
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9174–9179
November 7–11, 2021. c©2021 Association for Computational Linguistics

9174

An Empirical Study on Leveraging Position Embeddings for
Target-oriented Opinion Words Extraction

Samuel Mensah
Computer Science Department

University of Sheffield, UK
s.mensah@sheffield.ac.uk

Kai Sun
BDBC and SKLSDE

Beihang University, China
sunkai@buaa.edu.cn

Nikolaos Aletras
Computer Science Department

University of Sheffield, UK
n.aletras@sheffield.ac.uk

Abstract

Target-oriented opinion words extraction
(TOWE) (Fan et al., 2019b) is a new subtask
of target-oriented sentiment analysis that aims
to extract opinion words for a given aspect in
text. Current state-of-the-art methods leverage
position embeddings to capture the relative
position of a word to the target. However,
the performance of these methods depends
on the ability to incorporate this information
into word representations. In this paper, we
explore a variety of text encoders based on
pretrained word embeddings or language
models that leverage part-of-speech and
position embeddings, aiming to examine the
actual contribution of each component in
TOWE. We also adapt a graph convolutional
network (GCN) to enhance word representa-
tions by incorporating syntactic information.
Our experimental results demonstrate that
BiLSTM-based models can effectively encode
position information into word representations
while using a GCN only achieves marginal
gains. Interestingly, our simple methods
outperform several state-of-the-art complex
neural structures.

1 Introduction

Target-oriented opinion words extraction (TOWE)
(Fan et al., 2019b) is a fine-grained task of target-
oriented sentiment analysis (Liu, 2012) aiming to
extract opinion words with respect to an opinion
target (or aspect) in text. Given the sentence “The
food is good but the service is extremely slow”,
TOWE attempts to identify the opinion words

“good” and “extremely slow” corresponding respec-
tively to the targets “food” and “service”. TOWE
is usually treated as a sequence labeling problem
using the BIO tagging scheme (Ramshaw and Mar-
cus, 1999) to distinguish the Beginning, Inside and
Outside of a span of opinion words. Table 1 shows
an example of applying the BIO tagging scheme
for TOWE.

Sentence:
The food is good but the service is extremely slow.
True Labels for target ‘food’:
The/O food/O is/O good/B but/O the/O service/O
is/O extremely/O slow/O.
True Labels for target ‘service’:
The/O food/O is/O good/O but/O the/O service/O
is/O extremely/B slow/I.
TOWE Extraction Results:
{(food, good), (service, extremely slow)}

Table 1: Identifying target-oriented opinion words in a
sentence. Underlined words are opinion targets. Spans
tagged B and I are considered as opinion words.

Learning effective word representations is a crit-
ical step towards tackling TOWE. Traditional work
(Zhuang et al., 2006a; Hu and Liu, 2004a; Qiu et al.,
2011) has used hand-crafted features to represent
words which do not often generalize easily. More
recent work (Liu et al., 2015; Fan et al., 2019b;
Wu et al., 2020a; Veyseh et al., 2020) has explored
neural networks to learn word representations auto-
matically.

Previous neural-based methods (Liu et al., 2015;
Fan et al., 2019b) has used word embeddings (Col-
lobert and Weston, 2008; Mikolov et al., 2013; Pen-
nington et al., 2014) to represent the input. How-
ever, TOWE is a complex task that requires a model
to know the relative position of each word to the
aspect in text. Words that are relatively closer to
the target usually express the sentiment towards
that aspect (Zhou et al., 2020).

Fan et al. (2019b) employ Long Short-Term
Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) to encode the target position
information in word embeddings. Wu et al. (2020a)
transfer latent opinion knowledge into a Bidirec-
tional LSTM (BiLSTM) network that leverages
word and position embeddings (Zeng et al., 2014).
Recently, Veyseh et al. (2020) have proposed ONG,
a method that combines BERT (Bidirectional En-
coder Representations from Transformers) (De-
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vlin et al., 2018), position embeddings, Ordered
Neurons LSTM (ON-LSTM) (Shen et al., 2018),1

and a graph convolutional network (GCN) (Kipf
and Welling, 2016) to introduce syntactic informa-
tion into word representations. While this model
achieves state-of-the-art results, previous studies
have shown that the ON-LSTM does not actually
perform much better than LSTMs in recovering
latent tree structures (Dyer et al., 2019). Besides,
ON-LSTMs perform worse than LSTMs in cap-
turing short-term dependencies (Shen et al., 2018).
Since opinion words are usually close to targets
in text, ON-LSTM risks missing the relationship
between the aspect and any information (e.g. posi-
tion) relating to the opinion words.

