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Abstract

Pre-trained Transformer language mod-
els (LM) have become go-to text represen-
tation encoders. Prior research fine-tunes
deep LMs to encode text sequences such
as sentences and passages into single dense
vector representations for efficient text
comparison and retrieval. However, dense
encoders require a lot of data and sophisti-
cated techniques to effectively train and suffer
in low data situations. This paper finds a
key reason is that standard LMs’ internal
attention structure is not ready-to-use for
dense encoders, which needs to aggregate text
information into the dense representation. We
propose to pre-train towards dense encoder
with a novel Transformer architecture, Con-
denser, where LM prediction CONditions on
DENSE Representation. Our experiments
show Condenser improves over standard LM
by large margins on various text retrieval and
similarity tasks.1

1 Introduction

Language model (LM) pre-training has been very
effective in learning text encoders that can be fine-
tuned for many downstream tasks (Peters et al.,
2018; Devlin et al., 2019). Deep bidirectional
Transformer encoder (Vaswani et al., 2017) LMs
like BERT (Devlin et al., 2019) are the state-of-
the-art. Recent works fine-tune the CLS token to
encode input text sequence into a single vector rep-
resentation (Lee et al., 2019; Chang et al., 2020;
Karpukhin et al., 2020). The resulting model is
referred to as dense encoder or bi-encoder. Fine-
tuning associates with vector similarities some
practical semantics, e.g., textual similarity or rel-
evance, and therefore the vectors can be used for
efficient text comparison or retrieval by inner prod-
uct. Despite their efficiency, bi-encoders are hard
to train. Even with sufficient data, bi-encoders still

1Code available at https://github.com/luyug/
Condenser

require carefully designed sophisticated methods
to train effectively (Xiong et al., 2021; Qu et al.,
2020; Lin et al., 2020). They can also take big
performance hits in low data situations (Karpukhin
et al., 2020; Thakur et al., 2020; Chang et al., 2020).
Another common use of deep LM is cross-encoder,
pass compared text pair directly in and use attention
overall tokens to do prediction. In contrast to bi-
encoder, cross encoder trains easier and is effective
in low data for similarity and ranking tasks (Devlin
et al., 2019; Yang et al., 2019).

Based on the same LM, however, bi-encoder and
cross encoder have similar language understanding
capabilities. To explain the difficulty in training
bi-encoder not seen in cross-encoder, we look into
the internal structure of pre-trained LM. We find
LM like BERT directly out of pre-training has a
non-optimal attention structure. In particular, they
were not trained to aggregate sophisticated infor-
mation into a single dense representation. We term
effort during fine-tuning to adjust the LM internal
activation to channel its knowledge out for the tar-
get task, structural readiness. We argue bi-encoder
fine-tuning is inefficient due to the lacking struc-
tural readiness. Many updates are used to adjust
model attention structure than learn good represen-
tation.

Based on our observations, we propose to ad-
dress structural readiness during pre-training. We
introduce a novel Transformer pre-training archi-
tecture, Condenser, which establishes structural
readiness by doing LM pre-training actively CON-
dition on DENSE Representation. Unlike previ-
ous works that pre-train towards a particular task,
Condenser pre-trains towards the bi-encoder struc-
ture. Our results show the importance of structural
readiness. We experiment with sentence similar-
ity tasks, and retrieval for question answering and
web search. We find under low data setups, with
identical test time architecture, Condenser yields
sizable improvement over standard LM and shows

https://github.com/luyug/Condenser
https://github.com/luyug/Condenser
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comparable performance to strong task-specific pre-
trained models. With large training data, we find
Condenser retriever optimize more easily, outper-
forming previous models trained with complicated
techniques with a single round of negative mining.

2 Related Work

Transformer Bi-encoder LM pre-training fol-
lowed by task fine-tuning has become one im-
portant paradigm in NLP (Howard and Ruder,
2018). SOTA models adopt the Transformer ar-
chitecture (Devlin et al., 2019; Liu et al., 2019;
Yang et al., 2019; Lan et al., 2020). One chal-
lenge for applying deep Transformer is their com-
putation cost when used to retrieve text from
large collections. Motivated by this, Reimers and
Gurevych (2019) propose SBERT which trains bi-
encoder from BERT and uses vector product for
efficient sentence similarity comparison. Trans-
former bi-encoders were soon also adopted as
dense retriever (Lee et al., 2019; Chang et al., 2020;
Karpukhin et al., 2020; Gao et al., 2021b).

Dense Retrieval Dense retrieval compares en-
coded query vectors with corpus document vectors
using inner product. While there are works on effi-
cient cross-encoder (Gao et al., 2020; MacAvaney
et al., 2020), such models are still too costly for full
corpus retrieval. By pre-encoding the corpus into
MIPS (Johnson et al., 2017; Guo et al., 2020) in-
dex, retrieval can run online with millisecond-level
latency. An alternative is the recently proposed
contextualized sparse retrieval model (Gao et al.,
2021a). In comparison, dense retrieval is easier
to use and backed by more matured software like
FAISS (Johnson et al., 2017).

