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Abstract
In this paper, we explore Non-AutoRegressive
(NAR) decoding for unsupervised text style
transfer. We first propose a base NAR model by
directly adapting the common training scheme
from its AutoRegressive (AR) counterpart. De-
spite the faster inference speed over the AR
model, this NAR model sacrifices its transfer
performance due to the lack of conditional de-
pendence between output tokens. To this end,
we investigate three techniques, i.e., knowledge
distillation, contrastive learning, and iterative
decoding, for performance enhancement. Ex-
perimental results on two benchmark datasets
suggest that, although the base NAR model is
generally inferior to AR decoding, their per-
formance gap can be clearly narrowed when
empowering NAR decoding with knowledge
distillation, contrastive learning, and iterative
decoding.

1 Introduction

Text Style Transfer (TST) aims at altering a stylis-
tic attribute (e.g., sentiment) of the given text to a
target value, without changing the style-agnostic
semantics. Due to the difficulty in collecting par-
allel training corpus, most exiting methods (Shen
et al., 2017; Xu et al., 2018; Luo et al., 2019; Zhou
et al., 2020) address the task in an unsupervised
setting. Through techniques such as auto-encoding,
back-translation, or adversarial learning, the task
is converted to self-supervised problems and great
empirical progress has been made. However, cur-
rent methods employ autoregressive (AR) decoding
which generates each output token conditioned on
the previously generated ones, leading to low par-
allelizability and high latency for pragmatic use.

Recently, non-autoregressive (NAR) decoding
has attracted much attention in neural machine
translation (NMT) (Gu et al., 2018). NAR decod-
ing eliminates the conditional dependencies among
the output tokens and generates them in parallel,
thus reducing the decoding time-complexity from

O(T ) to O(1) for outputs with length T . Without
modeling the dependency, the advantage on decod-
ing speed comes at the cost of reduced performance.
To address this issue, knowledge distillation is em-
ployed to transfer the knowledge from AR models
to NAR models (Gu et al., 2018). Furthermore,
existing works resort to various regularization tech-
niques (Wang et al., 2019) to constrain the output
or Semi-AutoRegressive (SAR) decoding (Wang
et al., 2018; Ghazvininejad et al., 2019) as a speed-
performance tradeoff.

In this paper, we explore NAR decoding for unsu-
pervised TST to enable faster inference with better
parallelism. To the best of our knowledge, this is
the first work to study NAR models for TST. Firstly,
a base NAR model is proposed by directly adapting
the widely used training objectives from AR mod-
els. As with NMT, the base NAR model underper-
forms the AR model. To narrow their performance
gap, we propose to enhance NAR decoding from
three perspectives: the data perspective by knowl-
edge distillation, the regularization perspective by
contrastive learning, and the speed-performance
tradeoff perspective by iterative decoding. Experi-
mental results on a sentiment transfer dataset and a
formality transfer dataset demonstrate integrating
these techniques can substantially improve the base
NAR model.

2 Related Work

Unsupervised Text Style Transfer. One branch
of methods disentangles the style and content by
learning a style-agnostic representation, which can
be either a latent vector (Shen et al., 2017; Fu et al.,
2018; John et al., 2019; Yi et al., 2020) or a sub-
sequence of the input with the style indicators re-
moved (Li et al., 2018; Xu et al., 2018; Wu et al.,
2019b; Sudhakar et al., 2019; Madaan et al., 2020).
Another branch of methods (Lample et al., 2019;
Dai et al., 2019) inspired by back-translation dy-
namically creates pseudo-parallel data to gradually
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refine the TST model. There are also reinforcement
learning based methods (Luo et al., 2019; Wu et al.,
2019a; Gong et al., 2019; Liu et al., 2021) which
guide the model with different rewards correspond-
ing to the evaluation criteria.

