
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9359–9368
November 7–11, 2021. c©2021 Association for Computational Linguistics

9359

Sparsity and Sentence Structure
in Encoder-Decoder Attention of Summarization Systems

Potsawee Manakul and Mark J. F. Gales
Department of Engineering, University of Cambridge
pm574@cam.ac.uk, mjfg@eng.cam.ac.uk

Abstract

Transformer models have achieved state-of-
the-art results in a wide range of NLP tasks
including summarization. Training and in-
ference using large transformer models can
be computationally expensive. Previous work
has focused on one important bottleneck, the
quadratic self-attention mechanism in the en-
coder. Modified encoder architectures such
as LED or LoBART use local attention pat-
terns to address this problem for summariza-
tion. In contrast, this work focuses on the
transformer’s encoder-decoder attention mech-
anism. The cost of this attention becomes
more significant in inference or training ap-
proaches that require model-generated histo-
ries. First, we examine the complexity of
the encoder-decoder attention. We demon-
strate empirically that there is a sparse sen-
tence structure in document summarization
that can be exploited by constraining the atten-
tion mechanism to a subset of input sentences,
whilst maintaining system performance. Sec-
ond, we propose a modified architecture that
selects the subset of sentences to constrain
the encoder-decoder attention. Experiments
are carried out on abstractive summarization
tasks, including CNN/DailyMail, XSum, Spo-
tify Podcast, and arXiv.1

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
with large-scale pre-training has become the de-
facto approach for a wide range of NLP tasks, from
classification (Devlin et al., 2019) to seq2seq (Raf-
fel et al., 2020). Training and inference using large
transformer models can be computationally expen-
sive because the self-attention’s time and memory
grow quadratically with sequence length. Hence,
there has been significant interest in efficient trans-
former architectures. A number of approaches have

1Our code is available at https://github.com/
potsawee/encdec_attn_sparse.

been proposed to tackle the quadratic complexity,
and a comprehensive survey on efficient transform-
ers has been compiled in Tay et al. (2020). Most
existing approaches are developed for encoder-only
architectures. For seq2seq tasks, efficient models
such as BigBird (Zaheer et al., 2020) or LED (Belt-
agy et al., 2020) consist of an efficient encoder with
the vanilla decoder. For long-document summa-
rization, this combination has been shown effective
because the major bottleneck is the encoder self-
attention (Manakul and Gales, 2021). The attention
mechanisms in the decoder consist of self-attention
and encoder-decoder attention. Techniques such
as local attention are applicable to self-attention
in both the encoder and decoder, while this work
focuses on the encoder-decoder attention.

When humans produce a summary, the infor-
mation conveyed by each word/part in the sum-
mary is likely drawn from some key sentences in
the original document. Inspired by this, we hy-
pothesize that if the encoder-decoder attention is
constrained dynamically to salient sentences, the
computation cost will be reduced. For instance,
sentence-level structures for the encoder-decoder
attention have been shown effective in the tra-
ditional RNN encoder-decoder attention (Cohan
et al., 2018; Li et al., 2019; Manakul et al., 2020)

In this work, first, we compare the decoder’s
cost in the training and inference stages. We study
the sparsity of the encoder-decoder attention in a
common transformer-based abstractive summariza-
tion model. An approximation method to exploit
this sparsity is described, and an empirical upper
bound performance is given. Second, we propose
a modified decoder architecture that can dynami-
cally select salient input sentences to constrain the
encoder-decoder attention without having to com-
pute complete attention at inference time. Tech-
niques to train our proposed model are described,
and compared to the full attention baseline perfor-
mance and empirical upper bound.

https://github.com/potsawee/encdec_attn_sparse
https://github.com/potsawee/encdec_attn_sparse

9360

2 Models and Data

Vanilla Transformers. We use BART (Lewis
et al., 2020) and local-attention BART (LoBART)
(Manakul and Gales, 2021) as our base models.
BART’s maximum input length is 1024, while that
of LoBART is 4096 with attention width of 1024.
BART is fine-tuned to CNN/DailyMail and XSum,
and LoBART is fine-tuned to Podcast and arXiv.

