Raise a Child in Large Language Model:
Towards Effective and Generalizable Fine-tuning

Runxin Xu'; Fuli Luo®; Zhiyuan Zhang', Chuangi Tan?,
Baobao Chang'] Songfang Huang?] Fei Huang?
'Key Laboratory of Computational Linguistics, Peking University, MOE, China
2Alibaba Group

runxinxu@gmail.com,

{zzy1210,chbb}@pku.edu.cn

{1£1259702, chuangi.tcq, songfang.hsf, f.huang}@alibaba-inc.com

Abstract

Recent pretrained language models extend
from millions to billions of parameters. Thus
the need to fine-tune an extremely large pre-
trained model with a limited training corpus
arises in various downstream tasks. In this pa-
per, we propose a straightforward yet effec-
tive fine-tuning technique, CHILD-TUNING,
which updates a subset of parameters (called
child network) of large pretrained models via
strategically masking out the gradients of the
non-child network during the backward pro-
cess. Experiments on various downstream
tasks in GLUE benchmark show that CHILD-
TUNING consistently outperforms the vanilla
fine-tuning by 1.5 ~ 8.6 average score among
four different pretrained models, and surpasses
the prior fine-tuning techniques by 0.6 ~
1.3 points. Furthermore, empirical results on
domain transfer and task transfer show that
CHILD-TUNING can obtain better generaliza-
tion performance by large margins.

1 Introduction

Pretrained Language Models (PLMs) have had a
remarkable effect on the natural language process-
ing (NLP) landscape recently (Devlin et al., 2019;
Liu et al., 2019; Clark et al., 2020). Pretraining and
fine-tuning have become a new paradigm of NLP,
dominating a large variety of tasks.

Despite its great success, how to adapt such
large-scale pretrained language models with mil-
lions to billions of parameters to various scenarios,
especially when the training data is limited, is still
challenging. Due to the extremely large capac-
ity and limited labeled data, conventional trans-
fer learning tends to aggressive fine-tuning (Jiang
et al., 2020), resulting in: 1) degenerated results
on the test data due to overfitting (Devlin et al.,
2019; Phang et al., 2018; Lee et al., 2020), and 2)

*Equal Contribution. Joint work between Alibaba and
Peking University.
fCorresponding authors.

O
O/ HEE, AL
o COm AR
/“ O Wy Awy wy
Vanilla 0;_
Backwgi Gradients Mask
N 05 HEm, _ NEY
Forward / ... - .‘.
QO Wo Awp wy
CHILD-TUNING ~ Pretrained Weights at
Backward Weights 1-th Iteration

Figure 1: The illustration of CHILD-TUNING. Left:
It forwards on the whole network while backwarding
on a subset of network (i.e., child network). Right:
To achieve this, a task-free or task-driven mask is per-
formed on the gradients of the non-child network, re-
setting them to zero (grey diagonal grids).

poor generalization ability in transferring to out-of-
domain data or other related tasks (Mahabadi et al.,
2021; Aghajanyan et al., 2021).

Preventing the fine-tuned models to deviate too
much from the pretrained weights (i.e., with less
knowledge forgetting), is proved to be effective to
mitigate the above challenges (Gouk et al., 2020).
For instance, RecAdam (Chen et al., 2020) intro-
duces L, distance penalty between the fine-tuned
weights and their pretrained weights. In addition,
Mixout (Lee et al., 2020) randomly replaces part of
the model parameters with their pretrained weights
during fine-tuning. The core idea behind them is
to utilize the pretrained weights to regularize the
fine-tuned model.

In this paper, we propose to mitigate the aggres-
sive fine-tuning problem from a new perspective.
Based on the observation that it is unnecessary to
update all the parameters within the large-scale
model during fine-tuning, we propose an effec-
tive fine-tuning technique, CHILD-TUNING, which
straightforwardly updates a subset of parameters
(called child network) via strategically masking
out the gradients of non-child network in the back-
ward process, as illustrated in Figure 1. Note that

9514

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9514-9528
November 7-11, 2021. (©)2021 Association for Computational Linguistics

it is different from model pruning, since it still for-
wards on the whole network, thus making the full
use of knowledge hidden in the pretrained weights.

In detail, we propose two variants, CHILD-
TUNINGF and CHILD-TUNINGp, which respec-
tively detect the child network in a task-free and
a task-driven way. CHILD-TUNING chooses out
the child network in the absence of task data via a
Bernoulli distribution. It introduces noise to the full
gradients, playing a role of regularization, hence
preventing overfitting to small datasets and lead-
ing to better generalization. Furthermore, CHILD-
TUNINGp utilizes the downstream task data to de-
tect the most task-related parameters as the child
network and freezes the parameters in non-child
network to their pretrained weights. It decreases the
hypothesis space of the model via a task-specific
mask applied to the full gradients, helping to ef-
fectively adapt the large-scale pretrained model to
various tasks and meanwhile greatly maintain its
original generalization ability.

Our extensive experiments on the GLUE
benchmark show that CHILD-TUNING can be
more excellent at fine-tuning different PLMs,
with up to 8.60 average score improvement
on CoLA/RTE/MRPC/STS-B tasks compared to
vanilla fine-tuning (Section. 3.3). Moreover, it
achieves better generalization ability in transferring
to out-of-domain data and other related tasks (Sec-
tion. 3.4). Experimental results also demonstrate
that CHILD-TUNING yields consistently greater im-
provements than state-of-the-art fine-tuning meth-
ods. More importantly, since CHILD-TUNING
is orthogonal to these prior methods, integrating
CHILD-TUNING with them can even lead to further
improvements (Section. 4.1).

In summary, our contributions are three-fold:

* We propose CHILD-TUNING, a straightfor-
ward yet effective fine-tuning technique that
only updates the parameters in the child net-
work. We explore to detect the child network
in both task-free and task-driven ways.

e CHILD-TUNING can effectively adapt the
large-scale pretrained model to various down-
stream scenarios, from in-domain to out-of-
domain, and cross-task transfer learning.

* Since CHILD-TUNING is orthogonal to prior
fine-tuning methods, integrating CHILD-
TUNING with them can further boost the fine-
tuning performance.

2 Methodology

To better adapt large-scale pretrained language
model to various downstream tasks, we propose a
simple yet effective fine-tuning technique, CHILD-
TUNING. We firstly introduce a gradient mask in
the backward process to achieve the aim of updat-
ing a subset of parameters (i.e., child network),
while still utilizing the knowledge of the whole
large model in the forward process (Section 2.1).
Then, we explore two ways to detect the child
network (i.e., generate different gradient masks):
CHILD-TUNING[that are in a task-free way (Sec-
tion 2.2), and CHILD-TUNING p that are in a task-
driven way (Section 2.3).