In this paper, we empirically evaluate a battery
of popular text encoders which apart from words,
take positional and part-of-speech information into
account. Surprisingly, we show that methods based
on BiLSTMs can effectively leverage position em-
beddings to achieve competitive if not better re-
sults than more complex methods such as ONG on
standard TOWE datasets. Interestingly, combin-
ing a BiLSTM encoder with a GCN to explicitly
capture syntactic information achieves only minor
gains. This empirically highlights that BiLSTM-
based methods have an inductive bias appropriate
for the TOWE task, making a GCN less important.

2 Methodology

Given sentence s = {w1, . . . , wn} with aspect
wt ∈ s, our approach consists of a text encoder
that takes as input a combination of words, part-
of-speech and position information for TOWE. We
further explore enhancing text encoding by incor-
porating information from a syntactic parse of the
sentence through a GCN encoder.

2.1 Input Representation

Word Embeddings: We experiment with Glove
word vectors (Pennington et al., 2014) as well as
BERT-based representations, extracted from the
last layer of a BERT base model (Devlin et al.,
2018) fine-tuned on TOWE.

Position Embeddings (POSN): We compute
the relative distance di from wi to wt (i.e., di =
i− t), and lookup their embedding in a randomly
initialized position embedding table.

1An LSTM variant with an inductive bias toward learning
latent tree structures in sequences.

Par-of-Speech Tag Embeddings (POST): We
assign part-of-speech tags to each word token using
the Stanford parser,2 and lookup their embedding
in a randomly initialized POST embedding table.

Combined Input: We consider two types of in-
put representations:

1. Glove Input (G): Constructed from concate-
nating Glove word embeddings, POST and
POSN embeddings for each token.

2. BERT Input (B): Constructed from concate-
nating BERT vectors with POSN embeddings
for each word token following a similar ap-
proach as (Veyseh et al., 2020).3 We ignore
POST embeddings since BERT is efficient
in modeling such information (Tenney et al.,
2019).

2.2 Text Encoders

We experiment with the following neural encoders
that take word vector representations as input:

CNN: A single layer convolutional neural net-
work (LeCun et al., 1990). Given a word wi ∈ s,
the CNN takes a fixed window of words around it
and applies a filter on their representation to extract
a feature vector for wi. We concatenate the feature
vectors corresponding to different filters for wi to
compute word representations.

Transformer: A Transformer encoder (Vaswani
et al., 2017) that takes a linear transformation of the
input words to learn contextualized representations.

BiLSTM: A bi-directional LSTM that takes the
input representation and models the context in a
forward and backward direction.

ON-LSTM: A variant of the LSTM neural net-
work proposed by (Shen et al., 2018) which has an
inductive bias toward learning latent tree structures.

2.3 GCN Encoder

First, we interpret the syntactic parse tree as an
adjacency binary matrix An×n (n is the sentence
length) with entries Aij = 1 if there is a connec-
tion between nodes i and j, and Aij = 0 otherwise.
To apply a GCN on A, we consider the tree with
self-loops at each node (i.e., Aii = 1), ensuring

2https://stanfordnlp.github.io/CoreNLP/
3Early experimentation with RoBERTa (Liu et al., 2019)

yielded lower performance.
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nodes are informed by their corresponding repre-
sentations at previous layers. Formally, let H(k) be
the output at the k-th GCN layer, H(k) is given by:

H(k) = ReLU(AH(k−1)W (k)) +H(k−1) (1)

where k = 1, . . . ,K, W (k) is a parameter matrix at
layer k. RELU is used as the activation function.
H(0) corresponds to the set of word representations
extracted by the text encoder. The second term in
(1) induces a residual connection that retains the
contextual information of H(0) during the propaga-
tion process (Sun et al., 2020).