Pre-train Bi-encoder Lee et al. (2019) are
among the first to show the effectiveness of Trans-
former bi-encoder for dense retrieval. They pro-
posed to further pre-train BERT with Inverse Cloze
Task (ICT). ICT uses pair of passage segment and
full passage as pseudo training pair. Chang et al.
(2020) find ICT and other related tasks are “key
ingredients” for strong bi-encoders. Their results
also show that models without pre-training fail to
produce useful retrieval results under low data se-
tups. Guu et al. (2020) propose to pre-train retriever
and reader together for end-to-end QA system. The
aforementioned methods are specialized task spe-
cific solutions for improving bi-encoder training
based on contrastive loss. This paper provides an

explanation for the learning issue and presents an
architecture that establishes a universal solution
using general language model pre-training. We
also note that language model and contrastive pre-
training are orthogonal ideas. In a follow-up work,
we show further improved performance adding con-
trastive learning to Condenser language model pre-
training (Gao and Callan, 2021).

Effective Dense Retriever Karpukhin et al.
(2020) found carefully fine-tuning BERT can pro-
duce better results than earlier pre-trained dense
retrieval systems. To further improve the end per-
formance of dense retrievers, later works look into
better fine-tuning techniques. Using a learned re-
triever to mine hard negatives and re-train another
retriever with them was found helpful (Karpukhin
et al., 2020; Qu et al., 2020). ANCE (Xiong et al.,
2021) actively mines hard negatives once after an
interval during training to prevent diminishing gra-
dients. It allocates extra resources to update and
retrieve from the corpus retrieval index repetitively.
(Gao et al., 2021b) proposed to jointly learn a pair
of dense and sparse systems to mitigate the capacity
issue with low dimension dense vectors. Beyond
fine-tuning, using more sophisticated knowledge
distillation loss to learn bi-encoders based on soft
labels has also been found useful (Chen et al., 2020;
Lin et al., 2020). They first learn a teacher model
and use its predictions at training time to optimize
the dense retriever. These works all aim at produc-
ing better gradient updates during training, while
Condenser aims at better initializing the model. We
will also show the combined improvement of Con-
denser and hard negatives in experiments. Another
line of works question the capacity of single vector
representation and propose to use multi-vector rep-
resentation (Luan et al., 2020). Capacity defines
the performance upper bound and is one other issue
than training (optimization), i.e. how to reach the
upper bound.

Sentence Representation We’d also like to
make a distinction from works in universal sentence
representation and encoder (Kiros et al., 2015; Con-
neau et al., 2017; Cer et al., 2018). They are feature-
based methods rather than fine-tuning (Houlsby
et al., 2019). In evaluation, they focus on using the
learned embedding as universal features for a wide
range of tasks (Conneau and Kiela, 2018). This pa-
per considers task-specific fine-tuning of the entire
model and focuses on the target task performance.
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3 Method

This section discusses the motivation behind Con-
denser, its design, and its pre-training procedure.

3.1 Preliminaries
Transformer Encoder Many recent state-of-the-
art deep LM adopts the architecture of Transformer
encoder. It takes in a text sequence, embed it
and pass it through a stack of L self-attentive
Transformer blocks. Formally, given input text
x = [x1, x2, ...], we can write iteratively,

h0 = Embed(x) (1)

hl = Transformerl(hl−1) (2)

Intuitively, Transformer blocks refine each token’s
representation conditioning on all tokens in the
sequence to effectively embed them.

Transformer LM Pre-training Many success-
ful Transformer Encoder LMs such as BERT are
trained with masked language model (MLM) task.
MLM masks out a subset of input tokens and re-
quires the model to predict them. For a masked
out token xi at position i, its corresponding final
representation hLi is used to predict the actual xi.
Training uses a cross-entropy loss,

Lmlm =
∑

i∈masked

CrossEntropy(WhLi , xi) (3)

A special token, typically referred to as CLS is
prepended and encoded with the rest of the text.

[h0cls;h
0] = Embed([CLS;x]) (4)

[hlcls;h
l] = TFl([h

l−1
cls ;h

l−1]) (5)

Some models train CLS explicitly during pre-
training, notably BERT’s next sentence predic-
tion (NSP; Devlin et al. (2019)), while others im-
plicitly (Yang et al., 2019; Liu et al., 2019).

3.2 Issues with Transformer Encoder
Recall in Transformers, all tokens, including the
CLS, receive information of other tokens in the
sequence only with attention. Attention patterns,
therefore, define how effective CLS can aggregate
information. To understand the attentive behaviors
of CLS, we borrow analysis of BERT from Clark
et al. (2019): 1) in most middle layers, the CLS
token has similar attention patterns as other text
tokens and is not attended by other tokens, 2) until
the last layer, CLS has unique broad attention over

the entire sequence to perform NSP task. In other
words, the CLS token remains dormant in many
middle layers and reactivates only in the last round
of attention. We argue that an effective bi-encoder
should actively aggregate information of different
granularity from the entire sentence through all
layers, and this structure in standard pre-trained
LM is not immediately ready for fine-tuning. We
will verify this claim with experiments in section 4
and with quantitative analysis of attention of BERT,
ICT, and the proposed Condenser in section 5.