2.1 Overview of CHILD-TUNING

We start the introduction of CHILD-TUNING by
giving a general formulation of the back propaga-
tion during the vanilla fine-tuning. We denote the
parameters of the model at the ¢-th iteration as wy
(wy refers to the pretrained weights). The vanilla
fine-tuning computes the gradient of the loss £(wy)
and then applies gradient descent to all parameters,
which can be formulated as:

et (1)

Wiyl = Wi — ow
t

where 8%5}:?) are the gradients corresponding to
the model parameters wy, 7 is the learning rate.

CHILD-TUNING also backwardly computes the
gradients of all trainable parameters like standard
fine-tuning. However, the key difference is that
CHILD-TUNING determines a child network C; at
the t-th iteration, and only updates this part of pa-
rameters. To achieve this, we firstly define a 0-1
mask that is the same-sized as w as follows:

(4)

i 1, w,” €C

M = { () ! 2
0, Wy §Z Ct

where Mt(i) and wgi) denote the i-th element of
the mask M, and parameters w; at the ¢-th training
iteration, respectively.

Then, we formally define CHILD-TUNING tech-
nique by simply replacing Eq. 1 with the following
equation:

OL(w1)
ow

Algorithm 1 provides the pseudo-code of
CHILD-TUNING when applied to widely used
Adam (Kingma and Ba, 2015) optimizer. The main
difference is the insertion of line 5-7.

® M, 3)

Wit1l = Wi — 1

9515

Algorithm 1 CHILD-TUNING for Adam Optimizer

Require: wy: initial pretrained weights; £(w):
stochastic objective function with parameters
w; 1: learning rate; 31, 2 € [0, 1): exponen-
tial decay rates for the moment estimates;
1: initialize timestep ¢ < 0, first moment vector
mg < 0, second moment vector vy < 0
2: while not converged do
3: t—t+1
/1 Get gradients
4: gt < ngf,:t)
/1 Get task-free/task-driven child network
5: Ct < GetChildNetwork()
/I Generate a corresponding gradient mask
6: M, < GenerateMask(C;)
/I Employ mask for gradients
: gt < gt © M,
8: my S -my_1+(1—51)- g
: Vi Bovimr+ (1— B2) - g7
/! Bias correction
10 my <+ my/(1—p6Y)
11: f/t<—vt/(1—ﬁ§)
/1 Update weights
12: Wi < W1 — -1/ (VO + €)
13: end while
14: return wy

2.2 Task-Free Variant: CHILD-TUNING g

In this section, we firstly explore the choice of
the child network that does not require any down-
stream task data, i.e., a task-free technique called
CHILD-TUNINGF. Specifically, CHILD-TUNING
generates a 0-1 mask My at the ¢-th iteration drawn
from a Bernoulli distribution with a probability pr:

M, ~ Bernoulli(pr) “4)

The higher the p is, the larger the child network
is, and hence more parameters are updated. When
pr = 1, CHILD-TUNINGg degenerates into the
vanilla fine-tuning method. Note that we also en-
large the reserved gradients by é to maintain the
expectation of the gradients.

We theoretically justify the effectiveness of
CHILD-TUNING . We denote Aw as the update
at each iteration:

UM oM (5)
ow

Intuitively, Theorem 1 shows the variance of gradi-

ents is a strictly decreasing function of pr. Thus,

Aw =

CHILD-TUNINGF improves the variance of the
gradients, and the trade-off between exploration
and exploitation can be controlled by adjusting pr.
As illustrated in Theorem 2, with higher variance,
the model can converge to more flat local minima
(smaller p in Theorem 2). Inspired by studies that
show flat minima tends to generalize better (Keskar
etal., 2017; Sun et al., 2020; Foret et al., 2021), we
can further prove CHILD-TUNING decreases the
generalization error bound.

Theorem 1. Suppose L denotes the loss function
on the parameter w, the gradients obey a Gaussian
distribution N (g—vﬁ, aélk), and SGD with learning
rate 1) is used. For a randomly sampled batch B, if
GradMask reserves gradients with probability pr,
the mean and covariance of the update Aw are,

oL
E[Aw] = “ow (6)
siaw] = T&l | (= pr)rdiag{50}°
pF\B| br
(7

Specially, when w is a local minima, E[Aw] =

2
0k, L[Aw] = 021, and 0% = ZF%' is a strictly
decreasing function of pr.

Theorem 2. Suppose wq denotes the pretrained
parameter; k is the number of parameters; W de-
notes the local minima the algorithm converges
to; p is the greatest eigenvalue of the Hessian
matrix on w, which indicates the sharpness. If
Aw ~ N(04,0°1}), when the following bound
holds, the algorithm can converge to the local min-
ima w with high probability,

—) (®)

Suppose the prior over parameters after training
is P = N(wo,021y), the following generalization
error bound holds with high probability,

bound(w) < O(R8=I%=wol®y | 2 (o)

where R is a term not determined by o.

Thus, CHILD-TUNINGg can be viewed as a
strong regularization for the optimization process.
It enables the model to skip the saddle point in the
loss landscape and encourages the model to con-
verge to a more flat local minima. Please refer to
Appendix E for more details about stated theorems
and proofs.

9516

2.3 Task-Driven Variant: CHILD-TUNING p

Taking the downstream labeled data into considera-
tion, we propose CHILD-TUNING p, which detects
the most important child network for the target
task. Specifically, we adopt the Fisher informa-
tion estimation to find the highly relevant subset
of the parameters for a specific downstream task.
Fisher information serves as a good way to provide
an estimation of how much information a random
variable carries about a parameter of the distribu-
tion (Tu et al., 2016a,b). For a pretrained model,
Fisher information can be used to measure the rel-
ative importance of the parameters in the network
towards the downstream tasks.

Formally, the Fisher Information Matrix (FIM)
for the model parameters w is defined as follows:

F (W)) [(8log%(vgi|x;w))(810g%(vg{/|x;w))‘|'

where x and y denote the input and the output
respectively. It can be also viewed as the covariance
of the gradient of the log likelihood with respect
to the parameters w. Following Kirkpatrick et al.
(2016), given the task-specific training data data
D, we use the diagonal elements of the empirical
FIM to point-estimate the task-related importance
of the parameters. Formally, we derive the Fisher
information for the ¢-th parameter as follows:

810gp (y; \X ;))2
F(Z <]]
IDI Z

(10)

We assume that the more important the parame-
ter towards the target task, the higher Fisher infor-
mation it conveys. Hence the child network C is
comprised of the parameters with the highes|t |infor—

c
B c]+[C|
(0, 1], where C denotes the non-child network. As
pp rises, the scale of the child network also in-
creases, and when pp = 1 it degenerates into the
vanilla fine-tuning strategy.

Since the overhead of obtaining the task-driven
child network is heavier than that of the task-
free one, we simply derive the child network for
CHILD-TUNINGp at the beginning of fine-tuning,
and keep it unchanged during the fine-tuning, i.e.,
Co = C = --- = Cp. In this way, CHILD-
TUNINGp dramatically decreases the hypothesis
space of the large-scale models, thus alleviating

mation. The child network ratio is pp =

overfitting. Meanwhile, keeping the non-child net-
work freezed to their pretrained weights can sub-
stantially maintain the generalization ability.