Non-Autoregressive Decoding. Since the pro-
posal of NAR decoding in NMT (Gu et al., 2018),
follow-up works focus on narrowing its gap with
AR decoding while keeping its efficiency. One
branch of methods transfers the knowledge from
AR models to NAR models by knowledge distilla-
tion (Gu et al., 2018), attention alignment (Li et al.,
2019), imitation learning (Wei et al., 2019), or re-
inforcement learning (Shao et al., 2019). Another
branch introduces regularization terms such as sim-
ilarity constraint (Wang et al., 2019), bag-of-ngram
difference (Shao et al., 2020), and aligned cross-
entropy (Ghazvininejad et al., 2020) to alleviate
incorrect translations. Furthermore, SAR decoding
is proposed, which seeks a tradeoff between AR
and NAR decoding by adding AR layers on NAR
models (Wang et al., 2018; Sun et al., 2019; Akoury
et al., 2019), iterative refinement (Lee et al., 2018;
Ghazvininejad et al., 2019), or insertion-based de-
coding (Stern et al., 2019; Gu et al., 2019).

3 Non-Autoregressive Text Style Transfer

Let S denote all possible values for a stylistic at-
tribute. A desired TST model pθ(y|x, s) with pa-
rameters θ transforms an input text x with source
style s0 ∈ S to an output y with a given target
style s ∈ S while preserving the style-agnostic
semantics of x. In this section, we first propose a
base NAR model (BaseNAR) for unsupervised TST
(Section 3.1), then investigate three techniques, i.e.,
knowledge distillation (Section 3.2), contrastive
learning (Section 3.3), and iterative decoding (Sec-
tion 3.4), to enhance the performance of BaseNAR.

3.1 A Base NAR Model
At the core of NAR decoding is the conditional
independence among output tokens. Formally,

pθ(y|x, s) =
T∏
t=1

pθ(yt|x, s) (1)

which, compared with AR decoding, removes the
previous generated tokens y<t in the conditional
variables for each timestamp.

Our BaseNAR consists of an encoder and a de-
coder, both adopting Transformer (Vaswani et al.,

2017) based architecture. The encoder uses the
standard Transformer encoder as with AR mod-
els. Following NAR models for NMT (Wang et al.,
2019; Shao et al., 2020), the decoder differs from
the standard Transformer decoder and AR models
by (1) discarding the autoregressive mask in the
self-attention layer, (2) incorporating a positional-
attention layer, and (3) uniformly mapping the
source words as the decoder input1.

We optimize BaseNAR by three common losses
from AR decoding based TST: self-reconstruction,
cycle-reconstruction, and style compatibility.

Self-Reconstruction. When the target style s =
s0, the model is expected to reconstruct x. For-
mally, the self-reconstruction loss minimizes

Lself = − log pθ(x|x, s0) (2)

Cycle-Reconstruction. With y ∼ pθ(y|x, s), the
model is expected to reconstruct x when we feed
y as the input and s0 as the target style. Formally,
the cycle-reconstruction loss minimizes

Lcycle = − log pθ(x|y, s0) (3)

Style Compatibility. Let pψ denote a pretrained
style classifier with parameters ψ to predict the
style type for an input text. An output y ∼
pθ(y|x, s) is expected to be predicted as having
style s. Formally, the style compatibility loss mini-
mizes

Lstyle = − log pψ(s|y) (4)

The full loss for our BaseNAR model is Lself +
Lcycle + αLstyle, where α is a hyper-parameter.

3.2 Knowledge Distillation
In NMT, NAR models (Gu et al., 2018) achieve
improved performance by sequence-level knowl-
edge distillation (Kim and Rush, 2016) from AR
models. Specifically, a pseudo-parallel corpus is
constructed by sampling a translation output from
the AR model for each source input in the training
dataset. The NAR model is then trained using this
pseudo-parallel corpus instead of the original one.

In our text style transfer task, we follow the same
scheme in NMT. Suppose pφ(y|x, s) is a pretrained
AR decoding based TST model with parameters φ.
For each input x in the training set, we sample a
pseudo-target ỹ ∼ pφ(y|x, s). The NAR model is
then optimized to minimize

Lkd = − log pθ(ỹ|x, s) (5)
1See Appendix C.1 for more details.
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3.3 Contrastive Learning
Preliminary experiments show that BaseNAR suf-
fers from the word omission problem. Inspired
by Yang et al. (2019), we alleviate the problem
by a contrastive learning-based regularization term.
Specifically, the model is penalized if the probabil-
ity for the desired output (positive sample) is not
larger than that for an output with word omission
errors (negative sample) by a margin η. The reg-
ularization can be paired with self-reconstruction,
cycle-reconstruction, and knowledge distillation.
For knowledge distillation, we minimize

Rkd =max(log pθ(ỹ
∗|x, s) + η − log pθ(ỹ|x, s), 0)

− log pθ(ỹ
∗|x, s) (6)

where ỹ∗ is the negative sample generated from
current model using length |ỹ| − 1, the first
term is the hinge loss, and the second term is
to avoid instable results in case that minimizing
log pθ(ỹ

∗|x, s) dominates the training. Regular-
izing self-reconstruction and cycle-reconstruction
follows the same procedure.