Oven [MASK] apple pie[CLS]

Oven [MASK] apple pie[CLS]

Oven [MASK] apple pie[CLS]

Oven [MASK] apple pie[CLS]

Oven [MASK] apple pie[CLS]

Head (Pre-train Only)

Oven [MASK] apple pie[CLS]

Oven [MASK] apple[CLS] pie

Late

Early

Figure 1: Condenser: We show 2 early and 2 late back-
bone layers here, in our experiments each have 6 layers.
Condenser Head is dropped during fine-tuning.

3.3 Condenser
Building upon Transformer encoder LMs, which
conditions on left and right context (Devlin et al.,
2019), we present bi-encoder pre-training archi-
tecture Condenser, which CONdition actively on
DENSE Representation in LM pre-training.

Model Design Like Transformer Encoder, Con-
denser is parametrized into a stack of Transformer
blocks, shown in Figure 1. We divide them into
three groups, Le early encoder backbone layers, Ll

late encoder backbone layers, and Lh Condenser
head Layers. Inputs is first encoded by backbone,

[hearlycls ;hearly] = Encoderearly([h
0
cls;h

0]) (6)

[hlatecls ;hlate] = Encoderlate([h
early
cls ;hearly]) (7)

Condenser Head The critical design is that we
put a short circuit from early output to the head,
which takes in a pair of late-early representations,

[hcdcls;h
cd] = Condenserhead([h

late
cls ;hearly]) (8)

We train with MLM loss with the head’s output,

Lmlm =
∑

i∈masked

CrossEntropy(Whcdi , xi) (9)
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We follow the masking scheme in Devlin et al.
(2019) to combat train test difference.

Within Condenser, the late encoder backbone
can further refine the token representations but can
only pass new information through hlatecls , the late
CLS. The late CLS representation is therefore re-
quired to aggregate newly generated information
later in the backbone, and the head can then condi-
tion on late CLS to make LM predictions. Mean-
while, skip connecting the early layers, we remove
the burden of encoding local information and the
syntactic structure of input text, focusing CLS on
the global meaning of the input text. Layer num-
bers Le and Ll control this separation of informa-
tion.

Architecture of Condenser is inspired by Funnel
Transformer (Dai et al., 2020), which itself is in-
spired by U-net (Ronneberger et al., 2015) from
computer vision. Funnel Transformer reduces se-
quence length by a factor of 4 during forward and
uses a 2-layer Transformer to decode the length
compressed sequence onto a skip-connected full-
length representation. Funnel Transformer was
designed to speed up pre-training while our Con-
denser learns dense information aggregation.

Fine-tuning The Condenser head is a pre-train
time component and is dropped during fine-tuning.
Fine-tuning trains the late CLS hlatecls and back-
propagate gradient into the backbone. In other
words, a Condenser reduces to its encoder back-
bone, or effectively becomes a Transformer en-
coder for fine-tuning; the head is only used to guide
pre-training. During fine-tuning, Condenser has an
identical capacity as a similarly structured Trans-
former. In practice, Condenser can be a drop-in
weight replacement for a typical Transformer LM
like BERT.

3.4 Condenser from Transformer Encoder

In this paper, we opted to initialize Condenser with
pre-trained Transformer LM weight. This accom-
modates our compute budget, avoiding the huge
cost of pre-training from scratch. This also gives
us a direct comparison to the original LM. Given a
pre-trained LM, we initialize the entire Condenser
backbone with its weights and randomly initial-
ize the head. To prevent gradient back propagated
from the random head from corrupting backbone
weights, we place a semantic constraint by perform-

ing MLM also with backbone late outputs,

Lcmlm =
∑

i∈masked

CrossEntropy(Whlatei , xi) (10)

The intuition behind this constraint is that encod-
ing per-token representations hlate and sequence
representation hlatecls share similar mechanism and
will not interfere with each other. As a result, hlate

can still be used for LM prediction. The full loss is
then defined as a sum of two MLM losses,

L = Lmlm + Lcmlm (11)

The output projection matrix W is shared between
the two MLM losses to reduces the total number of
parameters and memory usage.

4 Experiments

In this section, we first describe details on how to
pre-train Condenser from BERT. Our fine-tuning
experiments then look into the impacts of Con-
denser under low and high data setup. To evaluate
low data, we sample smaller training sets similar to
Chang et al. (2020), by sub-sampling the original
train set. We keep dev/test sets unchanged across
runs for direct comparison. We first validate our
model with short sentence level tasks, then evalu-
ate retrieval in open question answering and web
search tasks following prior works (Chang et al.,
2020; Xiong et al., 2021). We will examine how
swapping original BERT with Condenser improves
performance, and how the improvements compare
to various improved training techniques.