Data. CNN/DailyMail (Hermann et al., 2015) and
XSum (Narayan et al., 2018) are used with BART,
while long-document arXiv (Cohan et al., 2018)
and Spotify Podcast (Clifton et al., 2020) are used
with LoBART. More details about models, data,
and training are provided in Appendix A.

3 Attention in the Transformer

Time and memory are dominated by the encoder
self-attention, and models such as LoBART adopt
local attention in its encoder to mitigate this bottle-
neck, while keeping the original decoder (Manakul
and Gales, 2021). Training is fast because attention
is highly parallelizable. However, during inference,
the decoder uses its histories, becoming less paral-
lelizable. To understand when the decoder might
become a bottleneck, we fix the input length N and
measure the computational time as a function of
the target length M :

time = c̄1 + c̄2M + c̄3M
2 (1)

in three operating modes: i) Forward+Backward,
e.g. at training time; ii) Forward only, e.g. forward-
pass where the input to the decoder is provided in
advance; iii) Inference, e.g. the decoder using its
own back histories as the input.

Through a curve-fitting method, the results in
Table 1 show that the relative decoder cost during
inference is almost one order of magnitude larger
than that during training, e.g. forward+backward
or forward only. More details are provided in Ap-
pendix B, where we also show that the encoder-
decoder attention cost is greater than the decoder
self-attention cost. Therefore, this work will focus
on the encoder-decoder attention.

3.1 Encoder-Decoder Attention
Let M = the summary length, N = the input length,
N1 = #sentences, and N2 = the average number of
words in a sentence, e.g. N = N1N2. The standard
encoder-decoder attention in Eq. 2 (scaling factor
omitted) where Q ∈ RM×D and K,V ∈ RN×D

Mode c̄2/c̄1 (10−3) c̄3/c̄1 (10−6)

Forward+Backward 1.08 0.17
Forward only 1.14 0.25

Inference 9.96 1.30

Table 1: Empirical computational time as a function of
the target length M where c̄1, c̄2, c̄3 are the coefficients
in Eq. 1. The analysis is based on BART from Wolf
et al. (2020) and the input length is 1024.

has the complexity: O(MN) = O(MN1N2).
Note that we fix the representation dimension D,
so D is omitted in our complexity notation.

A = softmax(QKT)V (2)

If the attention is concentrated on some r sen-
tences,2 by selecting appropriate r, the speed of
the encoder-decoder attention can be improved by
a factor of N1/r in average. This is equivalent to:

A ≈ Â = softmax(QK̂T)V̂ (3)

where K̂, V̂ ∈ RrN2×D, resulting in O(MrN2).

3.2 Sparsity of Encoder-Decoder Attention
Let the subscript (i, j) denote the position of the
j-th word in the i-th input sentence, e.g. K =
[k1,1,k1,2,k1,J1︸ ︷︷ ︸

sent1

, ...,ki,1,ki,Ji︸ ︷︷ ︸
senti

, ...,kN1,1,kN1,JN1︸ ︷︷ ︸
sentN1

].

At inference time, the outputs are generated sequen-
tially: am=softmax(qmKT)V, so r sentences
can be determined independently for each qm.
Consider the following sum of attention weights as
the saliency at decoding step m of sentence i:3

αsm,i =
1

Zm

Ji∑
j=1

exp(qm · ki,j) (4)

where Zm =
∑
∀i′
∑
∀j′ exp(qm · ki′,j′). We then

compute
∑

i α
s
m,i up to r sentences ranked by αsm,i.

The results in Fig. 1a show that r=25 is required
to achieve the sum of attention weights at 90%.
In addition to the vanilla model, we can fine-tune
BART explicitly to make the attention sparse using:

LA = Lxent + γLsparse (5)

where Lxent is the teacher-forced cross entropy
loss, Lsparse = 1

M

∑M
m=1 H(αs

m), and entropy
2Motivated by the observations shown in Appendix E.
3We discuss the details of multi-head attention on αs

m,i

and other operations such as entropy in Appendix A.4

9361

H(αs
m) = −

∑N1
i=1 α

s
m,i logαsm,i. We show in Fig.

1b that the fine-tuned models (γ=0.1 & γ=1.0) re-
tain close to 100% of attention weights for small
r. Subsequently, we investigate how selecting r
sentences impacts the summarization performance.