3.4 Iterative Decoding
Iterative decoding is based on the Conditional
Masked Language Model (CMLM) (Ghazvinine-
jad et al., 2019). CMLM masks a subsequence of
a given target sequence and predicts this masked
subsequence conditioned on the remaining ob-
served tokens and the source input. In our task,
pθ(y|x, s) is reformulated as pθ(ymask|x, s, yobs) =∏
t∈ymask

pθ(yt|x, s, yobs), and the loss functions
Lself,Lcycle,Lkd,Rkd are also reformulated accord-
ingly. For instance, Lkd is reformulated as

LCMLM-kd = − log pθ(ỹmask|x, s, ỹobs) (7)

Other losses follow a similar reformulation.
During inference, we iteratively refine the predic-

tion by the mask-predict scheme (Ghazvininejad
et al., 2019). Given the target length T , let K de-
note the total number of iterations. In each iteration
k ∈ {0, . . . ,K − 1}, we obtain ykobs by masking
nk = bT · K−kK c tokens with the lowest probabil-
ities pk−1t in previous prediction yk−1, except for
k = 0 where all tokens are masked. The model
then repredicts the masked tokens and updates the
prediction and probabilities: for masked tokens,

ykt =argmax
w

pθ(yt = w|x, s, ykobs)

pkt =max
w

pθ(yt = w|x, s, ykobs)
(8)

while for unmasked ones, ykt = yk−1t , pkt = pk−1t .

4 Experiments

4.1 Setup
Dataset. The models are evaluated on the Yelp
dataset (Li et al., 2018) for sentiment transfer and
the GYAFC dataset (Rao and Tetreault, 2018) for
formality transfer. Yelp consists of business re-
views in a positive or negative style, and GYAFC
consists of sentences from Yahoo Answers in a for-
mal or informal style. See Appendix A for more
details.

Evaluation Metrics. The models are evaluated
on three aspects: transfer accuracy (TA), content
preservation (CP), and language fluency (LF). Both
automatic and human evaluation are employed. For
automatic evaluation, transfer accuracy is measured
by a pretrained style classifier; content preservation
is measured by the BLEU score between the model
outputs and the human references; and language
fluency is measured by the perplexity of model
outputs on a pretrained language model. For human
evaluation, we sample 100 test samples from both
datasets. Three human annotators are invited to
score each model output from 1 (worst) to 5 (best)
for each aspect. See Appendix B for more details.

Model Variants. The following model variants
are evaluated: BaseAR (the AR counterpart of
BaseNAR), BaseNAR, and variants empower-
ing BaseNAR with knowledge distillation (KD),
contrastive learning (CL), and iterative decoding
(ID), namely BaseNAR+KD, BaseNAR+CL, Base-
NAR+ID, BaseNAR+KD+CL, BaseNAR+KD+ID,
BaseNAR+CL+ID, and BaseNAR+KD+CL+ID.
See Appendix C for their implementation details2.

4.2 Results and Analysis
Table 1 and Table 2 show the automatic and hu-
man evaluation results of different models on Yelp
and GYAFC. For comparison, we also provide au-
tomatic evaluation results for two state-of-the-art
methods:

• DRL (Luo et al., 2019): a reinforcement learn-
ing framework which jointly trains the source-
to-target and the target-to-source transfer mod-
els as a dual task. The framework is optimized
by a style reward and a content reward to-
gether with the pseudo-parallel data created
through back-translation.