4.1 Pre-training
We initialize Condenser backbone layers from the
popular 12-layer BERT base and only a 2-layer
head from scratch. Pre-training runs with proce-
dures described in subsection 3.4. We use an equal
split, 6 early layers, and 6 late layers. We pre-train
over the same data as BERT: English Wikipedia
and the BookCorpus. This makes sure BERT and
Condenser differ only in architecture for direct
comparison. We train for 8 epochs, with AdamW,
learning rate of 1e-4 and a linear schedule with
warmup ratio 0.1. Due to compute budget limit,
we were not able to tune the optimal layer split,
head size or train hyperparameters, but leave that
to future work. We train on 4 RTX 2080ti with gra-
dient accumulation. The procedure takes roughly a
week to finish. After pre-training, we discard the
Condenser head, resulting in a Transformer model
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of the same architecture as BERT. All fine-tuning
experiments share this single pre-trained weight.

4.2 Sentence Similarity
Dataset We use two supervised data sets: Seman-
tic Textual Similarity Benchmark(STS-b; Cer et al.
(2017)) and Wikipedia Section Distinction (Ein Dor
et al., 2018) adopted in Reimers and Gurevych
(2019). The former is a standard sentence similarity
task from GLUE (Wang et al., 2018) with a small
training set (∼6K). The latter is large(∼1.8M) and
has an interesting objective, to determine if a pair
of sentences are from the same Wikipedia section,
very similar to the BERT NSP task. Lan et al.
(2020) argue NSP learns exactly topical consis-
tency on the training corpus, i.e. Wikipedia. In
other words, NSP is a close pre-training, if not
training, task for Wiki Section Distinction. We re-
port test set Spearman correlation for STS-b and
accuracy for Wiki Section Distinction.

Compared Systems We compare with standard
BERT and on STS-b, with BERT pre-trained with
multiple NLI data sets with a popular carefully
crafted 3-way loss (Conneau et al., 2017) from
Reimers and Gurevych (2019)2. Non-BERT base-
lines are also borrowed from it.

Implementation We use the sentence trans-
former software and train STS-b with MSE
regression loss and Wiki Section with triplet
loss (Reimers and Gurevych, 2019). The training
follows the authors’ hyper-parameter settings.

Results Table 1 shows performance on STS-b
with various train sizes. NLI pre-trained BERT and
Condenser consistently outperform BERT and has
a much larger margin with smaller train sizes. Also,
with only 500 training pairs, they outperform the
best Universal Sentence Encoder(USE) baseline.

For Wiki Section, in Table 2 we observe almost
identical results among BERT and Condenser mod-
els, which outperform pre-BERT baselines. Mean-
while, even when training size is as small as 1K,
we observe only about 10% accuracy drop than
training with all data. Without training with the
NSP task, Condenser remains effective.

4.3 Retrieval for Open QA
In this section, we test bi-encoders with open QA
passage retrieval experiments (Chang et al., 2020;

2These models are referred to as SBERT in the original
paper. We use BERT for consistency with later discussions.

STS-b
Model Spearman
GloVe 58.0
Infersent 68.0
USE 74.9
Train Size 500 1K FULL
BERT 68.6 71.4 82.5
BERT + NLI 76.4 76.8 84.7
Condenser 76.6 77.8 85.6

Table 1: STS-b: Spearman correlation on Test Set.

Wikipedia Section Distinction
Model Accuracy
skip-thoughts 0.62
Train Size 1K 10K FULL
BiLSTM n.a. n.a. 0.74
BERT 0.72 0.75 0.80
Condenser 0.73 0.76 0.80

Table 2: Wiki Section: Accuracy on Test Set.

Karpukhin et al., 2020). Compared to the sentence
level task, search tasks explicitly use the learned
structure of the embedding space, where similar-
ity corresponds to the relevance between a pair of
query, passage. We adopt the DPR (Karpukhin
et al., 2020) setup, fine-tune LM with a contrastive
loss in training, computing for query q, the negative
log likelihood of a positive document d+ against a
set of negatives {d−1 , d

−
2 , ..d

−
l ..}.

L = − log
exp(s(q, d+))

exp(s(q, d+)) +
∑
l

exp(s(q, d−l ))

(12)
Negatives can come from various sources: ran-
dom, top BM25, hard negatives, or sophisticatedly
sampled like ANCE. We conduct low data experi-
ments with BM25 negatives to save compute and
use mined hard negatives (HN) in full train experi-
ments.