0 5 10 15 20 25
Num sentences kept (r)

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l A
tte

nt
io

n
W

ei
gh

ts
 R

et
ai

ne
d

Layer1
Layer4
Layer8
Layer12

(a) Layers 1,4,8,12

0 5 10 15 20 25
Num sentences kept (r)

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l A
tte

nt
io

n
W

ei
gh

ts
 R

et
ai

ne
d

Vanilla
gamma=0.1
gamma=1.0

(b) LA-tuned (Layer1)

Figure 1: The sum of attention weights against the num-
ber of retained sentences (r) evaluated on CNNDM.

To obtain an empirical upper bound performance
of Eq. 3, for each qm, we can get ideal k,v cor-
responding to the top r sentences ranked by αsm,i:

Irm = [(i, j) s.t. i ∈ top-r(αsm,i)] (6)

K̂m = [ki,j : (i, j) ∈ Irm], and the same method
is applied to obtain V̂m.

System r Irm R1 R2 RL

Vanilla All N/A 44.03 20.92 40.99
(γ = 0.0) 5 Ideal 43.94 20.82 40.81

5 Random 39.06 14.32 36.07

γ = 0.1 5 Ideal 44.22 21.01 41.19
γ = 1.0 5 Ideal 43.61 20.46 40.60

Table 2: Sparsity and Selection (Irm) on CNNDM.

The results in Table 2 show that:

• For the vanilla model, despite the sum of at-
tention weights being around 50% at r=5 (Fig.
1a), the model is sufficiently sparse, and con-
straining to r ideal sentences (All→ Ir,Ideal

m)
results in a small performance degradation.

• Forcing for sparsity (Fig.1b) does not yield a
significant performance improvement; but this
forcing also makes the model more sensitive
to random selection (results in Appendix C).

Thus, for summarization, there is an observable
sparsity, which allows us to reduce the cost of
encoder-decoder attention with a minimal degrada-
tion. Next, we investigate how to build an efficient
form of approximator to obtain salient sentences.

4 Sentence-Level Structure for
Encoder-Decoder Attention

In Section 3.1, we use ideal selection Irm (Eq. 6),
which requires computing αsm,i (Eq. 4) using all
input words. This process cannot make the decoder
more efficient. By exploiting the sentence structure
in the document, we propose the following partition
for the sentence-level attention score (Eq. 4) to
allow a compact approximation:

αsm,i ≈ α̃sm,i = softmax (f1(qm) · f2(ki,1, ...,ki,Ji))

(7)
where

∑N1
i=1 α̃

s
m,i = 1.0. Essentially, we modify

the standard encoder-decoder attention such that it
performs sentence selection based on α̃sm,i (Eq. 7)
and computes subset attention Â (Eq. 3).

4.1 Complexity of Modified Attention
The modified encoder-decoder attention consists of
two components: i) sentence-level attention over
N1 sentences; ii) word-level attention over rN2

words. Let p denote a unit of matrix multiplication
cost and q denote a unit of softmax cost. The costs
associated with attention are:

i) Sentence-level (Eq.7): pMN1D + qMN1

ii) Word-level (Eq.3): 2pMrN2D + qMrN2

The additional cost associated with the sentence-
level representation on the encoder side grows with
the input length N=N1N2. Thus, as opposed to
O(MN1N2) in the case of vanilla encoder-decoder
attention, the overall complexity of the modified at-
tention isO(MN1 +kwMrN2 +keN1N2), where
kw ≈ 2pD+q

pD+q and ke depends on the exact form of
sentence-level representation computation.

4.2 Model-based Neural Approximator
To utilize the simple partition and sentence-level
structure in Eq. 7, we use a linear mapping for f1
and a bidirectional RNN for f2 as follows:

f1(qm) = qmWQ (8)

f2(ki,1, ...,ki,Ji) = yiW
K (9)

yi = RNN(ki,1, ...,ki,Ji) (10)

As illustrated in Fig. 3, the base transformer model
is extended by augmenting two layers: i) sentence-
level encoder-decoder attention computing α̃sm,i in
Eq. 7; ii) sentence encoder computing the sentence-
level representation in Eq. 10. The details about
model parameters are provided in Appendix A.