3 Experiments

3.1 Datasets

GLUE benchmark Following previous stud-
ies (Lee et al., 2020; Dodge et al., 2020), we con-
duct experiments on various datasets from GLUE
leaderboard (Wang et al., 2019), including linguis-
tic acceptability (CoLA), natural language infer-
ence (RTE, QNLI, MNLI), paraphrase and similar-
ity (MRPC, STS-B, QQP), and sentiment classifica-
tion (SST-2). CoLA and SST-2 are single-sentence
classification tasks and the others are involved with
a pair of sentences. The detailed statistics and met-
rics are provided in Appendix A. Following most
previous works (Phang et al., 2018; Lee et al., 2020;
Dodge et al., 2020), we fine-tune the pretrained
model on the training set and directly report results
on the dev set using the last checkpoint, since the
test results are only accessible by the leaderboard
with a limitation of the number of submissions.

NLI datasets In this paper, we also conduct
experiments to explore the generalization ability
of the fine-tuned model based on several Natu-
ral Language Inference (NLI) tasks. Specifically,
we additionally introduce three NLI datasets, i.e.,
SICK (Marelli et al., 2014), SNLI (Bowman et al.,
2015) and SciTail (Khot et al., 2018). We also
report results on the dev set consistent with GLUE.

3.2 Experiments Setup

We use the pretrained models and codes pro-
vided by HuggingFace' (Wolf et al., 2020), and
follow their default hyperparameter settings un-
less noted otherwise. Appendix B provides
detailed experimental setups (e.g., batch size,
training steps, and etc.) for BERTargr (De-
vlin et al., 2019), XLNet;arge (Yang et al.,
2019), RoBERTaj arce (Liu et al., 2019), and
ELECTRA¢ ARrcE (Clark et al., 2020). We report
the averaged results over 10 random seeds.’

"https://github.com/huggingface/
transformers

2Qur code is available at https://github.com/
alibaba/AliceMind/tree/main/ChildTuning
and https://github.com/PKUnlp-icler/
ChildTuning.

9517

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/alibaba/AliceMind/tree/main/ChildTuning
https://github.com/alibaba/AliceMind/tree/main/ChildTuning
https://github.com/PKUnlp-icler/ChildTuning
https://github.com/PKUnlp-icler/ChildTuning

BERT XLNet

Method

CoLA RTE MRPC STS-B Avg CoLA RTE MRPC STS-B Avg
Vanilla Fine-tuning 63.13 70.18 90.77 89.61 7842 47.14 77.62 9190 91.77 77.11
CHILD-TUNING 63.71 72.06 9122 90.18 79.29 52.07 78.05 9229 9181 78.56
CHILD-TUNINGp 6492 73.14 9142 90.18 7992 5154 8094 9246 91.82 79.19
Method RoBERTa ELECTRA

CoLA RTE MRPC STS-B Avg CoLA RTE MRPC STS-B Avg
Vanilla Fine-tuning 66.10 8520 92.62 92.04 8399 4742 8823 9295 81.86 77.62
CHILD-TUNING 6599 84.80 9266 92.15 8390 6231 8841 93.09 91.73 83.89
CHILD-TUNINGp 66.71 86.14 9278 9236 84.50 70.62 88.90 93.32 92.02 86.22

Table 1: Comparison between CHILD-TUNING and vanilla fine-tuning applied to four widely used large-scale
Pretrained Language Models (PLMs). Average scores on all tasks are underlined. The best results are bold. It
shows that CHILD-TUNING yields consistent improvements across all tasks among different PLMs, especially for
CHILD-TUNINGp that detects the child network in a task-driven way.

MNLI SNLI
Datasets
Vanilla C.TUNINGg Ap C.TUNINGp Ap Vanilla C.TUNINGF Apr C.TUNINGp Ap

MNLI 75.30 75.95 +0.65 76.61 +1.31 65.80 66.01 +0.21 66.82 +1.02
MNLI-m 76.50 77.79 +1.29 77.98 +1.48 67.71 67.27 —0.44 68.48 +0.77
SNLI 69.61 70.35 +0.74 71.17 +1.56 82.90 83.17 +0.27 83.66 +0.76
SICK 48.25 49.13 +0.88 50.15 +1.90 51.50 51.16 -0.34 51.42 -0.08
SciTail 73.65 75.42 +1.77 75.08 +1.43 69.35 70.74 +1.39 71.10 +1.75
QQP 71.37 72.24 +0.87 72.67 +1.30 70.60 71.52 +0.92 71.19 +0.59
Avg* 67.88 68.99 +1.11 69.41 +1.53 64.99 65.34 +0.35 65.80 +0.81

Table 2: Probing domain generalization. The models are trained on MNLI/SNLI and tested on out-of-domain
data. Ap and Ap denotes the improvement of C.TUNING g and C.TUNINGp compared with vanilla fine-tuning.
Average scores (marked with *) is computed excluding in-domain results (underlined). Positive transfer results are
highlighted in blue. CHILD-TUNING can better maintain the out-of-domain generalization ability of the model.

3.3 Results on GLUE Benchmark performance, with up to 1.50 and 8.60 average
score improvement on BERT and ELECTRA. In
summary, we can come to a conclusion that CHILD-
TUNING is model-agnostic and can consistently

outperform vanilla fine-tuning on different PLMs.

In this section, we show the results of four widely
used large PLMs on four GLUE tasks: CoLA, RTE,
MRPC, and STS-B, following Lee et al. (2020).
Besides vanilla fine-tuning, we also report the re-
sults of two variants of CHILD-TUNING, including
both CHILD-TUNINGr (pr = 0.2,0.3,0.4) and
CHILD-TUNINGp (pp = 0.1,0.2,0.3).

As Table 1 illustrates, CHILD-TUNING outper-
forms vanilla fine-tuning by a large gain across
all the tasks on different PLMs. For instance,
CHILD-TUNING yields an improvement of up to
2.08 average score on XLNet, and 8.60 average

3.4 Probing Generalization Ability of the
Fine-tuned Model

To measure the generalization properties of various
fine-tuning methods, in this section, we conduct
probing experiments from two aspects, that is, do-
main generalization and task generalization.

3.4.1 Domain Generalization

score on ELECTRA. Besides, the straightforward
task-free variant, CHILD-TUNING g, can still pro-
vide an improvement of 0.87 average score on
BERT and 6.27 on ELECTRA. CHILD-TUNINGp,
which detects child network in a task-driven way,
is more aware of the unique characteristics of the
downstream task, and therefore achieves the best

Besides boosting performance on the target down-
stream task, we also expect CHILD-TUNING can
help the fine-tuned model achieve better general-
ization ability towards out-of-domain data.