Dataset We use two query sets, Natural Ques-
tion(NQ; Kwiatkowski et al. (2019)) and Trivia
QA(TQA; Joshi et al. (2017)), as well as the
Wikipedia corpus cleaned up and released with
DPR. NQ contains questions from Google search
and TQA contains a set of trivia questions. Both
NQ and TQA have about 60K training data post-
processing. We refer readers to Karpukhin et al.
(2020) for details. We adopt DPR evaluation met-
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Natural Question Trivia QA
Model Top-20 Top-100 Top-20 Top-100
BM25 59.1 73.7 66.9 76.7
Train Size 1K 10K FULL 1K 10K FULL 1K 10K FULL 1K 10K FULL
BERT 66.6 75.9 78.4 79.4 84.6 85.4 68.0 75.0 79.3 78.7 82.3 84.9
ICT 72.9 78.4 80.9 83.7 85.9 87.4 73.4 77.9 79.7 82.3 84.8 85.3
Condenser 72.7 78.3 80.1 82.5 85.8 86.8 74.3 78.9 81.0 82.2 85.2 86.1

Table 3: Low data: Results on Natual Question and Triavia QA measured by Top-20/100 Hits. Models in this table
are all trained with BM25 negatives. Results within 0.1 difference with the best are marked bold.

rics, report test set hit accuracy of Top-20/100.

Compared Systems For low data experiments,
we compare BERT, ICT, and Condenser. We at-
tempted to train ICT on our hardware for direct
comparison but found the end result bad, due to
the small batch size. We instead use ICT released
by Lee et al. (2019) trained with 4096 batch size
from BERT for more informative comparison.3 For
full train, we compare with lexical systems BM25
and GAR (Mao et al., 2020) and dense systems
DPR (BERT), DPR with HN and ANCE. GAR uses
a learned deep LM BART (Lewis et al., 2020) to ex-
pand queries. ANCE uses asynchronous corpus in-
dex update (Guu et al., 2020) to do multiple rounds
of hard negative mining during training. We also
compare with RocketQA (Qu et al., 2020), which
is trained with an optimized fine-tuning pipeline
that combines hard negative, large (1024) batch,
supervision from cross-encoder, and external data.

Implementation We train Condenser systems us-
ing the DPR hyper-parameter setting. We use a
single RTX 2080ti and employ the gradient cache
technique (Gao et al., 2021c) implemented in the
GC-DPR toolkit4 to perform large batch training
with the GPU’s limited memory. As DPR only
released Natural Question hard negatives, we use
theirs on Natural Question and mine our own with
a Condenser retriever on TriviaQA.

Results In Table 3, we record test set perfor-
mance for NQ and TQA with low data. We observe
ICT and Condenser both outperform vanilla BERT,
by an especially large margin at 1K training size,
dropping less than 10% compared to full-size train-
ing for Top-20 Hit and less than 5% for Top-100.
The improvement is more significant when consid-
ering the gain over unsupervised BM25. ICT and
Condenser show comparable performance, with

3A detailed discussion of this choice of ICT is in A.3
4https://github.com/luyug/GC-DPR

ICT slightly better on NQ and Condenser on TQA.
This also agrees with results from Lee et al. (2019),
that ICT specializes in NQ. The results suggest
general LM-trained Condenser can be an effective
alternative to task-specific pre-trained model ICT.

In Table 4, we compare Condenser trained with
full training data with other systems. On NQ, dense
retrievers all yield better performance than lexical
retrievers, especially those that use hard negatives.
We see Condenser performs the best for Top-20
and is within 0.1 to RocketQA for Top-100, with-
out requiring the sophisticated and costly training
pipeline. On TQA, we see GAR, lexical with deep
LM query expansion, perform better than all dense
systems other than Condenser. This suggests TQA
may require granular term-level signals hard to cap-
ture for dense retrievers. Nevertheless, we find
Condenser can still capture these signals and per-
form better than all other lexical and dense systems.

NQ TQA
Model Top-20/100 Top-20/100
BM25 59.1 73.7 66.9 76.7
GAR 74.4 85.3 80.4 85.7
DPR 78.4 85.4 79.3 84.9
DPR + HN 81.3 87.3 80.7 85.8
ANCE 81.9 87.5 80.3 85.3
RocketQA 82.7 88.5 n.a. n.a.
Condenser 83.2 88.4 81.9 86.2

Table 4: Full train for Natural Question and Trivia QA.
Results not available are denoted ‘n.a.’ Results within
0.1 difference with the best are marked bold.

4.4 Retrieval for Web Search

In this section, we examine how Condenser re-
triever performs on web search tasks. The setup
is similar to open QA. One issue with web search
data sets is that they are noisier, containing a large
number of false negatives (Qu et al., 2020). We
investigate if Condenser can help resist such noise.

https://github.com/luyug/GC-DPR
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MS-MARCO Dev DL2019
Model MRR@10 Recall@1000 NDCG@10
BM25 0.184 0.853 0.506
Train Size 1K 10K FULL 1K 10K FULL 1K 10K FULL
BERT 0.156 0.228 0.309 0.786 0.878 0.938 0.424 0.555 0.612
ICT 0.175 0.251 0.307 0.847 0.905 0.945 0.519 0.585 0.624
Condenser 0.192 0.258 0.338 0.852 0.914 0.961 0.530 0.591 0.648

Table 5: Low data: Performacne is measured by MRR@10, Recall@1k. Models in this table are all trained with
BM25 negatives.