9362

0 2 4 6 8 10 12 14 16 18 20 22
Num sentences kept (r)

26

28

30

32

34

36

38

40

Average number of sentences = 28.7

Ideal Selection
Model-based (KL only)
Model-based (Integrated)
Full Attn (All Sentences)

(a) BART(1k) & CNNDM

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Num sentences kept (r)

28

30

32

34

36

38

40

42

44

Average number of sentences = 17.4

Ideal Selection
Model-based (KL only)
Model-based (Integrated)
Full Attn (All Sentences)

(b) BART(1k) & XSum

1 5 10 15 20 25 30 35 40 45 50 55 60
Num sentences kept (r)

16

18

20

22

24

26

28
Average number of sentences = 330.8

Ideal Selection
Model-based (KL only)
Model-based (Integrated)
Full Attn (All Sentences)

(c) LoBART(4k) & Podcast

1 5 10 15 20 25 30 35 40 45 50 55 60
Num sentences kept (r)

25

30

35

40

45

50
Average number of sentences = 237.0

Ideal Selection
Model-based (KL only)
Model-based (Integrated)
Full Attn (All Sentences)

(d) LoBART(4k) & arXiv

Figure 2: Performance (ROUGE-1) of BART & LoBART. The integrated training is based on Ir,Apx
m .

Encoder Layerx 12

Sentence Encoder

Self Attention

Encoder-Decoder Attention

Sent-Level
Enc-Dec Attn

Feedforward

x 12

Figure 3: Modified architecture with model-based ap-
proximator where the base model is BART/LoBART.
Model-based neural approximator is shown in orange.

4.3 KL Loss and Integrated Training
Let θdec denote the original decoder, and θ̃ denote
the neural approximator. We train θ̃ by minimizing:

LKL =
1

M

M∑
m=1

KL (αs
m||α̃s

m) (11)

where KL(.) =
∑N1

i=1 α
s
m,i log(αsm,i/α̃

s
m,i). In ad-

dition, we can integrate θdec in the training process.
With the teacher-forced cross entropy loss Lxent,
we define the integrated training loss:

LI = Lxent + λLKL (12)

We cannot optimize LI in an end-to-end fashion
because the top-r operation in Eq. 6 is not dif-
ferentiable. Hence, we interleave the training, i.e.
update θdec at fixed θ̃ and update θ̃ using LKL only:

∆θdec = ∇θdecLI|θ̃ = ∇θdecLxent|θ̃ + λ∇θdecLKL|θ̃
(13)

∆θ̃ = ∇θ̃LI =���
��:0∇θ̃Lxent + λ∇θ̃LKL (14)

Because during training, we compute both αsm,i

(ideal) and α̃sm,i (approx), we can use either in
the top-r selection. Also, inspired by scheduled
sampling (Bengio et al., 2015), we try mixing them:
αsm,i with probability 1− step

epoch_size , otherwise α̃sm,i.

4.4 System Performance
In Table 3, we provide two vanilla baselines: ran-
dom (Ir,Rnd

m) obtained by random selection; ideal

System Train Inference R1 R2 RL

Vanilla 7 Ir,Rnd
m 39.06 14.32 36.07

Vanilla 7 Ir,Idl
m 43.94 20.82 40.81

KL-only LKL Ir,Apx
m 43.02 20.02 39.89

Int-Idl LI(Ir,Idl
m) Ir,Apx

m 43.03 20.04 40.05
Int-Apx LI(Ir,Apx

m) Ir,Apx
m 43.72 20.40 40.70

Int-Mix LI(Mix) Ir,Apx
m 43.31 20.21 40.35

Table 3: Performance on CNNDM where r=5 for both
training and inference. KL-only = θ̃ trained on LKL;
Int = (θdec&θ̃) trained on LI. Rnd=random, Idl=ideal,
Apx=approximation, Mix=scheduled(Idl/Apx).

(Ir,Idl
m) obtained by Eq. 6. The results show that the

KL-only system clearly outperforms the random se-
lection baseline, and the performance degradation
of the KL-only system can be reduced by our inte-
grated training. The results verify the effectiveness
of our modified decoder that attends to a subset of
sentences. Also, Table 3 shows that it is best to
use Ir,Apx

m as reference in integrated training. This
result is likely because we initialized integrated
training from the KL-only model. In addition, we
apply the modified architecture to BART trained
on XSum (≤1k words), and to LoBART trained
on Podcast and arXiv (≤4k words). The results
in Fig. 2 confirm that the performance of our pro-
posed method converges to that of the full attention
baseline across all models and datasets.