We evaluate how well the fine-tuned model gen-
eralizes to out-of-domain data based on several
Natural Language Inference (NLI) tasks. In detail,

9518

39.90

39 38.68

Dev Score
w
~

35.17

4
Vanilla C.Tuninge C.Tuningp

(a) CoLA (Matthews Corr)

Dev Score

~
o

-
N

~
N

70

78.74

72.19

70.57

Vanilla C.Tuninge C.Tuningp

Dev Score

(b) STS-B (Spearman Corr)

77.60

75.26

69.45

Vanilla C.Tunings C.Tuningp

(c) QNLI (Accuracy)

S

Dev Score
o o
w

67.99 67.80

60.61

Vanilla C.Tunings C.Tuningp

(d) QQP (FI)

Figure 2: Probing task generalization. The model is fine-tuned on MRPC task and transferred to four different

tasks. CHILD-TUNING can maintain more generalizable representations compared with vanilla fine-tuning.

we fine-tune BERT srgE with different strategies
on 5k subsampled MNLI and SNLI datasets re-
spectively, and directly test the accuracy of the fine-
tuned models on other NLI datasets in different do-
mains, including MNLI, MNLI-mismatch?, SNLI,
SICK, SciTail, and QQP*. As Table 2 illustrates,
CHILD-TUNING outperforms vanilla fine-tuning
across different out-of-domain datasets. Specif-
ically, CHILD-TUNINGF improves 1.11/0.35 av-
erage score for models trained on MNLI/SNLI,
while CHILD-TUNING p improves up to 1.53/0.81
average score. In particular, CHILD-TUNINGp
achieves 1.90 score improvement on SICK task and
1.56 on SNLI task for models trained on MNLL
The results suggest that CHILD-TUNING encour-
ages the model to learn more general semantic fea-
tures during fine-tuning, rather than some super-
ficial features unique to the training data. Hence,
the fine-tuned model can well generalize to differ-
ent datasets, even though their domains are quite
different from the dataset the model is trained on.

3.4.2 Task Generalization

To justify the generalization ability of the model
from another perspective, we follow the probing
experiments from Aghajanyan et al. (2021), which
first freezes the representations from the model
trained on one task and then only trains a linear
classifier on top of the model for another task.

In particular, we fine-tune BERT Argr on
MRPC task, and transfer to four other GLUE
tasks, i.e., CoLA, STS-B, QNLI, and QQP. As Fig-
ure 2 shows, CHILD-TUNING consistently outper-
forms vanilla fine-tuning on different transferred
tasks. Compared with vanilla fine-tuning, CHILD-

SMNLI-m has different domain from MNLI training data.
*The target tasks may have different label spaces and we
introduce the label mapping in Appendix D.

TUNINGF improves 4.58 average score (58.95 —
63.53), while CHILD-TUNING p even gains up to
7.06 average score improvement (58.95 — 66.01).

In summary, fine-tuning with CHILD-TUNING
gains better performance when the fine-tuned
model is transferred to another task, demonstrating
that CHILD-TUNING can maintain more general-
izable representations produced by the model than
vanilla fine-tuning.

4 Analysis and Discussion

4.1 Comparison with Prior Methods

In this section, we review and compare prior stud-
ies towards effective fine-tuning: 1) Weight De-
cay (Daumé III, 2007), which adds the \||w—wy||2
penalty to the loss function, where w(denotes
the pretrained weights; 2) Top-K Tuning, which
only fine-tune the top-K layers of the model with
other layers freezed. Houlsby et al. (2019) uses
it as a strong baseline; 3) Mixout (Lee et al.,
2020), which randomly replaces the parameters
with their pretrained weights; 4) RecAdam (Chen
et al., 2020), which is similar to Weight Decay
while its loss weights A keeps changing during fine-
tuning; 5) Robust Representations through Regular-
ized Finetuning (R3F) (Aghajanyan et al., 2021),
which is rooted in trust region theory. Appendix C
shows detailed hyperparameter settings.

We compare CHILD-TUNING with these meth-
ods based on BERT[, argE, and report the mean
(max) score results in Table 3, following Lee et al.
(2020). While all the fine-tuning methods can bring
improvements across four different tasks compared
with vanilla fine-tuning, CHILD-TUNING achieves
the best performance. In detail, among prior fine-
tuning methods, Mixout and R3F yield the highest
improvement with 0.84 and 0.88 average score re-

9519

Methods CoLA RTE MRPC STS-B Avg A

Vanilla Fine-tuning® 6060(—) 7040(-) 88.00(—) 9000(C —) 7725 -

Vanilla Fine-tuning 63.13 (64.31) 70.18 (72.56) 90.77 (91.42) 89.61 (90.12) 78.42 0.00
Weight Decay (Daumé III, 2007) 63.63 (64.56) 71.99 (74.37) 90.93 (91.70) 89.82(90.29) 79.09 +0.67
Top-K Tuning (Houlsby et al., 2019) 62.63 (64.06) 70.90 (74.73) 91.09 (92.20) 89.97 (90.15) 78.65 +0.23
Mixout (Lee et al., 2020) 63.60 (64.82) 72.15(75.45) 91.29(91.85) 89.99 (90.13) 79.26 +0.84
RecAdam (Chen et al., 2020) 64.33 (65.33) 71.63(73.29) 90.85(92.01) 89.86(90.42) 79.17 +0.75
R3F (Aghajanyan et al., 2021) 64.13 (66.32) 72.28 (74.73) 91.18 (91.57) 89.61 (90.12) 79.30 +0.88
CHILD-TUNINGF 63.71 (66.06) 72.06 (74.73) 91.22(91.85) 90.18 (90.92) 79.29 +0.87
CHILD-TUNINGp 64.92 (66.03) 73.14 (76.17) 91.42 (92.17) 90.18 (90.64) 79.92 +1.50
CHILD-TUNINGp + R3F 65.18 (66.03) 73.43 (76.17) 92.23 (92.65) 90.18 (90.64)* 80.26 +1.84

Table 3: Comparison between CHILD-TUNING with other fine-tuning methods. We report the mean (max) re-
sults of 10 random seeds. Results with T are taken from Yang et al. (2019), and others are from our implementation.
The task-driven variant, CHILD-TUNING p, achieves the best performance compared with other methods. Integrat-
ing CHILD-TUNINGp with other fine-tuning methods like R3F can yield further improvements. Note that since
R3F is not applicable to regression task, the result on STS-B (marked with *) is the same as CHILD-TUNING p.

Dataset Vanilla C.TUNINGg C.TUNINGp
CoLA 4748 48.44 50.37
RTE 65.09 65.52 68.09
MRPC 8491 85.44 86.49
STS-B 81.86 82.25 82.76
SST2 90.25 90.34 90.39
QNLI 81.68 83.09 83.42
QQp 71.30 72.15 71.79
MNLI 55.72 62.47 62.93
Avg 72.29 73.71 74.53

Table 4: Results in low-resource scenarios. CHILD-
TUNING is better than vanilla fine-tuning in alleviating
overfitting problems.

spectively. CHILD-TUNINGr has performance on
par with Mixout and R3F, while CHILD-TUNING p
achieves 1.50 average score improvement in total.
More importantly, CHILD-TUNING is flexible and
orthogonal to most fine-tuning methods. Thus, in-
tegrating CHILD-TUNING with other methods can
further boost the performance. For instance, com-
bining CHILD-TUNINGp with R3F leads to a 1.84
average score improvement in total.