2We will release our code soon at https://github.
com/sunlight-ym/nar_style_transfer.

https://github.com/sunlight-ym/nar_style_transfer
https://github.com/sunlight-ym/nar_style_transfer
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Model DI ACC ↑ | TA ↑ BLEU ↑ | CP ↑ PPL ↓ | LF ↑

DRL (Luo et al., 2019) O(T ) 89.0 | - 55.2 | - 48.6 | -
SR (Zhou et al., 2020) O(T ) 87.6 | - 60.4 | - 44.8 | -

BaseAR O(T ) 89.7 | 4.0 54.0 | 4.2 46.2 | 4.1 †

BaseNAR O(1) 90.5 | 4.0 53.1 | 4.1 61.0 | 3.5
BaseNAR+KD O(1) 89.1 | 3.9 56.7 | 4.1 53.1 | 3.6 †
BaseNAR+CL O(1) 90.2 | 4.0 54.9 | 4.2 57.2 | 3.6 †
BaseNAR+ID O(K) 89.3 | 4.0 53.2 | 4.0 55.9 | 3.7 †
BaseNAR+KD+CL O(1) 90.9 | 4.1 57.2 | 4.3 † 50.3 | 3.9 †
BaseNAR+KD+ID O(K) 91.3 | 4.1 57.1 | 4.3 † 51.9 | 3.9 †
BaseNAR+CL+ID O(K) 89.8 | 4.0 55.3 | 4.3 † 53.6 | 4.0 †
BaseNAR+KD+CL+ID O(K) 91.4 | 4.1 57.7 | 4.3 † 48.9 | 4.0 †

Table 1: Automatic and human evaluation results on Yelp. The left side of “|” is the automatic evaluation result
and the right side is the human evaluation result. K = 4 in our experienments. DI: decoding iterations. †: result
significantly better than BaseNAR with p-value < 0.1 for both automatic and human evaluation.

DI ACC ↑ | TA ↑ BLEU ↑ | CP ↑ PPL ↓ | LF ↑

DRL (Luo et al., 2019) O(T ) 73.1 | - 41.9 | - 86.8 | -
SR (Zhou et al., 2020) O(T ) 72.4 | - 46.0 | - 48.9 | -

BaseAR O(T ) 73.9 | 3.7 † 45.5 | 4.1 † 50.0 | 4.0 †

BaseNAR O(1) 67.7 | 3.1 43.8 | 3.8 65.7 | 3.3
BaseNAR+KD O(1) 68.9 | 3.4 † 47.6 | 4.2 † 59.8 | 3.7 †
BaseNAR+CL O(1) 67.3 | 3.2 43.9 | 3.9 64.8 | 3.4
BaseNAR+ID O(K) 66.1 | 2.9 45.3 | 4.0 † 64.9 | 3.6
BaseNAR+KD+CL O(1) 69.4 | 3.5 † 47.2 | 4.3 † 57.8 | 3.9 †
BaseNAR+KD+ID O(K) 70.2 | 3.5 † 47.6 | 4.1 † 59.7 | 3.7 †
BaseNAR+CL+ID O(K) 66.7 | 2.8 45.4 | 4.2 † 61.3 | 3.7 †
BaseNAR+KD+CL+ID O(K) 71.4 | 3.6 † 47.5 | 4.3 † 57.6 | 3.9 †

Table 2: Automatic and human evaluation results on GYAFC. The left side of “|” is the automatic evaluation result
and the right side is the human evaluation result. K = 4 in our experienments. DI: decoding iterations. †: result
significantly better than BaseNAR with p-value < 0.1 for both automatic and human evaluation.

• SR (Zhou et al., 2020): a sequence-to-
sequence model which predicts the output
words as well as their relevance to the target
style. The word relevance is further utilized to
ensure style relevance consistency and content
preservation.

On all metrics, BaseAR has comparable perfor-
mance with the two methods thus serves as a de-
cent baseline to evaluate the NAR models3. For our
NAR variants, we have the following observations:

First, compared with BaseAR, BaseNAR has
a clear disadvantage towards language fluency on
Yelp and all metrics on GYAFC, proving that the re-
moved conditional dependencies do degrade model
performance.

Second, knowledge distillation can provide a
significant improvement over BaseNAR in cases

3For the two baselines, we conduct the evaluation on the
transferred outputs provided by the original papers. Since
we independently train our own style classifier to justify the
transfer accuracy, the ACC values in Table 1 and Table 2 for
the baselines can be different from the results in their papers.

where BaseNAR underperforms BaseAR by a large
margin. In particular, on GYAFC which has longer
sentences and larger variance but fewer training
samples, the relationships among output tokens
becomes harder to be inferred, making BaseNAR
inferior to BaseAR on all metrics. In this situation,
the pseudo-parallel data distilled from an AR model
provide considerable complementary knowledge
to BaseNAR. Thus the gap between BaseNAR and
BaseAR is clearly narrowed. In contrast, on aspects
where BaseNAR and BaseAR have limited perfor-
mance gap, most of the knowledge distilled from
an AR model can be already captured by BaseNAR
and thus less helpful.