In addition, r∗≈ 5,10,30,30, respectively.4 Al-
though XSum has fewer sentences in average com-
pared to CNNDM, r∗XSum>r

∗
CNNDM as XSum is

more abstractive. For longer summarization tasks
as shown by Podcast and arXiv, the performance
degradation appears larger, meaning that the task
of constraining to salient sentences in longer tasks
is more challenging, and larger r is required.

4r∗ denotes r at which the ideal selection system’s perfor-
mance plateaus/reaches the full attn baseline’s performance.

9363

Sensitivity of r in Integrated Training
We train BART in three settings: rtrain=2,5,10, and
we show the performance level w.r.t. the model
with rtrain=5 in Fig. 4. The results show that set-
ting rtrain beyond r∗ is not necessarily beneficial as
shown by the model with rtrain=10 in the CNNDM
result, and it is best to set rtrain close to rinference.

0 2 4 6 8 10 12 14 16 18 20 22
-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50 Integrated (r=2)
Integrated (r=10)

(a) CNNDM

0 2 4 6 8 10 12 14 16 18 20 22 24 26

-1.00

-0.50

0.00

0.50

1.00

1.50
Integrated (r=2)
Integrated (r=10)

(b) XSum

Figure 4: ∆R1 (Y-axis) against r at inference (X-axis).

4.5 Further Discussion on Sentence-Level
Encoder-Decoder Attention

The results in Section 4.4 demonstrate empirically
that a neural network can predict sparsity, therefore,
allowing sentence selection. Our novel framework
requires an addition of modules to the original at-
tention mechanism, and the real gain in speed will
depend on the balance of the sparsity against the
computational cost of the additional modules. Con-
sequently, the challenge is to make these additional
modules highly efficient. Because the particular
network realization selected in this paper is to show
the feasibility of our framework, its limitations and
possible improvements are discussed as follows.

Limitations and Possible Improvements
The model choice of using RNN for the sentence
encoder in Eq. 10 leads to a large additional com-
putational cost (specifically large ke) because the
computational cost of RNN grows with N1N2D

2.
Because the goal is to obtain a sentence-level rep-
resentation, there is an opportunity to replace RNN
by a hierarchical attention that runs over sentences,
which could instead lead to a computational cost
that grows withN1N2D. Additional sentence-level
query and key mappings in Eq. 8 and Eq. 9 also
incur a large computational cost.

Model-free Approximator
Lastly, we re-visit the sentence-level attention in
Eq. 4, which have been approximated by Eq. 7 and
the model-based approximator. It is a challenge
to attempt via a model-free algebraic approxima-
tion, which does not require any training and has

little additional inference-time cost. We examined
various forms, and we present one model-free ap-
proach as well as experimental results in Appendix
D, but the current form has worse summarization
performance than our model-based approach.

5 Related Work

The discrepancy between low/moderate attention
weight sparsity and good sparse approximation
could be because a considerable amount of the
attention weight is assigned to special tokens, e.g.
‘.’ in all sentences, but their vector norm is small,
which was observed in Kobayashi et al. (2020).

The sparse attention (Eq. 3) with ideal selec-
tion (Eq. 6) can be considered as content selection,
which has been shown to improve summarization
(Gehrmann et al., 2018; Hsu et al., 2018). Recently,
head-wise masks are applied to encoder-decoder
attention at inference time, and a performance im-
provement is reported (Cao and Wang, 2021).

Voita et al. (2019) observed that heads are re-
dundant, and Clark et al. (2019) found that a head
in BERT rarely attends to several consecutive to-
kens. Based on these, Huang et al. (2021) applies
a stride pattern in the encoder-decoder attention,
reducing its cost by a factor of the stride size, and
this method is likely complementary to our work.