In short, compared with prior fine-tuning meth-
ods, we find that 1) CHILD-TUNING is more effec-
tive in adapting PLMs to various tasks, especially
for the task-driven variant CHILD-TUNING p, and
2) CHILD-TUNING has the advantage that it is flex-
ible enough to integrate with other methods to po-
tentially achieve further improvements.

4.2 Results in Low-resource Scenarios

Fine-tuning a large pretrained model on extremely
small datasets can be very challenging since the
risk of overfitting rises (Dodge et al., 2020). Thus,
in this section, we explore the effect of CHILD-
TUNING with only a few training examples. To this
end, we downsample all datasets in GLUE to 1k
training examples and fine-tune BERTT ARgE on
them.

As Table 4 demonstrates, compared with vanilla
fine-tuning, CHILD-TUNINGF improves the aver-
age score by 1.42, and the improvement is even
larger for CHILD-TUNING p, which is up to 2.24.
It suggests that although overfitting is quite se-
vere when the training data is in extreme low-
resource scenarios, CHILD-TUNING can still ef-
fectively improve the model performance, espe-
cially for CHILD-TUNINGp since it decreases the
hypothesis space of the model.

4.3 What is the Difference Between
CHILD-TUNING and Model Pruning?

CHILD-TUNINGp detects the most important child
network in a task-driven way, and only updates
this parameters within the child network during
the fine-tuning with other parameters freezed. It is
very likely to be confused with model pruning (Li
et al., 2017; Zhu and Gupta, 2018; Lin et al., 2020),
which also detects a subnetwork within the model
(but then removes the other parameters).

Actually, CHILD-TUNING and model pruning
are different in both the objectives and methods.
Regarding objectives, model pruning aims at im-
proving the inference efficiency and maintaining

9520

Methods CoLA RTE MRPC STS-B
Vanilla 63.13 70.18 90.77 89.61
Prune 0.00 51.12 81.40 45.63
Random 63.23 70.69 90.83 89.67
Lowest Info. 60.33 59.86 83.82 88.52
C.TUNINGp 6492 72.78 91.26 90.18

Table 5: Ablation study of CHILD-TUNING . Prune:
Abandon parameters out of the child network. Random:
Randomly choose a child network and keep it un-
changed during fine-tuning. Lowest Info.: Detect a
child network with lowest Fisher information instead.

the performance at the same time, while CHILD-
TUNING is proposed to address the overfitting prob-
lem and improve the generalization ability for large-
scale language models during fine-tuning. Regrad-
ing methods, model pruning abandons the unimpor-
tant parameters during inference, while the param-
eters that do not belong to the child network are
still reserved for CHILD-TUNING during training
and inference. In this way, the knowledge of the
non-child network hidden in the pretrained weights
will be fully utilized.

To better illustrate the effectiveness of CHILD-
TUNINGp compared to model pruning, we set all
the parameters not belonging to the child network
to zero, which is referred to as Prune in Table 5.
It shows that, once we abandon parameters out
of the child network, the score dramatically de-
creases by 33.89 points averaged on four tasks
(CoLA/RTE/MRPC/STS-B), and the model even
collapses on CoLA task. It also suggests that be-
sides parameters in child network, those in the non-
child network are also necessary since they can
provide general knowledge learned in pretraining.

4.4 Is the Task-Driven Child Network Really
that Important to the Target Task?

CHILD-TUNINGp detects the task-specific child
network by means of choosing parameters with the
highest Fisher information towards the downstream
task data. In this section, we exlore whether the
detected task-driven child network is really that
important to the task.

To this end, we introduce two ablation studies
for CHILD-TUNINGp: 1) Random: We randomly
choose a child network and keep it unchanged dur-
ing fine-tuning; 2) Lowest Info.: We choose those
parameters with lowest Fisher information as the
child network, contrasted to the highest Fisher in-

RTE
MRPC

. 0.55

STS-B 0.50

MNLI .- - 0.45
QNLI -0.40
QQpP

-0.35
SST2

-0.30

Figure 3: The overlapping ratio among task-driven
child networks among GLUE tasks.

formation adopted in CHILD-TUNINGp.

As shown in Table 5, choosing the child network
randomly can even outperform vanilla fine-tuning,
with 0.18 average score improvement. It supports
our claim that there is no need to update all pa-
rameters of the large PLMs, and decreasing the
hypothesis space can reduce the risk of overfitting.
However, it is still worth finding a proper child
network to further boost the performance. If we
choose parameters with the lowest Fisher infor-
mation (Lowest Fisher), the average score is dra-
matically decreased by 6.65 compared with choos-
ing with the highest Fisher information adopted in
CHILD-TUNINGp. Hence, we can conclude that
the child network detected by CHILD-TUNINGp is
indeed important to the downstream task.

4.5 What is the Relationship among Child
Networks for Different Tasks?

As the task-driven child networks are correlated
with the tasks, we further explore the relationship
among child networks for different tasks. To this
end, we visualize the overlapping rate among dif-
ferent task-driven child networks, where we use the
Jaccard similarity coefficient, 15751, to caleul
accard similarity coefficient, 1575577, to calculate
the overlapping rate between task ¢ and j.

Figure 3 shows the overlap among GLUE tasks.
As we expected, similar tasks tend to have higher
overlapping ratios of child network. For example,
the overlapping ratio among NLI tasks is remark-
ably higher than others, such as RTE and QNLI,
QNLI and MNLI. For different kinds of tasks, their
overlapping ratio is relatively lower, such as CoLA
and MRPC. It is also interesting to find that the
task-driven child network for SST2 overlaps less
with other tasks except CoL A, even though SST2

9521

and CoLA is not so similar. The reason may be that
both SST2 and CoL A belongs to a single sentence
classification task, while others are in a different
format of sentence-pair classification tasks.

5 Related Work

Explosion of PLMs. There has been an explo-
sion of studies on Pretrained Language Models
(PLMs). Devlin et al. (2019) propose BERT that is
pretrained on large quantities of unannotated cor-
pus with self-supervised tasks. Many PLMs also
emerged such as GPT-2 (Radford et al., 2018), GPT-
3 (Brown et al., 2020), ELECTRA (Clark et al.,
2020), XLNet (Yang et al., 2019), RoBERTa (Liu
et al., 2019), and BART (Lewis et al., 2020). The
number of parameters of PLMs also explodes.
BERTr ARrGE has 340 millions of parameters, and
the number for GPT-3 is even up to 175 billions.