As passage retrieval is the focus of the paper, we
defer discussion of long document retrieval to A.4.

Dataset We use the MS-MARCO passage rank-
ing dataset (Bajaj et al., 2018), which is constructed
from Bing’s search query logs and web documents
retrieved by Bing. The training set has about 0.5M
queries. We use corpus pre-processed and released
with RocketQA. We evaluate on two query sets:
MS-MARCO Dev5 and TREC DL2019 queries.
We report on Dev official metrics MRR@10 and
Recall@1k, and report on DL2019 NDCG@10.

Implementation We train with the contrastive
loss with a learning rate of 5e-6 for 3 epochs on a
RTX2080ti. We pair each query with 8 passages as
Luan et al. (2020) and use a total batch of 64 pas-
sages. Low data experiments use BM25 negatives
and full data experiments use hard negatives mined
with BM25 negative trained Condenser.

Compared Systems For low data settings, we
again compare BERT, ICT, and Condenser. Here,
all the three are not trained on the MS-MARCO
corpus; we examine their generalization capabil-
ity. For full training setup, we compare with
lexical system BM25, deep LM augmented lexi-
cal systems DeepCT (Dai and Callan, 2019) and
DocT5Qry (Nogueira and Lin, 2019), and dense
systems, ANCE, TCT (Lin et al., 2020) and ME-
BERT (Luan et al., 2020). TCT also aims at im-
proving training like ANCE, but by replacing con-
trastive loss fine-tuning with knowledge distillation.
ME-BERT uses BERT large variant as encoder,
three times larger than LMs used in other systems,
and represents passage with multiple vectors. It
gets higher encoder and embedding capacity but
has higher costs in train, inference, and retrieval.
Since the full RocketQA system uses data external
to MS-MARCO, for a fair comparison, we include

5The test set was hidden; MS-MARCO organizers dis-
courage multi submissions but recommend studies over Dev
set.

the variant without external data in the main result
Table 6 and separately compare Condenser with all
RocketQA variants in Table 7.

MS-MARCO Dev DL2019
Model MRR@10 R@1K NDCG@10
BM25 0.189 0.853 0.506
DeepCT 0.243 0.909 0.572
DocT5Qry 0.278 0.945 0.642
BERT 0.309 0.938 0.612
BERT + HN 0.334 0.955 0.656
ME-BERT 0.334 n.a. 0.687
ANCE 0.330 0.959 0.648
TCT 0.335 0.964 0.670
RocketQA* 0.364 n.a. n.a.
Condenser 0.366 0.974 0.698

Table 6: Full train setup on MS-MARCO. Results not
available are denoted ‘n.a.’ *: RocketQA variant here
is not trained with external data.

Results In Table 5, we again find in low data, ICT
and Condenser initialized retriever outperforms
BERT by big margins. As it gets to 10K training
data, 2% of the full training set, all dense retriev-
ers outperform BM25, with ICT and Condenser
retaining their margin over BERT. Condenser can
already show comparable performance in recall and
NDCG to BERT trained on the full training set. We
also observe that Condenser can outperform ICT at
various train size, suggesting that the general LM
pre-training of Condenser help it better generalize
across domains than task-specific ICT.

In Table 6, we compare full train performance of
various system. We see various training techniques
help significantly improve over vanilla fine-tuning.
Condenser can further outperform these models
by big margins, showing the benefits brought by
pre-training. Without involving complex train-
ing techniques, or making model/retrieval heavy,
Condenser can already show slightly better perfor-
mance than RocketQA.



988

0 2 4 6 8 10

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
pre-trained
fine-tuned

(a) BERT

0 2 4 6 8 10

1.25

1.50

1.75

2.00

2.25

2.50

2.75 pre-trained
fine-tuned

(b) ICT

0 2 4 6 8 10
0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
pre-trained
fine-tuned

(c) Condenser

Figure 2: Attention patterns in pre-trained v.s. fine-tuned BERT, ICT and Condenser.

batch size MRR@10
RocketQA
Cross-batch 8192 0.333
+ Hard negatives 4096 0.260
+ Denoise 4096 0.364
+ Data augmentation 4096 0.370
Condenser
w/o hard negatives 64 0.338
w/ hard negatives 64 0.366

Table 7: Comparison with RocketQA MARCO Dev.