6 Conclusion

We show that the computational cost of the trans-
former decoder becomes more significant at infer-
ence time. Towards reducing this cost, first, we
show that there is sparsity in the encoder-decoder
attention that allows us to reduce the computational
cost with a minimal degradation. Second, we par-
tition the sentence-level attention score, and we
augment the standard decoder by adding a neu-
ral network to approximate the attention over sen-
tences, allowing sentence selection. We show that
the summarization performance of our approach
converges to that of the full attention baseline,
while switching the complexity from O(MN1N2)
to O(MN1 + kwMrN2 + keN1N2).

Acknowledgments

This paper reports on research supported by ALTA
institute, Cambridge Assessment English, Univer-
sity of Cambridge, and Cambridge International
& St John’s College Scholarship. Thanks to Yit-
ing Lu for interesting discussions. Thanks to the
anonymous reviewers for their helpful comments.

9364

References
Iz Beltagy, Matthew E Peters, and Arman Cohan.

2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1171–1179.

Shuyang Cao and Lu Wang. 2021. Attention head
masking for inference time content selection in ab-
stractive summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5008–5016, Online.
Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Ann Clifton, Sravana Reddy, Yongze Yu, Aasish Pappu,
Rezvaneh Rezapour, Hamed Bonab, Maria Eske-
vich, Gareth Jones, Jussi Karlgren, Ben Carterette,
and Rosie Jones. 2020. 100,000 podcasts: A spo-
ken English document corpus. In Proceedings
of the 28th International Conference on Compu-
tational Linguistics, pages 5903–5917, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 4098–4109, Brussels, Belgium. Association
for Computational Linguistics.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to
read and comprehend. In Advances in Neural Infor-
mation Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 1693–1701.

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 132–141, Melbourne, Australia. Association
for Computational Linguistics.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1419–1436, On-
line. Association for Computational Linguistics.

Rosie Jones, Ben Carterette, Ann Clifton, Maria Es-
kevich, Gareth J. F. Jones, Jussi Karlgren, Aasish
Pappu, Sravana Reddy, and Yongze Yu. 2020. Trec
2020 podcasts track overview. In The 29th Text Re-
trieval Conference (TREC) notebook.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7057–7075, Online. Association for Computa-
tional Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://doi.org/10.18653/v1/2021.naacl-main.397
https://doi.org/10.18653/v1/2021.naacl-main.397
https://doi.org/10.18653/v1/2021.naacl-main.397
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/2020.coling-main.519
https://doi.org/10.18653/v1/2020.coling-main.519
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D18-1443
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://doi.org/10.18653/v1/P18-1013
https://doi.org/10.18653/v1/P18-1013
https://doi.org/10.18653/v1/P18-1013
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

9365

Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Manling Li, Lingyu Zhang, Heng Ji, and Richard J.
Radke. 2019. Keep meeting summaries on topic:
Abstractive multi-modal meeting summarization. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2190–2196, Florence, Italy. Association for Compu-
tational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Potsawee Manakul and Mark Gales. 2021. Long-span
summarization via local attention and content se-
lection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 6026–6041, Online. Association for Computa-
tional Linguistics.

Potsawee Manakul, Mark J.F. Gales, and Linlin Wang.
2020. Abstractive Spoken Document Summariza-
tion Using Hierarchical Model with Multi-Stage At-
tention Diversity Optimization. In Proc. Interspeech
2020, pages 4248–4252.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 8024–8035.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in
Neural Information Processing Systems, volume 33,
pages 17283–17297. Curran Associates, Inc.

https://doi.org/10.18653/v1/P19-1210
https://doi.org/10.18653/v1/P19-1210
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.21437/Interspeech.2020-1683
https://doi.org/10.21437/Interspeech.2020-1683
https://doi.org/10.21437/Interspeech.2020-1683
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2009.06732
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

9366

A Reproducibility Details

A.1 Models
BART/LoBART: We use the HuggingFace’s im-
plementation (Wolf et al., 2020), including BART
models fine-tuned to CNNDM5 and XSum6. We
take LoBART from Manakul and Gales (2021), in-
cluding LoBART(4k)+MCS fine-tuned to Podcast
and arXiv. MCS is the multitask content selec-
tion system for handling the Podcast/arXiv input
documents that exceed 4096 words.