Effective and generalizable fine-tuning. With
a mass of parameters, fine-tuning large PLMs tend
to achieve degenerated performance due to overfit-
ting and have poor generalization ability, especially
on small datasets (Devlin et al., 2019; Phang et al.,
2018; Lee et al., 2020). Therefore, different fine-
tuning techniques have been proposed. Some of
them utilize the pretrained weights to regularize the
deviation of the fine-tuned model (Lee et al., 2020;
Daumé III, 2007; Chen et al., 2020), while others
compress the output information (Mahabadi et al.,
2021) or injects noise into the input (Jiang et al.,
2020; Aghajanyan et al., 2021). Moreover, Zhang
et al. (2021) and Mosbach et al. (2021) point out
that the omission of bias correction in the Adam
optimizer used in Devlin et al. (2019) is also re-
sponsible for the degenerated results.

Orthogonal to these methods, CHILD-TUNING
address the problems by detecting the child net-
work within the model in a task-free or task-driven
way. It only updates parameters within the child
network via a gradient mask, which is proved to be
effective in adapting large PLMs to various tasks,
along with better generalization ability.

Parameter-efficient Fine-tuning. There are
also studies focusing on parameter-efficient
fine-tuning, for example, the adapter-based
methods (Houlsby et al., 2019; Pfeiffer et al.,
2020; Karimi Mahabadi et al., 2021), and the
Diff-Pruning method (Guo et al., 2021). However,
our CHILD-TUNING is different from this line
of works. Firstly, they aim at fine-tuning as few

as possible parameters to maintain performance,
while we target effective and generalizable
fine-tuning. Secondly, Diff-Pruning sparsifies
diff-vector with gradient estimators, and adapter-
based methods fine-tune new added module
during training, while we detect the child network
inside the model without extra parameters and
only need to calculate the FIM before training
for CHILD-TUNINGp. Finally, we consistently
outperform vanilla fine-tuning by a large margin,
while they achieve competitive performance with
full model training.

6 Conclusion

To mitigate the overfitting problem and improve
generalization for fine-tuning large-scale PLMs, we
propose a straightforward yet effective fine-tuning
technique, CHILD-TUNING, which only updates
the child network during fine-tuning via strategi-
cally masking out the gradients of the non-child
network. Two variants are introduced, CHILD-
TUNING g and CHILD-TUNING p, which detect the
child network in a task-free and task-driven way, re-
spectively. Extensive experiments on various down-
stream tasks show that both of them can outperform
vanilla fine-tuning and prior works by large gains
among four different pretrained language models,
and meanwhile largely enhance the generalization
ability of the fine-tuned models. Since CHILD-
TUNING is orthogonal to most prior fine-tuning
techniques, integrating CHILD-TUNING with them
can further boost the performance.

Acknowledgments

This paper is supported by the National Key
Research and Development Program of China
under Grant No. 2020AAA0106700, the Na-
tional Science Foundation of China under Grant
No0.61936012 and 61876004.

References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2021. Better fine-tuning by reducing representa-
tional collapse. In International Conference on
Learning Representations (ICLR).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

9522

https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems (NeurlPS).

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations (ICLR).

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics (ACL).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah A. Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. arXiv preprint, arXiv:2002.06305.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. 2021. Sharpness-aware mini-
mization for efficiently improving generalization. In
International Conference on Learning Representa-
tions (ICLR).

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Nat-
ural language inference over interaction space. In

International Conference on Learning Representa-
tions (ICLR).

Henry Gouk, Timothy M. Hospedales, and Massim-
iliano Pontil. 2020. Distance-based regularisation

of deep networks for fine-tuning. arXiv preprint,
arXiv:2002.08253.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics

(ACL).

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning (ICML).

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. 2017. On large-batch training for deep learn-
ing: Generalization gap and sharp minima. In 5th
International Conference on Learning Representa-
tions (ICLR).

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the Thirty-
Second Conference on Artificial Intelligence (AAAI).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ra-
malho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia
Hadsell. 2016. Overcoming catastrophic forgetting
in neural networks. In Proceedings of the National
Academy of Sciences (PNAS).

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. In 8th Inter-
national Conference on Learning Representations
(ICLR).

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2017. Pruning filters for ef-
ficient convnets. In International Conference on
Learning Representations (ICLR).

9523

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://www.aclweb.org/anthology/P07-1033
https://www.aclweb.org/anthology/P07-1033
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=r1dHXnH6-
https://openreview.net/forum?id=r1dHXnH6-
http://arxiv.org/abs/2002.08253
http://arxiv.org/abs/2002.08253
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=HkgaETNtDB
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil
Dmitriev, and Martin Jaggi. 2020. Dynamic model
pruning with feedback. In International Conference
on Learning Representations (ICLR).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. arXiv preprint, arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations (ICLR).

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and
James Henderson. 2021. Variational information
bottleneck for effective low-resource fine-tuning. In
International Conference on Learning Representa-
tions (ICLR).

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of com-
positional distributional semantic models. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC).

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
BERT: Misconceptions, explanations, and strong
baselines. In International Conference on Learning
Representations (ICLR).

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint, arXiv:1811.01088.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Xu Sun, Zhiyuan Zhang, Xuancheng Ren, Ruixuan
Luo, and Liangyou Li. 2020. Exploring the vulnera-
bility of deep neural networks: A study of parameter
corruption. arXiv preprint, arXiv:2006.05620.

M. Tu, V. Berisha, Y. Cao, and J. Seo. 2016a. Reduc-
ing the model order of deep neural networks using
information theory. In 2016 IEEE Computer Soci-
ety Annual Symposium on VLSI (ISVLSI).

M. Tu, V. Berisha, M. Woolf, J. Seo, and Y. Cao. 2016b.
Ranking the parameters of deep neural networks us-
ing the fisher information. In 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Infer-
national Conference on Learning Representations
(ICLR).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations (EMNLP).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems (NeurIPS).

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q
Weinberger, and Yoav Artzi. 2021. Revisiting few-
sample BERT fine-tuning. In International Confer-
ence on Learning Representations (ICLR).

Michael Zhu and Suyog Gupta. 2018. To prune, or
not to prune: Exploring the efficacy of pruning for
model compression. In International Conference on
Learning Representations (ICLR).

A GLUE Benchmark Introduction

In this paper, we conduct experiments on 8 datasets
in GLUE benchmark (Wang et al., 2019) as shown
in Table 6, including single-sentence tasks, infer-
ence tasks, and similarity and paraphrase tasks.
Note that the original GLUE benchmark includes 9
different datasets in total. However, there are some
issues with the construction of the WNLI dataset’.
Therefore most studies exclude this dataset (De-
vlin et al., 2019; Dodge et al., 2020) and we follow
them. The metrics we report for each dataset are
also illustrated in Table 6.