We further give a comparison with RocketQA
variants in Table 7 to understand more costly strate-
gies: very large batch, denoise hard negatives, and
data augmentation. RocketQA authors find mined
hard negatives contain false negatives detrimental
to bi-encoder training as shown in the table and
propose to use cross-encoder to relabel and denoise
them, a process however thousands of times more
costly than hard negative mining. They further em-
ploy a data augmentation technique, using a cross
encoder to label external data. Here, we see Con-
denser trained with batch size 64 and BM25 nega-
tives has better performance than RocketQA with
8192 batch size. More importantly, Condenser is
able to resist noise in mined hard negatives, getting
a decent boost training with mined hard negatives,
unlike RocketQA whose performance drops a lot
without denoise. We see that Condenser removes
the need for many sophisticated training techniques:
it is only outperformed by the RocketQA variant
that uses external data (data augmentation).

Interestingly, our runs of BERT (DPR) + HN
have decent performance improvement over BERT
in all retrieval tasks, sometimes better than ac-
tive mining ANCE on both QA and Web Search.
This contradicts the finding in RocketQA that di-
rectly mined hard negatives hurts performance.

Recall our hard negatives are mined by Con-
denser retriever, which we conjecture has produced
higher quality hard negatives. The finding suggests
that mined hard negatives may not be retriever-
dependent. There exist universally better ones,
which can be found with a more effective retriever.

5 Attention Analysis

Condenser is built upon the idea that typical pre-
trained LM lacks proper attention structure. We
already see that we can fix the issue by pre-training
with Condenser in the last section. In this sec-
tion, we provide a more in-depth attention analy-
sis: we compare attention behaviors among pre-
trained/fine-tuned BERT, ICT, and Condenser. We
use an analytical method proposed by Clark et al.
(2019), characterizing the attention patterns of CLS
by measuring its attention entropy. A higher en-
tropy indicates broader attention and a lower more
focused attention. Similar to Clark et al. (2019),
we show CLS attention entropy at each layer, aver-
aged over all heads, and averaged over 1k randomly
picked Wikipedia sections.

In Figure 2, we plot attention from CLS of var-
ious models. We see in Figure 2a that BERT has
a drastic change in attention pattern between pre-
trained and fine-tuned models. This again con-
firmed our theory that typical Transformer En-
coder LMs are not ready to be fined-tuned into bi-
encoder, but need to go through big internal struc-
tural changes. In comparison, we see in Figures 2b,
2c that task-specific pre-trained ICT and LM pre-
trained Condenser only have small changes, retain-
ing general attention structure. In other words, ICT
and Condenser both established structural readi-
ness, but in very different ways. Both ICT and
Condenser have broadening attention (increased
entropy) in the later layers, potentially because the
actual search task requires aggregating more high-
level concepts than pre-training. The results here
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again confirm our theory, that a ready-to-use struc-
ture can be easier to train; their structures only need
small changes to work as an effective bi-encoder.

6 Conclusion

Fine-tuning from a pre-trained LM initializer like
BERT has become a very common practice in NLP.
In this paper, we however question if models like
BERT are the most proper initializer for bi-encoder.
We find typical pre-trained LM does not have an
internal attention structure ready for bi-encoder.
They cannot effectively condense information into
a single vector dense representation. We propose
a new architecture, Condenser, which establishes
readiness in structure with LM pre-training. We
show Condenser is effective for a variety of tasks,
sentence similarity, question answering retrieval,
and web search retrieval. With low data, Condenser
shows comparable performance to task-specific
pre-trained models. It also provides a new pre-
training perspective in learning effective retrievers
than fine-tuning strategies. With sufficient train-
ing, Condenser and direct fine-tuning can be a
lightweight alternative to many sophisticated train-
ing techniques.

Positive results with Condenser show that struc-
tural readiness is a fundamental property in easy-
to-train bi-encoders. Our attention analysis re-
veals both Condenser and task-specific pre-trained
model establish structural readiness, suggesting
task-specific objective may not be necessary. Re-
searchers can use this finding to guide the study
of better LM for bi-encoder, for example, explore
training Condenser with other LM objectives.

One big advantage of BERT is that after cumber-
some pre-training for once, fine-tuning is easy with
this universal model initializer. This is however
not true for BERT bi-encoder, especially retriever,
which needs careful and costly training. Condenser
extends this benefit of BERT to bi-encoder. Prac-
titioners on a limited budget can replace BERT
with our pre-trained Condenser as the initializer
to get an instant performance boost. Meanwhile,
for those aiming at the best performance, training
techniques and Condenser can be combined. As
we have demonstrated the combined effect of hard
negatives and Condenser, sophisticated but better
techniques can be further incorporated to train Con-
denser.
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A Appendix

A.1 Hyper Parameters Settings

STS-b The training follows hyper-parameter set-
tings in Reimers and Gurevych (2019), Adam opti-
mizer, a learning rate of 2e-5 with linear schedule,
and 4 epochs. For low data setup, we search best
epoch number in {4,8} for BERT and apply those
to all other pre-trained models.

Wikipedia Section Distinction The training fol-
lows hyper-parameter settings in Reimers and
Gurevych (2019), Adam optimizer, a learning rate
of 2e-5 with linear schedule and 1 epoch. For low
data setup, we search best epoch number in {1,4,8}
for BERT and apply those to all other pre-trained
models.