2.4 Classification and Optimization
Our model uses the representation H(l) (where
l ≥ 0), applies a linear layer and then normalize
it with a softmax function to output a probability
distribution over the set {B,I,O} for each word in
the input. During training, we minimize the cross-
entropy function for each word in text for the entire
training set.

3 Experiments and Results

3.1 Baselines
We compare our methods with Distance-rule (Hu
and Liu, 2004b); Dependency-rule (Zhuang et al.,
2006b); LSTMword and BiLSTMword (Liu et al.,
2015); Pipeline (Fan et al., 2019b); TC-BiLSTM
(Fan et al., 2019b); IOG (Fan et al., 2019b); LOTN
(Wu et al., 2020a); and ONG (Veyseh et al., 2020).4

3.2 Data
Following (Wu et al., 2020b), we use four bench-
mark datasets including restaurant (Res14, Res15,
Res16) and laptop (Lap14) reviews from Se-
meval (Pontiki et al., 2014, 2015, 2016). We use the
preprocessed data provided by Fan et al. (2019a).
Table 2 shows the dataset statistics.

3.3 Implementation Details
Hyper-parameters are tuned on 20% of samples
randomly selected from the train set since there is
no development set.5 We use the Adam optimizer

4Note that LSTMword/BiLSTMword only use word embed-
dings as input.

5We use 300-dim Glove word vectors (Pennington et al.,
2014) and apply a dropout of 0.8. Dimensions of part-of-
speech and position embeddings are set to 30, but dimensions
of position embeddings for pretrained models are set to 100.
The CNN uses three filters with sizes 3, 4 and 5 and has a
hidden dimension of 300. All other models have a hidden

Dataset #Sent. #ASL #AT #OT #D.Dist. #S.Dist.
Lap14 (Train) 1151 20.78 1632 1877 2.40 4.25
Lap14 (Test) 343 17.33 482 567 2.03 4.00
Res14 (Train) 1625 19.11 2636 3057 2.11 3.68
Res14 (Test) 500 19.22 862 1028 2.01 3.97
Rest15 (Train) 754 16.50 1076 1277 1.97 3.62
Rest15 (Test) 325 17.47 436 493 2.13 3.53
Rest16 (Train) 1079 16.78 1512 1770 2.01 3.59
Rest16 (Test) 328 16.54 456 524 1.93 3.43

Table 2: Dataset Statistics. No. of sentences (#Sent),
Avg. sentence length (#ASL), No. of aspect terms
(#AT), No. of opinion words (#OT), Avg. depen-
dency distance (#D.Dist) and Avg. sequential distance
(#S.Dist) between aspect and opinion.

to train all models. Models that use Glove word
vectors are optimized with learning rate 1e−3 and
trained for 100 epochs with batch size 16. Models
that use BERT hidden vectors are optimized with
learning rate 1e−5 and trained with batch size 6.
Our source code is publicly available.6

3.4 Performance Comparison

Table 3 presents the results of all methods. Our
models that use Glove Input (or BERT Input) are
appended with “G”(or “B”) to distinguish them.
We report precision (Prec), recall (Rec), F1 score
and average F1 score (Avg.F1) across all datasets.

Comparison of Text Encoders: We first ob-
serve that CNN(G) is adept at exploiting the
information from simpler word representations
(Glove), outperforming the Transformer(G) by
+4.52 Avg.F1. We believe that this behavior is
due to the fact that TOWE is a short-sequence task
(see #ASL in Table 2). This assumption lies well
with previous observations by (Yin et al., 2021),
which found that CNNs often perform better than
Transformers at short-sequence tasks. However,
the Transformer(B) is able to improve performance
and even outperform CNN(B) by +0.71 Avg.F1 by
using BERT.

In addition, we find that ON-LSTM(G) and
ON-LSTM(B) lag behind BiLSTM(G) and BiL-
STM(B) by 4.33 and 0.54 Avg.F1 respectively. ON-
LSTM performs worse than LSTMs on tasks that
require tracking short-term dependencies (Shen
et al., 2018). Since opinion words are usually close
to the target in the sequence (see #ASL vrs. #S.Dist.
in Table 2), tracking short-term dependency infor-
mation is important in TOWE. This explains why

dimension of 200. The number of GCN layers is set over
K ∈ {1, . . . , 5}. Experiments are performed on NVIDIA
Tesla V100.