B Settings for Different Pretrained
Language Models

In this paper, we fine-tune different large pretrained
language models with CHILD-TUNING, including
BERTpArcE®, XLNetpAraE ', ROBERTapArGE®,

Shttps://gluebenchmark.com/faq

*https://huggingface.co/
bert-large-cased/tree/main

"https://huggingface.co/
xlnet-large-cased/tree/main

Shttps://huggingface.co/roberta-large/
tree/main

9524

https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=SJem8lSFwB
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=kvhzKz-_DMF
https://openreview.net/forum?id=kvhzKz-_DMF
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
http://arxiv.org/abs/1811.01088
http://arxiv.org/abs/1811.01088
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/2006.05620
http://arxiv.org/abs/2006.05620
http://arxiv.org/abs/2006.05620
https://doi.org/10.1109/ISVLSI.2016.117
https://doi.org/10.1109/ISVLSI.2016.117
https://doi.org/10.1109/ISVLSI.2016.117
https://doi.org/10.1109/ICASSP.2016.7472157
https://doi.org/10.1109/ICASSP.2016.7472157
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://gluebenchmark.com/faq
https://huggingface.co/bert-large-cased/tree/main
https://huggingface.co/bert-large-cased/tree/main
https://huggingface.co/xlnet-large-cased/tree/main
https://huggingface.co/xlnet-large-cased/tree/main
https://huggingface.co/roberta-large/tree/main
https://huggingface.co/roberta-large/tree/main

Dataset #Train #Dev Metrics

Single-sentence Tasks

CoLA 8.5k 1.0k Matthews Corr
SST-2 67k 872 Accuracy
Inference

RTE 2.5k 277 Accuracy
QNLI 105k 5.5k Accuracy
MNLI 393k 9.8k Accuracy
Similarity and Paraphrase

MRPC 3.7k 408 F1
STS-B 5.7k 1.5k Spearman Corr
QQP 364k 40k F1

Table 6: Statistics and metrics of eight datasets used in
this paper form GLUE benchmark.

and ELECTRA[,Arcr’. The training epochs/steps,
batch size, and warmup steps are listed in Ta-
ble 7. We use AdamW (Loshchilov and Hutter,
2019) optimizer, and set 51 = 0.9, S2 = 0.999,
le-6. We clip the gradients with a maxi-
mum norm of 1, and the maximum sequence length
is set as 128. For CHILD-TUNINGg, we uses
pr = {0.2,0.3,0.4} and re-scale the gradients to
ensure the gradients after CHILD-TUNINGp are
unbiased. For CHILD-TUNINGp, we use pp =
{0.1,0.2,0.3}. We use grid search for learning
rate from {le-5,2e-5, ..., le-4}. We conduct all
the experiments on a single GTX-3090 GPU.

€E =

These pretrained models are all Transformer-
based. XLNet (Yang et al., 2019) is an autore-
gressive pretrained language model with token per-
mutations. It generates tokens in an autoregressive
way while can still capture bidirectional context
information. RoBERTa (Liu et al., 2019) is a ro-
bustly optimized version of BERT. It uses a dy-
namic masking mechanism, larger batch size, and
longer training times, and it also abandons the next
sentence prediction task. ELECTRA (Clark et al.,
2020) pretrains the model with a generator and
a discriminator. The discriminator is trained to
distinguish whether the token is generated by the
generator or the original token.

https://huggingface.co/google/
electra-large-discriminator/tree/main

C Settings for Other Fine-tuning
Methods

We compare Child-tuning with several other regu-
larization approaches in our paper. In this section,
we simply introduce these approaches and their
hyperparameters settings.

Weight Decay Daumé III (2007) proposes to
adds a penalty item to the loss function to regu-
late the Lo distance between fine-tuned models and
the pretrained models. Therefore, the loss function
is as follows:

L(w) = Lcg(W) + Awp||lw — woll2]

We grid search the optimal
{10,1,1071,1072,1073,1074}.

Awp from

Top-K Fine-tuning Top-K Fine-tuning is a
common method and Houlsby et al. (2019) uses it
as a strong baseline. Top- K Fine-tuning only updat-
ess the top K layers along with the classification
layer, while freezing all the other bottom layers.
We grid search the optimal K from {0, 3,6, 12} in
our paper.

Mixout Lee et al. (2020) randomly replace
the parameters with its pretrained weights with a
certainly probability p during fine-tuning, which
aims to minimize the deviation of the fine-
tuned model towards the pretrained weights. In
our paper, we grid search the optimal p from
{0.1,0.2,...,0.8}. We use the implementa-
tioninhttps://github.com/bloodwass/
mixout.

RecAdam Chen et al. (2020) proposes a new
optimizer RecAdam for fine-tuning, which can be
considered as an advanced version of Weight De-
cay, because the coefficient of two different loss
items are changed as the training progresses. The
following equations demonstrate the new loss func-
tion, where k and ¢y are controlling hyperparame-
ters and ¢ is the current training step.

L(W) = ARec(t)Lor(W)
+ (1 -)\Rec(t))”w - W0||2

1
 14exp(—k-(t—tg))
We grid search the & from {0.05,0.1,0.2,0.5,1.0},
and to from {50,100,250,500}. We use the

implementation in https://github.com/
Sanyuan—Chen/RecAdamn.

)\Rec (t)

9525

https://huggingface.co/google/electra-large-discriminator/tree/main
https://huggingface.co/google/electra-large-discriminator/tree/main
https://github.com/bloodwass/mixout
https://github.com/bloodwass/mixout
https://github.com/Sanyuan-Chen/RecAdam
https://github.com/Sanyuan-Chen/RecAdam

Model Dataset Batch Size Training Epochs/Steps Warmup Ratio/Steps
BERT all 16 3 epochs 10%
CoLA 128 1200 steps 120 steps
RTE 32 800 steps 200 steps
XLNet MRPC 32 800 steps 200 steps
STS-B 32 3000 steps 500 steps
CoLA 16 5336 steps 320 steps
RTE 16 2036 steps 122 steps
ROBERTa \rrpC 16 2296 steps 137 steps
STS-B 16 3598 steps 214 steps
CoLA 32 3 epochs 10%
RTE 32 10 epochs 10%
ELECTRA MRPC 32 3 epochs 10%
STS-B 32 10 epochs 10%

Table 7: Hyperparameters settings for different pretrained models on variant tasks. These settings are reported in

the their official repository for best practice.

Robust Representations through Regularized
Fine-tuning (R3F) Aghajanyan et al. (2021)
propose R3F for fine-tuning based on trust region
theory, which adds noise into the sequence input
embedding and tries to minimize the symmetrical
KL divergence between probability distributions
given original input and noisy input. The loss func-
tion of R3F is as follows:

L(w) = Lcr(W) + Arsr K Ls (f (2)[|f(z + 2))
st. z~N(0,0°I) or z~U(-0,0)

where f(-) denotes the model and z denotes
the noise sampled from either normal distribu-
tion or uniform distribution controlled by hyper-
parameter o, and KLg(z|ly) = KL(z||ly) +
KL(y||z). We use both normal and unform
distribution, Agsr = 1, and grid search the o
from {0.1,0.5,1.0,5.0}. We use the implemen-
tation in https://github.com/pytorch/
fairseq/tree/master/examples/rxf.

