA, while the results for SearchQA are less
stable when increasing the number of of synthetic
QA data.

Training data HotpotQA SearchQA
EM / F1 EM / F1

Performance w/o domain adaptation
SQuAD 43.57/61.09 19.66/27.90

Performance w/ question generation
S + 1QA/C 45.03/60.39 32.40/40.29
S + 3QA/C 45.92/61.13 34.96/42.47
S + 5QA/C 46.50/62.03 32.54/39.44
S + 7QA/C 47.45/62.83 37.05/44.46
S + 9QA/C 47.57/63.26 33.10/40.12
S + 5QA/C /w CAQA 46.37/61.57 36.05/42.94

Table 7: Sensitivity analysis varying the number of QA
pairs per context (k).
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C Qualitative Analysis of Synthetic Data
Samples

We present qualitative examples of generated syn-
thetic QA data using the proposed CAQA frame-
work with our QAGen-T5 model. For this, two
context paragraphs and five QA pairs for each para-
graph are presented in the following; see Tables 8
to 11.
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Table 8: Synthetic TriviaQA samples generated by QAGen-T5.

Synthetic TriviaQA samples
Context: UEFA European Championship Top 10 Midfielders - Football BibleUEFA European Championship Top 10
Midfielders UEFA European Championship Top 10 Midfielders Published on Country: Portugal Years Active: 1990 to
2008 Rui Costa represented Portugal in three UEFA European Championships . He was a good provider for other players
to score goals but still scored a good number himself. At his time, the national side had a steady performance making it to
the quarter finals in 1996, then the semifinals at the Euro 2000 and eventually the Euro 2004 final. On the progress to the
final, he helped the Portugal team to eliminate England at the quarter finals through a remarkable strike which secured a
2-1 win......

QA 1: What country did Rui Costa represent? Portugal
QA 2: In what year did Iniesta win UEFA Team of the Tournament? 1988
QA 3: What team did he play for in the European Football Championships? Portugal
QA 4: Who is the second highest assist-getter in La Liga? Luis Figo
QA 5: Who was a good provider for other players to score goals? Rui Costa
Context: Spiers on Sport: the unjust sacking of Kenny Shiels (From ...Spiers on Sport: the unjust sacking of Kenny
Shiels (From HeraldScotland) / Spiers on Sport , Graham Spiers When a manager wins one of only four trophies collected
by a football club in 80 years, there has to be a degree of respect shown towards him, right? When he also works slavishly
on all aspects of a club due to staffing limitations - training, recruiting, video-editing, youth development etc - wouldn’t
that admiration for him grow even greater? Loading article content Kenny Shiels, sacked by Kilmarnock, is by no means
perfect. But he has been a pretty good manager at Rugby Park, whose dismissal is hard to fathom......

QA 1: Where did most of Shiels’ felonies occur? Rugby Park
QA 2: What club did he manage? Kilmarnock
QA 3: Who is the chairman of the rugby club? Michael Johnston
QA 4: What was the name of the team that he managed? Kilmarnock
QA 5: Who was sacked by Kilmarnock? Kenny Shiels

Table 9: Synthetic HotpotQA samples generated by CAQA.

Synthetic HotpotQA samples
Context: Cascade Range [SEP] The Cascade Range or Cascades is a major mountain range of western North America,
extending from southern British Columbia through Washington and Oregon to Northern California. It includes both
non-volcanic mountains, such as the North Cascades, and the notable volcanoes known as the High Cascades. The small
part of the range in British Columbia is referred to as the Canadian Cascades or, locally, as the Cascade Mountains. The
latter term is also sometimes used by Washington residents to refer to the Washington section of the Cascades in addition
to North Cascades, the more usual U.S. term, as in North Cascades National Park. The highest peak in the range is Mount
Rainier in Washington at 14411 ft......

QA 1: What is one of Oregon’s most popular outdoor recreation sites? Lake of the Woods
QA 2: Who named the island? Oliver C. Applegate
QA 3: What is the name of the lake in Oregon? Lake of the Woods
QA 4: What is the name of the unincorporated community located on the east shore of the lake?
Lake of the Woods
QA 5: What is another name for the Cascade Range? Cascades
Context: Jim Conroy [SEP] James Conroy (born February 6, 1977) is an American voice actor, television writer and
actor. He is known for appearing on television shows, such as "Celebrity Deathmatch", "Kenny the Shark" and "Fetch
with Ruff Ruffman", radio commercials and video games. He worked for companies such as WGBH, The Walt Disney
Company and Discovery Channel. [PAR] [TLE] Kenny the Shark [SEP] Kenny the Shark is an American animated
television series produced by Discovery Kids. The show premiered on NBC’s Discovery Kids on NBC from November 1,
2003 and ended February 18, 2006 with two seasons and 26 episodes in total having aired......

QA 1: How many episodes did the show have? 26
QA 2: What is the birth date of Jim Conroy? February 6, 1977
QA 3: What is the name of the American animated television series? Kenny the Shark
QA 4: Who produces Kenny the Shark? Discovery Kids
QA 5: What is Jim Conroy’s birth date? February 6, 1977
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Table 10: Synthetic NaturalQuestions samples generated by CAQA.