6https://github.com/samensah/Encoders_
TOWE_EMNLP2021

https://github.com/samensah/Encoders_TOWE_EMNLP2021
https://github.com/samensah/Encoders_TOWE_EMNLP2021
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Lap14 Res14 Res15 Res16
Model Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Avg.F1
Distance-rule 50.13 33.86 40.42 58.39 43.59 49.92 54.12 39.96 45.97 61.90 44.57 51.83 47.04
Dependency-rule 45.09 31.57 37.14 64.57 52.72 58.04 65.49 48.88 55.98 76.03 56.19 64.62 53.95
LSTMword 55.71 57.53 56.52 52.64 65.47 58.34 57.27 60.69 58.93 62.46 68.72 65.33 59.78
BiLSTMword 64.52 61.45 62.71 58.34 61.73 59.95 60.46 63.65 62.00 68.68 70.51 69.57 63.56
Pipeline 72.58 56.97 63.83 77.72 62.33 69.18 74.75 60.65 66.97 81.46 67.81 74.01 68.50
TC-BiLSTM 62.45 60.14 61.21 67.65 67.67 67.61 66.06 60.16 62.94 73.46 72.88 73.10 66.22
IOG 73.24 69.63 71.35 82.85 77.38 80.02 76.06 70.71 73.25 82.25 78.51 81.69 76.58
LOTN 77.08 67.62 72.02 84.00 80.52 82.21 76.61 70.29 73.29 86.57 80.89 83.62 77.79
ONG 73.87 77.78 75.77 83.23 81.46 82.33 76.63 81.14 78.81 87.72 84.38 86.01 80.73
Glove Input
Transformer(G) 68.33 61.91 64.91 71.77 70.29 70.98 78.90 59.07 67.41 83.59 70.57 76.49 69.94
CNN(G) 64.81 73.83 69.00 75.86 78.83 77.29 68.21 73.87 70.91 76.93 84.77 80.64 74.46
ON-LSTM(G) 69.27 69.70 69.47 83.01 76.98 79.87 76.19 74.24 75.20 84.17 82.90 83.52 77.02
BiLSTM(G) 76.49 70.94 73.59 86.22 83.44 84.80 81.49 77.93 79.66 88.96 84.05 87.36 81.35
Transformer+GCN(G) 66.32 70.83 68.45 82.98 75.14 78.82 76.80 69.45 72.88 84.71 79.92 82.25 75.60
CNN+GCN(G) 66.88 74.88 70.65 82.45 80.12 81.24 75.32 73.75 74.51 82.17 84.89 83.48 77.47
ON-LSTM+GCN(G) 71.63 74.04 72.75 87.06 80.97 83.90 80.18 77.53 78.83 89.89 83.97 86.82 80.58
BiLSTM+GCN(G) 76.49 74.46 75.46 87.60 83.66 85.57 82.32 78.82 80.52 91.63 85.65 88.52 82.52
BERT Input
Transformer(B) 78.88 78.03 78.13 83.97 84.40 84.18 82.37 78.21 80.22 88.22 84.05 86.06 82.14
CNN(B) 77.94 75.91 76.87 86.35 82.16 84.20 80.01 78.62 79.30 88.50 82.41 85.33 81.43
ON-LSTM(B) 77.96 77.53 77.71 85.58 83.25 84.39 82.57 78.34 80.38 87.76 83.55 86.54 82.26
BiLSTM(B) 78.38 78.27 78.25 86.38 84.82 85.60 82.17 78.78 80.41 89.94 84.16 86.94 82.80
Transformer+GCN(B) 79.38 77.04 78.19 85.43 84.18 84.79 82.21 79.55 80.84 89.34 84.16 86.66 82.62
CNN+GCN(B) 79.19 76.19 77.62 84.96 84.08 84.50 82.39 77.36 79.77 88.16 84.09 86.06 81.98
ON-LSTM+GCN(B) 80.33 76.01 77.96 85.68 84.03 84.83 82.14 78.18 80.07 89.35 83.93 86.54 82.35
BiLSTM+GCN(B) 79.72 78.06 78.82 86.45 85.06 85.74 83.37 77.93 80.54 88.98 85.80 87.35 83.11

Table 3: Results of experiments across baseline methods (across 5 runs). Results of compared models are retrieved
from (Veyseh et al., 2020). The best F1 performance is bold-typed.