Third, contrastive learning can generally lead
to a small improvement on all metrics. While the
improvement is quite limited compared with knowl-
edge distillation and can be neglectable especially
for automatic evaluation, the benefits turn to be
more visible when utilized together with knowl-
edge distillation.
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Yelp: positive→ negative GYAFC: formal→ informal

Input they were extremely friendly and reasonably priced . that is if you truly adore them .

BaseAR they were extremely rude and flavorless . that s if u realy luv them
BaseNAR they were extremely rude over priced . that is u realy adore them
BaseNAR+KD they were extremely rude and flavorless . that s if u truly luv them
BaseNAR+CL they were extremely rude over priced . that s if you realy adore them :p
BaseNAR+ID they were extremely over priced . that is if you truly adore them
BaseNAR+KD+CL they were extremely rude and flavorless . that s if u truly luv them
BaseNAR+KD+ID they were extremely rude and flavorless . that s if u truly them
BaseNAR+CL+ID they were extremely rude and over priced . that is if you truly adore them
BaseNAR+KD+CL+ID they were extremely rude and flavorless . that s if u truly luv them

Table 3: Ouputs of different models on exemplary sentences from Yelp and GYAFC.

Fourth, iterative decoding mainly improves lan-
guage fluency. However, it can degrade the transfer
accuracy on GYAFC. An explanation is that, as the
model’s prediction also relies on the partial out-
puts in addition to the source words and target style
under iterative decoding, the dependency on the
target style is harder to be captured with more con-
ditioned variables. Furthermore, since the masked
tokens are selected based on their probabilities,
the correctly predicted tokens (which reflect the
target style) can be re-masked due to lower prob-
abilities compared with tokens in other positions.
Fortunately, the degradation will diminish when
knowledge distillation is used.

Table 3 demonstrates the qualitative results for
different model variants on samples from Yelp and
GYAFC. BaseNAR suffers from the word omis-
sion problem, i.e., omitting “and” for the Yelp sam-
ple and “if” for the GYAFC sample. This prob-
lem can hurt content preservation and language
fluency. Further, BaseNAR makes limited changes
in producing an informal sequence on GYAFC, ex-
plaining its lower transfer accuracy in Table 1 and
Table 2. Variants with knowledge distillation can
produce results closer to BaseAR. Variants with
iterative decoding can generate more fluent results
but can do worse in transfer accuracy (e.g., Base-
NAR+ID only removes the ending punctuation for
the GYAFC sample). Using contrastive learning
only brings marginal improvement, e.g., only tack-
ling the word omission on GYAFC but not on Yelp.
However, using contrastive learning together with
knowledge distillation can generally lead to better
results. See Appendix D for more examples.

To summarize, the gap between AR and NAR
decoding can be clearly narrowed when the NAR
model is enhanced by knowledge distillation, con-
trastive learning, and optional iterative decoding

(without iterative decoding, the model has no signif-
icant performance difference but is more efficient).

4.3 Discussions

Our work differs from other NAR works by explor-
ing NAR in an unsupervised TST task. Knowledge
distillation mainly solves the multimodality prob-
lem in the supervised NMT domain while alleviates
the problem of lacking ground-truth for training in
TST. Iterative decoding is very effective in NMT
while has limited help and leads to reduced transfer
accuracy in TST. Without ground-truth, the NAR
model in TST has more word omission problems,
instead of word repetition problems in NMT. The
contrastive learning loss, which is not studied in
NAR for other tasks, thus is introduced to penalize
high log-probability of outputs with word omis-
sion. We expect the contrastive learning loss can
be adapted to reduce the word repetition problems
in other tasks.

5 Conclusion

In this paper, we propose NAR decoding for un-
supervised text style transfer to pursue faster in-
ference. On top of a base model, we explore how
knowledge distillation, contrastive learning, and
iterative decoding can narrow the performance gap
towards AR decoding.
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A Dataset Details

For both Yelp and GYAFC, we use the same
train/dev/test split as in our state-of-the-art base-
lines (Luo et al., 2019; Zhou et al., 2020). In par-
ticular, for the GYAFC dataset, we use the data
in Family & Relationship domain and ignore the
available alignment information in the corpus to
target at unsupervised text style transfer. Table 4
present the statistics of the Yelp dataset4 and the
GYAFC dataset5.