Modified Architecture: As shown in Fig. 3, the
modified architecture consists of a sentence en-
coder and a sentence-level encoder-decoder atten-
tion. The sentence encoder, which approximates
f2(.) in Eq. 7, is a two-layer bi-directional GRU
(Cho et al., 2014) with hidden dimension of 1024.
The sentence-level encoder-decoder attention has
linear mapping weights WQ (query) and WK (key),
and both weights have the same dimension as
and are initialized from their corresponding word-
level encoder-decoder attention’s linear mapping
weights in the base model. The total number of
additional parameters is 58.8M.

A.2 Data
CNNDM: We follow the standard train/valid/test
split of 287,113/13,368/11,490.

XSum: We follow the standard train/valid/test split
of 204,045/11,332/11,334.

Spotify Podcast: We follow the data process-
ing and split in Jones et al. (2020), resulting in
train/valid/test splits of 60,415/2,189/1,027.

arXiv: We follow the standard train/valid/test split
of 203,037/6,436/6,440.

Our data processing is based on the byte-pair-
encoding (BPE) tokenizer same as the BART-large
tokenizer, and we use the NLTK toolkit for sen-
tence splitting. **In Fig. 2 and Fig. 4, to reduce
computational cost, we use first 2,000 samples of
each test set, except Podcast which contains less
than 2,000 samples.

A.3 Training and Inference
We use PyTorch (Paszke et al., 2019) in our exper-
iments. All training experiments use the Adam

5https://huggingface.co/facebook/
bart-large-cnn

6https://huggingface.co/facebook/
bart-large-xsum

Dataset N N1 M N/M

CNNDM 870 28.7 67.4 14.2
XSum 489 17.4 27.9 18.2

Podcast 5727 330.8 86.6 143.9
arXiv 8584 237.0 364.9 45.3

Table 4: Data statistics (average over corpus). N=input
length, N1=#sentences, M=summary length.

optimizer (Kingma and Ba, 2015) with β1=0.9,
β2=0.999, and the learning rate is:

lr = 0.002×min(step−0.5, step× warmup−1.5)

where we use 20,000 warmup steps. In all experi-
ments, we set batch size to 1, and gradient accumu-
lation to 2 steps. We evaluate the training loss on
the validation set every 20,000 steps, and stop the
training if the validation loss does not improve 3
times. All training experiments converged within 1
epoch. All experiments were carried out in 32-bit
precision on either one V100 (32GB) GPU, or one
RTX 2080Ti (11GB) GPU.

At inference time, we use the standard setting:
beam search of width 4, and length penalty of 2.0
(Wu et al., 2016) for all experiments. The ROUGE
(Lin, 2004) scoring tool is pyrouge.7

A.4 Multi-head attention
In all of the equations and expressions in the pa-
per, we omit the heads for simplicity. Both BART
and LoBART models have 16 heads. In Fig. 1,
we average αsm,i over heads, before the summation.
When computing an uncertainty measure such as
entropy H(.) or KL-divergence KL(.), we compute
the measure for each head separately and take the
average. In obtaining Irm, we average αsm,i over
heads, before the top-r operation, i.e. all heads get
assigned the same subset of sentences, but the dif-
ferences are across layers and decoding timesteps.

A.5 KL Loss and Integrated Training
The target αsm,i is re-normalized to encourage
higher sparsity as follows:

αs
m ← softmax

(
log(αs

m)

T

)
(15)

where temperature T is set to 0.5. For integrated
training, we set λ in LI to 0.2. We initialize inte-
grated training experiments from KL-only models.

7https://pypi.org/project/pyrouge/

https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/facebook/bart-large-xsum
https://pypi.org/project/pyrouge/

9367

B Time Analysis

For each mode in Table 1, we take 6 samples of
M and the average time of 100 iterations. Curve
fitting yields R-squared of at least 0.994.

Computational time as function of M and N is
time = c1+c2M+c3N+c4MN+c5M

2+c6N
2.

The coefficients are obtained by a least-squares re-
gression, e.g. c∗ = (PTP)−1PT t where P is the
matrix of M,N associated with the coefficients,
and t contains the time measures. We collect 30
samples of the average time of 100 F+B passes,
spanning N ∈ [256, 1024] and M ∈ [50, 300].
The normalized coefficients are: c1 = 1.00, c2 =
3.78 × 10−3, c3 = 3.15 × 10−3, c4 = 1.47 ×
10−6, c5 = 7.26 × 10−7, c6 = 7.79 × 10−7. Be-
cause c4 ≈ 2c5 and N > M , the enc-dec attention
cost is greater than the decoder self attention cost.