Lap14 Res14 Res15 Res16
Model Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
BiLSTM+GCN(G) 76.49 74.46 75.46 87.60 83.66 85.57 82.32 78.82 80.52 91.63 85.65 88.52

— GCN 76.49 70.94 73.59 86.22 83.44 84.80 81.49 77.93 79.66 88.96 84.05 87.36
— GCN, POST 75.38 70.12 72.63 86.83 82.94 84.83 82.45 75.58 78.85 88.71 84.01 86.29
— GCN, POST, POSN 61.65 62.08 61.80 63.17 56.63 59.66 62.16 61.54 61.76 70.11 70.23 70.08

BiLSTM+GCN(B) 79.72 78.06 78.82 86.45 85.06 85.74 83.37 77.93 80.54 88.98 85.80 87.35
— GCN 78.38 78.27 78.25 86.38 84.82 85.60 82.17 78.78 80.41 89.94 84.16 86.94
— GCN, POSN 62.92 72.17 67.21 60.84 64.42 62.54 63.88 64.42 63.97 69.59 71.45 70.39

Table 4: Precision, Recall and F1 scores of ablated models on the benchmark datasets (across 5 runs).

BiLSTM(G)(or BiLSTM(B)) achieves a better per-
formance over ON-LSTM(G)(or ON-LSTM(B)).

The performance of BiLSTM(G) over
BiLSTMword suggests that the substantial boost
in performance comes from either part-of-speech
or position embeddings. We later perform an
ablation experiment to examine which informa-
tion is more useful. Interestingly, BiLSTM(G)
outperforms the current state-of-the-art ONG
by +0.62 Avg.F1 despite its simple architecture,
demonstrating the importance to first experiment
with simpler methods before designing more
complex structures.

Comparison of Text+GCN Encoders: Adding
a GCN over any text encoder generally improves
performance. This happens because the GCN
provides additional syntactic information that is
helpful for representation learning. We find that
BiLSTM+GCN(G) achieves few gains over BiL-
STM(G) while other text encoders including Trans-
former+GCN(G) and CNN+GCN(G) achieve rel-
atively higher gains than their counterparts. This

suggest that BiLSTM(G) has an inductive bias ap-
propriate for the TOWE task and the performance
mostly depends on the quality of the input rep-
resentation. We observe that when using BERT
embeddings, there is a minimal performance dif-
ference between using GCNs or not. We attribute
this to the expressiveness of BERT embeddings and
its ability to capture syntactic dependencies (Jawa-
har et al., 2019). Overall results suggest that our
proposed method outperforms SOTA consistently
across datasets.

3.5 Ablation Study

We perform ablation experiments on the two best
performing models, BiLSTM+GCN(G) and BiL-
STM+GCN(B), to study the contribution of their
different components. The results are shown in Ta-
ble 4. On BiLSTM+GCN(G), as we consecutively
remove the GCN and POST embeddings from the
input representation, we observe a slight drop in
performance. The results indicate that POST em-
beddings as well as the GCN are not critical compo-
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nents for BiLSTM+GCN(G). Therefore, they can
be ignored to reduce model complexity. However,
we observe a substantial drop in performance by
removing the position embedding from the input
representation, obtaining an F1 score equivalent
to BiLSTMword across datasets. Similarly, remov-
ing the position embeddings in BiLSTM+GCN(B)
causes a substantial drop in performance. The re-
sults suggest that leveraging position embeddings
is crucial for TOWE performance.

4 Conclusion

We presented through extensive experiments that
by employing a simple BiLSTM architecture that
uses input representations from pre-trained word
embeddings or language models, POST embed-
dings and position embeddings, we can obtain com-
petitive, if not better results than the more com-
plex current state-of-the-art methods Veyseh et al.
(2020). The BiLSTM succeeds in exploiting po-
sition embeddings to improve performance. By
adapting a GCN to incorporate syntactic informa-
tion from the sentence we achieve further gains.
In future work, we will explore how to improve
existing TOWE models by effectively leveraging
position embeddings.
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