B Evaluation Details

B.1 Automatic Evaluation

Transfer Accuracy. The pretrained style classi-
fier is learned on the training corpus of the text style
transfer task and follows the TextCNN (Kim, 2014)
architecture. The accuracy of the classifier on the

4https://github.com/lijuncen/
Sentiment-and-Style-Transfer/tree/
master/data/yelp

5https://github.com/raosudha89/
GYAFC-corpus

Dataset Style Train Dev Test

Yelp positive 270K 2000 500
negative 180K 2000 500

GYAFC formal 51K 2247 500
informal 51K 2788 500

Table 4: Dataset statistics.

test set is 97.8% on Yelp and 88.2% on GYAFC,
respectively. A transferred result is regarded as
accurate if the pretrained classifier predicts it as
having the target style during transfer.

Content Preservation. For the Yelp dataset,
we use the extended human references provided
by Luo et al. (2019). For the GYAFC dataset,
we use the human references from the original pa-
per (Rao and Tetreault, 2018). As a result, each test
sample is associated with four human references
on both datasets. The BLEU score is calculated by
the multi-bleu.perl6 script.

Language Fluency. The pretrained language
model is learned on all text sequences from the
training corpus of the text style transfer task and
adopts the Gated Recurrent Units (GRU) (Cho
et al., 2014) architecture with a single layer and
512 hidden units.

B.2 Human Evaluation

For each test sample, an annotator is provided with
the source input, the target style, and the trans-
ferred outputs from all compared models as in Li
et al. (2018). The transferred outputs are shuffled
for different test samples so that the annotator is
unaware of the source model for these outputs.

The annotators are trained by exemplar annota-
tion provided by the authors before evaluation. The
final Fleiss’ kappa score is 0.79 on Yelp and 0.77
on GYAFC.

C Implementation Details

C.1 Model Architecture

All the NAR models adopt the same Trans-
former based encoder-decoder architecture, and
the BaseAR model only differs from the NAR mod-
els by the following three differences discussed in
Section 3.1.

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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• The NAR model discards the autoregressive
mask in the self-attention layer. Since the
NAR model removes the conditional depen-
dency among the output tokens, the causal
mask where the position t can only attend to
positions 1 . . . t− 1 is no longer needed. Fol-
lowing Gu et al. (2018), we set the masks to
prevent a position from attending to itself.

• The NAR model incorporates a positional-
attention layer in the decoder, which has been
shown to facilitate local reordering in decod-
ing (Gu et al., 2018). The positional-attention
layer, placed between the self-attention layer
and the inter-attention layer, takes the posi-
tion embeddings as queries and keys while
the decoder states as values.

• The NAR model uniformly maps the source
words as the decoder input to enrich the in-
formation on the decoder side. Specifically,
position t in the decoder input takes the word
embedding of the source token in position
i = round(TxTy · t), where Tx and Ty denote
the lengths of source input and target output,
respectively.

Both the encoder and the decoder use a Trans-
former structure with dmodel = dhidden = 128,
nhead = 4, nlayer = 2. Following existing
works (Lample et al., 2019), the target style is
treated as a special start token in decoder. Both
the style classifier for automatic evaluation and the
pretrained pψ in the style compatibility loss follow
the TextCNN (Kim, 2014) architecture but are inde-
pendently trained. To backpropagate the gradients
from pψ to θ, we approximate y in Eq. 4 with the
softmax distribution sequence from which y should
be sampled.

C.2 Hyper-parameters
We tune the hyper-parameters on the development
set. As a result, the balancing weight α is set to 0.1,
the number of iterations K in iterative decoding is
set to 4, and the margin η in contrastive learning is
set to 1.

We implement all models using PyTorch and
conduct the experiments on a single Nvidia’s GTX
1080Ti GPU. Each model is trained for 100,000
iterations with a batch size of 64 on Yelp and 32
on GYAFC. The Adam algorithm (Kingma and
Ba, 2015) with a learning rate of 0.001 is used for
optimization.