Synthetic NaturalQuestion samples
Context: <Table><Tr><Th>Rank </Th><Th>Chg </Th><Th>Channel name </Th><Th>Network </Th><Th>Primary
language ( s ) </Th><Th>Subscribers ( millions ) </Th><Th>Content category </Th></Tr><Tr><Td>1
. </Td><Td></Td><Td>PewDiePie </Td><Td>N / A </Td><Td>English </Td><Td>64 </Td><Td>Comedy
</Td></Tr><Tr><Td>2 . </Td><Td></Td><Td>T - Series </Td><Td>T - Series </Td><Td>Hindi </Td><Td>53
</Td><Td>Music </Td></Tr><Tr><Td>3 . </Td><Td></Td><Td>Justin Bieber </Td><Td>N / A </Td><Td>English
</Td><Td>40 </Td><Td>Entertainment </Td></Tr><Tr><Td>4 . </Td><Td></Td><Td>Canal KondZilla......

QA 1: What language is used in the Disney films? Hindi
QA 2: What company is Sony Pictures? Sony Pictures
QA 3: What is the name of the band that released the single "One Direction"? One Direction
QA 4: What is the name of the band that is known for its trap music? PewDiePie
QA 5: What is Katy Perry’s real name? Katy Perry
Context: Red blood cell distribution width ( RDW or RDW - CV or RCDW and RDW - SD ) is a measure of the range
of variation of red blood cell ( RBC ) volume that is reported as part of a standard complete blood count . Usually red
blood cells are a standard size of about 6 - 8 \u03bcm in diameter . Certain disorders , however , cause a significant
variation in cell size . Higher RDW values indicate greater variation in size . Normal reference range of RDW - CV in
human red blood cells is 11.5 - 14.5 % . If anemia is observed , RDW test results are often used together with mean
corpuscular volume ( MCV ) results to determine the possible causes of the anemia . It is mainly used to differentiate an
anemia of mixed causes from an anemia of a single cause......

QA 1: What do higher RDW values indicate? Greater variation in size
QA 2: What is the measure of the range of variation of red blood cell volume? Red blood cell
distribution width
QA 3: What can cause a significant variation in cell size? Certain disorders
QA 4: What is the normal reference range of RDW - CV in human red blood cells? 11.5 - 14.5 %
QA 5: What is the main purpose of the test? To differentiate an anemia of mixed causes from an
anemia of a

Table 11: Synthetic SearchQA samples generated by CAQA.

Synthetic SearchQA samples
Context: A white elephant - Idioms by The Free Dictionary [PAR] Definition of a white elephant in the Idioms
Dictionary. a white elephant phrase. What does a white elephant expression mean? Definitions by the largest Idiom...
[DOC] [TLE] Can an elephant stand up after laying down? [Archive] - Straight ... [PAR] We often receive e-mails from
avid EleCam viewer saying, "There are elephants lying down in the pasture. They have been there a long time. [DOC]
[TLE] Elephants sleep in zoo and circus [PAR] That is one of the reasons why elephants do not sleep much, and then only
with ... The first elephant starts to lie down on its side towards 11 o’clock at night. [DOC] [TLE] Elephant Who Gives
Rides All Day Can’t Even Lie Down To Rest......

QA 1: What can an elephant do after lying down? Stand up
QA 2: What do I struggle with? People who lie
QA 3: What is the name of the elephant who gives rides all day? Elephant Who Gives Rides All
Day Can’t Even Lie Down
QA 4: What is the official website of South African National Parks? SANParks
QA 5: What is more concerning to me than lies? Misbehavior
Context: jeopardy/1333_Qs.txt at master jedoublen/jeopardy GitHub [PAR] Number: 2. ANIMAL SONGS | British
singer Robyn Hitchcock is known for his tunes about these animals, including "Bass" & "Aquarium" | Fish. right: Matt.
Wrong:. [DOC] [TLE] Robyn Hitchcock - Wikipedia [PAR] Robyn Rowan Hitchcock (born 3 March 1953) is an English
singer-songwriter and guitarist. While primarily a vocalist and guitarist, he also plays harmonica, piano, and bass guitar.
... Hitchcock’s lyrics tend to include surrealism, comedic elements, ... Hitchcock released his solo debut, Black Snake
Diamond Rle in 1981,... [DOC] [TLE] Positive Vibrations: Softcore - fegMANIA! [PAR] An except from Positive
Vibrations’ complete guide to the songs of Robyn Hitchcock......

QA 1: What is the dance music of northeastern Argentina known as? Chaman
QA 2: What was Hitchcock’s solo debut called? Black Snake Diamond Rle
QA 3: When did Hitchcock release his solo debut? 1981
QA 4: What is the name of the book that contains a complete guide to the songs of Robyn Hitchcock?
Positive Vibrations: Softcore - fegMA
QA 5: What was the name of the singer who performed on The House List? Robyn Hitchcock
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D PCA Visualization of Data

We visualize the BERT-QA output for the synthetic
QA data generated by our QAGen-T5 model. Here,
BERT-QA models are trained with contrastive adap-
tation loss on all target datasets separately. The
results are shown for TriviaQA (Figure 4), Hot-
potQA (Figure 5), NaturalQuestions (Figure 6), and
SearchQA (Figure 7). Answer tokens are in red
diamond shapes, question tokens in cyan circles,
while all other tokens are represented in orange
circles.
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Figure 4: Visualization of BERT-encoder output on TriviaQA w/ contrastive adaptation loss.

Figure 5: PCA visualization of BERT-encoder output on HotpotQA w/ contrastive adaptation loss.
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Figure 6: PCA visualization of BERT-encoder output on NaturalQuestions w/ contrastive adaptation loss.

Figure 7: PCA visualization of BERT-encoder output on SearchQA w/ contrastive adaptation loss.