Open QA We follow hyperparameter settings in
Karpukhin et al. (2020), 128 batch size, 1 BM25
negative, in-batch negatives, 40 epochs, 1e-5 learn-
ing rate and linear schedule with warmup. Low
data share the same setting as we found 40 epochs
are enough for convergence.

Web Search We train with Adam optimizer,
learning rate of 5e-6 for 3 epochs with a total batch
size of 64: 8 query × 8 passages. For low data
setup, we search best epoch number in {5, 10, 40}
for BERT and apply those to all other pre-trained
models.

A.2 Model Size

In our experiments, Condenser during fine-tuning
has the same number of parameters as BERT base,
about 100 M. Adding the head during pre-training,
there are roughly 120 M parameters.

A.3 ICT Model

Our ICT model comes from Lee et al. (2019). It
is trained with a batch size of 4096. ICT’s effec-
tiveness in low data setup was verified and thor-
oughly studied by Chang et al. (2020). Chang et al.
(2020) also introduces two other pre-training tasks
Body First Selection and Wiki Link Prediction.
They heavily depend on Wikipedia like structure
and knowledge of the structure during pre-training
and therefore does not apply in general situations.
Meanwhile, adding them improves over ICT by
only around 1% and Chang et al. (2020) has not
released their model checkpoints. Therefore we
chose to use the ICT checkpoint.

Difficulties in reproducing these models come
from the large batch requirement and the con-
trastive loss in ICT. Both Lee et al. (2019) and
Chang et al. (2020) find it critical to use large batch:
Lee et al. (2019) uses a 4096 batch and Chang
et al. (2020) a 8192 batch. Both were trained with
Google’s cloud TPU. In comparison, our GPU can
fit a batch of only 64. The contrastive loss uses the
entire batch as the negative pool to learn the em-
bedding space. Using gradient accumulation will
reduce this pool size by several factors, leading to
a bad pre-trained model. In comparison, our Con-
denser is based on instance-wise MLM loss and
can naively use gradient accumulation.

We convert the original Tensorflow Checkpoint
into Pytorch with huggingface conversion script.
We don’t use the linear projection layer that maps
the 768 BERT embedding vector to 128 so that the
embedding capacity is kept the same as retrievers
in Karpukhin et al. (2020).

MS-MARCO Dev DL2019
Model MRR@100 NDCG@10
BM25 0.230 0.519
DeepCT 0.320 0.544
BERT 0.340 0.546
ME-BERT n.a. 0.588
ANCE 0.382 0.615
Condenser 0.375 0.569
Condenser + HN 0.404 0.597

Table 8: Full train setup on MS-MARCO Document.
Results not available are denoted ‘n.a.’

A.4 Document Retrieval

Recent works (Xiong et al., 2021; Luan et al., 2020)
explored retrieving long documents with the MS-
MARCO document ranking dataset (Bajaj et al.,
2018). There are several issues with this data set.
The training set is not directly constructed but syn-
thesizing from the passage ranking data set label.
Xiong et al. (2021) find that the judgment in its
TREC DL2019 test set biased towards BM25 and
other lexical retrieval systems than dense retrievers.
Meanwhile, Luan et al. (2020) find single vector
representation has a capacity issue in encoding long
documents. To prevent these confounding from af-
fecting our discussion, we opted to defer the exper-
iment to this appendix. Here we use two query sets,
MS-MARCO Document Dev and TREC DL2019.
We report official metrics MRR@100 on Dev and
NDCG@10 on DL2019. Results are recorded in
Table 8. Condenser improves over BERT by a large
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margin and adding HN also boosts its performance.
Condenser + HN performs the best on Dev. On the
other hand, we see ANCE is the best on DL2019.
We conjecture the reason is that use of BM25 neg-
atives in many systems is not favorable towards
DL2019 labels that favor lexical retrievers. The
multi rounds of negative mining help ANCE get
rid of the negative effect of BM25 negatives.

A.5 Engineering Detail
We implement Condenser (from BERT) in Py-
torch (Paszke et al., 2019) based on the BERT
implementation in huggingface transformers pack-
age (Wolf et al., 2019). As our adjustments go only
into the model architecture and the LM objective is
kept unchanged, we only need to modify the mod-
eling file and reuse the pre-training pipeline from
huggingface.

A.6 Link To Datasets
Sentence Similarity Cleaned up version
can be found in the sentence transformer
repo https://github.com/UKPLab/
sentence-transformers.

Open QA We use cleaned up open qa
data from DPR https://github.com/
facebookresearch/DPR/.

Web Search MS-MARCO data can found on
its homepage https://microsoft.github.
io/msmarco/.

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/facebookresearch/DPR/
https://github.com/facebookresearch/DPR/
https://microsoft.github.io/msmarco/
https://microsoft.github.io/msmarco/