C.3 Technical Details

Target Length. During inference, the target
length needs to be provided in advance. Models
in NMT usually train a target length predictor dur-
ing training with the available ground-truth outputs.
However, this strategy cannot be adapted to our
unsupervised task. Fortunately, on both the senti-
ment transfer task and the formality transfer task,
the desired transferred result only involves local
changes towards the source text thus has a similar
length with the source length. Therefore, motivated
by Wang et al. (2019), we generate a transferred
result for each T ∈ [Tx − B, Tx + B], where Tx
denotes the length of the source input. As a result,
we obtain 2B + 1 candidates and select the candi-
date with the highest log-probability (assigned by
the decoder) as the final result. In our experiments,
we set B to 2.

Knowledge Distillation. For models with
knowledge distillation, i.e., BaseNAR+KD,
BaseNAR+KD+CL, BaseNAR+KD+ID, Base-
NAR+KD+CL+ID, we eliminate the self-
reconstruction loss and the cycle-reconstruction
loss from the full loss, as preliminary experiments
demonstrate there is no performance degradation
with this elimination. The reason should be that,
knowledge distillation can provide more reliable
and direct gradients to the model, leaving the
weak supervision from self-reconstruction and
cycle-reconstruction as redundant information.

Contrastive Learning. For models with
contrastive learning, i.e., BaseNAR+CL, Base-
NAR+KD+CL, BaseNAR+CL+ID, Base-
NAR+KD+CL+ID, the contrastive learning based
regularization will only be involved for the last
30% training iterations. Consistent with previous
contrastive learning works, earlier involvement of
the regularization may lead to unstable training
and cannot bring performance improvement.
As discussed in Section 3.3, the contrastive
learning based regularization can be paired with
self-reconstruction, cycle-reconstruction, and
knowledge distillation. However, based on our
preliminary experiments, (1) when knowledge
distillation is used, we only pair this regulariza-
tion with knowledge distillation, and (2) when
knowledge distillation is not used (thus we cannot
use Rkd), we only pair this regularization with
cycle-reconstruction, as more sophisticated setting
cannot bring further improvement.
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Iterative Decoding. For models with iterative
decoding, i.e., BaseNAR+ID, BaseNAR+KD+ID,
BaseNAR+CL+ID, BaseNAR+KD+CL+ID, all
losses except the style compatibility loss will be
reformulated to fit the CMLM scheme. During
training, we randomly mask n (0 ≤ n ≤ T ) tokens
for a target sequence with length T and then opti-
mize the model by predicting these masked tokens.
One problem here is that, for the style compatibil-
ity loss, we need to generate an output y, however,
there is not partial target sequence to utilize. We
have considered two strategies: one strategy is to
assume all tokens are masked; and the other strat-
egy is that we first go through an inference stage to
get an output ŷ, then randomly mask and repredict
n tokens in ŷ, and the repredicted tokens and the
unmasked tokens are mixed as the input y for the
style classifier. Our preliminary experiments show
that the second strategy can always achieve much
better results, so we stick to this strategy when
iterative decoding is used.

D Addtional Qualitative Results

Table 5 and Table 6 present addtional qualitative
results on Yelp and GYAFC, respectively.
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positive→ negative

Input the prices were the best and worth it .

BaseAR the prices were the only good and worth it .
BaseNAR the prices were the worst worth it .
BaseNAR+KD the prices were the only and not worth it .
BaseNAR+CL the prices were the worst worth it .
BaseNAR+ID the prices were not worth it .
BaseNAR+KD+CL the prices were the worst and not worth it .
BaseNAR+KD+ID the prices were the worst and not worth it .
BaseNAR+CL+ID the prices were the worst and not worth it .
BaseNAR+KD+CL+ID the prices were the worst and not worth it .

Input this place has been making great sushi and sashimi for years .

BaseAR this place has been making @num mins for years .
BaseNAR this place has been making bad and sashimi for years .
BaseNAR+KD this place has been making bad sushi and sashimi for @num years .
BaseNAR+CL this place has been making bad sushi and sashimi for years .
BaseNAR+ID this place has been making horrible sushi for years .
BaseNAR+KD+CL this place has been making bad sushi and sashimi for years .
BaseNAR+KD+ID this place has been making bad sushi and sashimi for years .
BaseNAR+CL+ID this place has been making horrible sushi and sashimi for years .
BaseNAR+KD+CL+ID this place has been making bad sushi and sashimi for years .

negative→ positive

Input this branch is getting worse and worse .