C Sensitivity to Random Selection

System R1 R2 RL

Vanilla (γ = 0.0) 39.06 14.32 36.07
LA-tuned (γ = 0.1) 28.43 7.72 24.00
LA-tuned (γ = 1.0) 21.38 4.22 17.69

Table 5: Impact of sparsity on the sensitivity to random
selection based on CNNDM with r = 5.

D Model-free Approximation for Eq. 4

Since αsm,i = 1
Zm

∑Ji
j=1 exp(qm · ki,j) is used to

rank input sentences, the normalization term, Zm,
can be dropped. The encoder-decoder attention
has O(MN1N2) complexity because qm · ki,j is
computed for every m and (i, j) pair. Hence, if
we can group ki,j into sentences, the complexity
could potentially be reduced. We try the following
approximation of unnormalized αsm,i:

Ji∑
j=1

exp(qm · ki,j)

=

Ji∑
j=1

D∏
d=1

exp(qm,dki,j,d) (16)

≈
Ji∑
j=1

D∑
d=1

exp(qm,dki,j,d) (17)

≈
Ji∑
j=1

D∑
d=1

φ(qm,d)φ(ki,j,d) (18)

= φ(qm) ·

 Ji∑
j=1

φ(ki,j)

 (19)

where d = {1, ..., D} is the hidden dimension, and
φ(.) = ELU(.) + 1 (or other form such as exp and
ReLU). The model-free method reduces complex-
ity from O(MN1N2) to O(MN1 + kwMrN2 +
keN1N2) where ke is now much smaller compared
to the model-based approach. Based on Eq. 19, we
provide model-free results in Table 6.

Selection Method R1 R2 RL

Ideal (Eq.6) 43.94 20.82 40.81
Best Model-based 43.72 20.40 40.70

Random 39.06 14.32 36.07

Model-free (Eq.19) 40.01 17.28 36.95

Table 6: Model-free results on CNNDM (r = 5).

Our model-free approach is better than the ran-
dom selection baseline, but it is significantly worse
than both the ideal selection baseline and the model-
based approach. The reasons for this poor per-
formance are: (i) the approximation from (16) to
(17) requires the following condition to be true:
A1A2 > B1B2 → A1 + A2 > B1 + B2, so it
is inaccurate when the values are not in a similar
range; (ii) the approximation from (17) to (18) is
inaccurate for non-positive values. In conclusion,
this experiment investigates an alternative challeng-
ing method, which would not require any training
and would be computationally cheaper at inference
time. Although the current algebra does not work
well, we hope that our initial study might draw
more interests into this type of model-free approach
to exploit the sentence structure in seq2seq tasks
such as abstractive summarization.

E Word-level and Sentence-level
Attention Weight Plots

Constraining the encoder-decoder attention to r
sentences is motivated by the observations of
sentence-level attention (in Fig. 5b, 6b, 7b, 8b).
Note that we average over all heads for the plots.

For instance, Fig. 5 shows that the decoder at-
tends particularly to input sentences #1,#2,#13 in
the summary generation. Compared to Fig. 5,
Fig. 6 shows a wider spread of the attention over
sentences in a more abstractive task. When using
LoBART, Fig. 7 and Fig. 8 show a similar trend of
the sparsity to BART scenarios. These figures also
explain Fig. 1a (Section 3) that

∑Irm
i αsm,i is only

low/moderate because most sentences get assigned
some attention weights, despite being non-salient.

9368

(a) Word-Level (b) Sentence-Level (αs
m,i)

Figure 5: Example of BART’s encoder-decoder attention evaluated on CNNDM test set.

(a) Word-Level (b) Sentence-Level (αs
m,i)

Figure 6: Example of BART’s encoder-decoder attention evaluated on XSum test set.

(a) Word-Level (b) Sentence-Level (αs
m,i)

Figure 7: Example of LoBART’s encoder-decoder attention evaluated on Podcast test set.

(a) Word-Level (b) Sentence-Level (αs
m,i)

Figure 8: Example of LoBART’s encoder-decoder attention evaluated on arXiv test set.