D Label Mapping in Task Generalization

MNLI and SNLI datasets contain three labels, i.e.,
entailment, neutral, and contradiction. For SciTail,
it only has two labels, entailment and neutral, and
therefore we map both neutral and contradiction in
source label space to neutral in target label space
following Mahabadi et al. (2021). For QQP, it
has two labels, duplicate and not duplicate, and
Gong et al. (2018) interpret them as entailment and

neutral respectively. We follow Gong et al. (2018)
and use the same mapping strategy as SciTail.

E Theoretical Details

We theoretically justify the effectiveness of CHILD-
TUNINGp. Assume CHILD-TUNINGg reserves
gradients with probability pr € (0, 1], and we sim-
ply use p to denote pr in the following content.
Theorem 1 shows the variance of gradients is a
strictly decreasing function of p. When p = 1, it de-
generates into normal fine-tuning methods. There-
fore, CHILD-TUNINGF can improve the variance
of the gradients of the model. Next, Theorem 2
shows that with higher variance, the model can
converge to more flat local minima (smaller p in
Theorem 2). Inspired by studies that show flat min-
ima tends to generalize better (Keskar et al., 2017;
Sun et al., 2020; Foret et al., 2021), we can further
prove CHILD-TUNING decreases the generaliza-
tion error bound.

Theorem 1. Suppose L denotes the loss function
on the parameter w, for multiple data instances in
the training set x ~ S, the gradients obey a Gaus-
sian distribution N (gTLv’ el). For a randomly
sampled batch B ~ S, when the learning algo-
rithm is SGD with learning rate 1, the reserving

probability of the CHILD-TUNING is p, then the

g

9526

https://github.com/pytorch/fairseq/tree/master/examples/rxf
https://github.com/pytorch/fairseq/tree/master/examples/rxf

mean and covariance of the update Aw are,

oL
ElAw] = oW (11
siaw] = Tl | (- p)rdias{z)”
p|B| p
(12)

where Y. is the covariance matrix and diag(x) is
the diagonal matrix of the vector X.
Specially, when w is a local minima, E[Aw| =
2 2
0k, S[AW] = 021} and 02 = ZJ|ZT is a strictly
decreasing function of p.

Theorem 2. Suppose L denotes the expected error
rate loss function;, wq denotes the pretrained pa-
rameter; k is the number of parameters; W denotes
the local minima the algorithm converges to; H is
the Hessian matrix on w and p is its greatest eigen-
value; F}, is the cumulative distribution function of
the x2(k) distribution.

If the next update of the algorithm Aw ~
N (0, 0%1}) and the training loss increases more
than € with probability §, we assume the algorithm
will escape the local minima w. When the follow-
ing bound holds, the algorithm can converge to the
local minima w, with higher order infinity omitted,

2e
< 13
"= F - 0)0? (1)
Suppose the prior over parameters after training
is P = N(wo,031y), the following generalization
error bound holds with probability 1-§ over the
choice of training set S ~ D,

bound(w) < (kag —lw - WOH2)6

+R (14
= kF7N(1 - 6)o? (19

where bound(w) =

Ls(w) — Lp(w), R =
kllw—wq |2

[10g181)? 151
klOg(l—’—kU%wawaHQ (H‘ %))+41°g 5

2(Is1-1) ’
with higher order infinity omitted.

E.1 Proof of Theorem 1

Proof. Suppose g'?) is the gradient of data instance
x (1 < i < |B|), then g ~ N(25,021;).
1Bl
Then, define g = %, we have
i=1

gl
= 1B

Aw = —7n OM=-ngoM (15)

Consider g, we have

oL o5k
Suppose g = % ® M, therefore,
.. p 0L 0L
Eg] =L x & = & 17
8] 0 ow ow (17)

Suppose §;, g; are the i-th dimension of g, g, we
have

D3] = E[g7] — (E[g:])? (18)
= pE[(2)?] - (E[3:))? (19)
= E[gﬂ - (Elg:])* (20)
_ (Elgi))* +Dlgi] EG)? @
p
_ Digi] n (1 - p)(E[g])* 22)
p p
Therefore,
sl — Tk, (L= p)diag(Blg]
| B p
Therefore,
E[Aw] = _ngvﬁv (24)
~ Pogly (1 - p)n’diag{ §=}
HlAw] = p|B| p
(25)
oL

Specially, when w is a local minima, 5= =
Ox. Therefore, E[Aw] = 0y, L[Aw] = o021}

20'2
and 02 = Z)‘ BT is a strictly decreasing function of

p.]

E.2 Proof of Theorem 2

Proof. We first prove Eq. 13. Apply a Taylor ex-
pansion on training loss £, notice that Vy £L(w) =
0y, since w is a local minima. When the algorithm
can escape the local minima w, with higher order
infinity omitted, we have,

e<L(w+v)—L(w) (26)
—VIVwL(w) + v HY Foflv]]) @)
2 2

-2 2

9527

If the probability of escaping, Pesc, we have Therefore, the following generalization error

bound holds,
Pe = P(L(w + Aw) — L(w) > &) (29)
ko — lw = woll?)e
plAw]3 bound(w) < (K% +R (38
< PR 20 (30) (w) < RFI(1=0)0? (38)
Aw o 2e . P :
= P(|—15 > F) (31) where higher order infinity is omitted and R =
o o
kllw—woll3 oz 5] 2
Aw (2 o 2 “"g(”mg_nwif;ﬁw(lw elsl))+410g|%‘
namely’ P(HTH2 < P) < 1- Pesc- 2(18]-1) .
Since £ ~ N(0g, L), | 523 ~ x*(k), we =
have,
Aw 2¢ 2¢
P(l=—3 £ =) = Fu(—; 32
I <) = Aulog) @

when Eq. 13 holds,

Aw 2¢ 2¢
P(|=—=2 < =) = F.(— 33
157 <~) =R) (9

> F(FM1-6)=1-6 (34

The algorithm will not escape the local minima w
and can converge to the local minima w.

To prove Eq. 14, we introduce Lemma 1 in pa-

per Foret et al. (2021), which is Theorem 2 in the
paper.
Lemma 1. Suppose d > 0, the prior over pa-
rameters is P = N(wp,051;) and 0% = d* +
M, the following bound holds with proba-
bility 1-6 over the choice of training set S ~ D,

Therefore, Page < 1 — P(H%H% < p%%) < 4.

Lp(w) < max Ls(w+Aw)+R (35
|Awl[|2<d

where k denotes the number of parameters and

w2 2
- Mog(HHw ;;png (IJr /Tgkm))Hm%

o 2(Is]-1) ’
with higher order infinity omitted.

In Lemma 1, when we set wp = wg and
_ 2
op = oo, we have d? = 0(2) — ”w+°” and R =

klw—wq |2 [log 1]) 2 S|
\/klOg(1+ kc‘%—Hw—on2 (1+ k) +410g 5

2(ls[-1)

With higher order infinity omitted, we have

pd?

ax L +Aw) =L +— (36

nax s(w w) = Ls(w) 5 (30)
(kog — [[w — wo|*)e

~ kF7N(1-0)0?

(37

9528