BaseAR this branch is getting better and better .
BaseNAR this branch is getting and incredible .
BaseNAR+KD this branch is getting better and better .
BaseNAR+CL this branch is getting and better .
BaseNAR+ID this branch is getting exceptional .
BaseNAR+KD+CL this branch is getting better and better .
BaseNAR+KD+ID this branch is getting better and better .
BaseNAR+CL+ID this branch is getting better .
BaseNAR+KD+CL+ID this branch is getting better and better .

Input this is the worst panda express location there is !

BaseAR this is the best panda express location there is !
BaseNAR this is the best panda location there is !
BaseNAR+KD this is the best panda express location there is !
BaseNAR+CL this is the best panda express location there is !
BaseNAR+ID this is the best panda express location is there !
BaseNAR+KD+CL this is the best panda express location there is !
BaseNAR+KD+ID this is the best panda express location there is !
BaseNAR+CL+ID this is the best panda express location there is !
BaseNAR+KD+CL+ID this is the best panda express location there is !

Table 5: Ouputs of different models on exemplary sentences from YELP.
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informal→ formal

Input yes i m not one of those people but i know there are lots of them

BaseAR yes , i am not one of those people but i know there are lots of them .
BaseNAR yes i am not one of those people but i know there are lots of .
BaseNAR+KD yes , i am not one of those people but i know there are lots of them .
BaseNAR+CL yes i am not one of those people but i know there are lots of "
BaseNAR+ID yes i am not one of those people but i know there are lots .
BaseNAR+KD+CL yes , i am not one of those people but i know there are lots of them .
BaseNAR+KD+ID yes , i am not one of those people but i know there are lots of them .
BaseNAR+CL+ID yes i am not one of those people but i know there are lots of them .
BaseNAR+KD+CL+ID yes , i am not one of those people but i know there are lots of them .

Input no u should nt leave them ... just teach them what to do to please u better ...

BaseAR no , you should not leave them . just teach them what to do . please you better .
BaseNAR no you should not leave them ... just teach what to do to please you better .
BaseNAR+KD no , you should not them . just teach them what to do to please you better .
BaseNAR+CL no you should not leave them " just teach what to do to please you better "
BaseNAR+ID no " should not leave them " just teach them what to do to please " better ... "
BaseNAR+KD+CL no , you should not leave them . just teach them what to do to please you better .
BaseNAR+KD+ID no , you should not leave them . just teach them what to do to please you better .
BaseNAR+CL+ID no " should not leave them " just teach them what to do " please "
BaseNAR+KD+CL+ID no , you should not leave them . just teach them what to do to please you better .

formal→ informal

Input you should find someone who does not hate you .

BaseAR u should find someone who does nt hate you .
BaseNAR you should find someone who does nt hate you .
BaseNAR+KD u should find someone who does nt hate u
BaseNAR+CL u should find someone who does nt hate you .
BaseNAR+ID you should find someone who does nt hate you .
BaseNAR+KD+CL u should find someone who does nt hate u .
BaseNAR+KD+ID u should find someone who does nt hate u
BaseNAR+CL+ID you should find someone who does nt hate you .
BaseNAR+KD+CL+ID u should find someone who does nt hate u .

Input do not allow her to dominate your life for she will simply have to learn to deal with it .

BaseAR do nt allow her to dominate your life for your life she will jus have to learn to deal with it .
BaseNAR do nt allow her to ur life for she will dont have to learn deal with it .
BaseNAR+KD do nt allow her to dominate your life for she will jus have to learn to deal with it
BaseNAR+CL do nt allow her to dominate ur life for she dont have to learn to deal with it .
BaseNAR+ID do nt allow her to dominate your life for she will definately have to learn to deal with it :p
BaseNAR+KD+CL do nt allow her to dominate your life for she will jus have to learn to deal with it
BaseNAR+KD+ID do nt allow her to dominate your life for she will jus have to learn to deal with it .
BaseNAR+CL+ID do nt allow her to dominate your life for she will definately have to learn to deal with it :p
BaseNAR+KD+CL+ID do nt allow her to dominate ur life for she will jus have to learn to deal with it

Table 6: Ouputs of different models on exemplary sentences from GYAFC.


