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Abstract

Effective unimodal representation and com-
plementary crossmodal representation fusion
are both important in multimodal representa-
tion learning. Prior works often modulate
one modal feature to another straightforwardly
and thus, underutilizing both unimodal and
crossmodal representation refinements, which
incurs a bottleneck of performance improve-
ment. In this paper, Unimodal and Crossmodal
Refinement Network (UCRN) is proposed to
enhance both unimodal and crossmodal rep-
resentations. Specifically, to improve uni-
modal representations, a unimodal refinement
module is designed to refine modality-specific
learning via iteratively updating the distribu-
tion with transformer-based attention layers.
Self-quality improvement layers are followed
to generate the desired weighted representa-
tions progressively. Subsequently, those uni-
modal representations are projected into a
common latent space, regularized by a mul-
timodal Jensen-Shannon divergence loss for
better crossmodal refinement. Lastly, a cross-
modal refinement module is employed to inte-
grate all information. By hierarchical explo-
rations on unimodal, bimodal, and trimodal
interactions, UCRN is highly robust against
missing modality and noisy data. Experimen-
tal results on MOSI and MOSEI datasets illus-
trated that the proposed UCRN outperforms re-
cent state-of-the-art techniques and its robust-
ness is highly preferred in real multimodal se-
quence fusion scenarios. Codes will be shared
publicly1.

1 Introduction

Motivated by recent research achievements on
modality representations in language (Pennington
et al., 2014; Devlin et al., 2019; Brown et al., 2020),
audio (Degottex et al., 2014; Chen et al., 2018;
Li et al., 2019), and vision (He et al., 2016; Woo

1https://github.com/HW-AARC-CLUB/
emnlp2021_ucrn

et al., 2018; Li and Deng, 2020), multimodal learn-
ing (Baltrušaitis et al., 2018) that aims to efficiently
extract joint representations from multiple sensory
data, has drawn much attention recently. By mining
complementary relations across modalities, multi-
modal fusion could present a more reliable and
comprehensive interpretation of the world.

With the development of various network archi-
tectures, considerable progress has been achieved
in multimodal fusion (Williams et al., 2018; Tsai
et al., 2019; Mai et al., 2020; Zadeh et al., 2019),
showing that multimodal representation outper-
forms unimodal ones on emotion and sentiment
prediction tasks. Additionally, recent works seek
to improve the efficacy of the multimodal fusion
methods by assuming that one modality can be
translated to another (Tsai et al., 2019; Mai et al.,
2020), or modulated by pivot modality (Delbrouck
et al., 2020), so as to align pairwise representations
in a common space.

However, converting one modality to another
modality appears to be inadequate in projecting
all modalities into one feature space. A specific
pattern may not coexist in all modalities (e.g., it ex-
presses happiness in language/audio while showing
neutrality on facial expression). Also, the conver-
sion is usually followed by a downstream fusion
to produce the final fusion result. Therefore, the
downstream fusion may have already encompassed
it as a byproduct making conversion redundant in
terms of multimodal fusion tasks.

It has been frequently reported that lexical rep-
resentation is a stronger predictor than audio and
vision representations. Hence, (Delbrouck et al.,
2020) leverages language feature to modulate oth-
ers. As a result, it becomes the main contributor
towards multimodal fused representation. On the
contrary, through this process, those weak predic-
tors are prone to undermine the modality-common
representations. From this view, the strategy of
direct modality modulation or pairwise translation

https://github.com/HW-AARC-CLUB/emnlp2021_ucrn
https://github.com/HW-AARC-CLUB/emnlp2021_ucrn
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may jeopardize learning rich-fused representation
and lead to suboptimal results. Moreover, most
of those network architectures require all modal-
ities as input. As a result, the learned representa-
tions may perform poorly in the real world where
complete modalities might not always be simulta-
neously available (e.g., some specific modality is
missing or noisy). This may be because of over
fusing or losing sight of addressing the importance
of unimodal refinement.

Although the presence of multiple modalities
provides additional information, there are two key
challenges to be addressed when learning from mul-
timodal data: 1) models must learn the complex
intramodal and crossmodal interactions for predic-
tions, and 2) models must be robust to unexpected
missing or noisy modalities during testing.

To address the aforementioned problems, the
Unimodal and Crossmodal Refinement Network
(UCRN) is proposed, which takes both robust uni-
modal representation and efficient crossmodal rep-
resentation into consideration. Our hypotheses are
1) a robust unimodal representation is essential for
efficient multimodal fusion, 2) it is beneficial to re-
duce modality gaps before modality fusion, and 3)
stacks of attention-based mechanism can efficiently
select the most salient features within a representa-
tion, favoring robust representation learning.

Guided by the above hypotheses, the proposed
UCRN consists of the following sub-modules with
inputs of basic modality sequence representations:
1) a unimodal refinement module is proposed to
yield robust modality-specific representations; 2)
the robust unimodal representations are projected
to different latent spaces with the aims of reducing
representation gaps and 3) the latent spaces are con-
catenated to correlate modality-common features
and to produce robust multimodal representation.
The final predicted sequence label is the one with
the highest probability in the network output.

To recap, the contributions of this paper can be
summarized as follows:

• Unimodal and Crossmodal Refinement Net-
work (UCRN) is proposed to perform robust
and efficient multimodal representation learn-
ing;

• The unimodal representation refinement is
proposed for improving crossmodal fusion;

• The crossmodal refinement is explored to re-
duce modality gaps by progressively refining

and fusing the flexibly concatenated unimodal
representations;

• Experiments are conducted on widely studied
multimodal datasets. The results demonstrate
that, compared with recent state-of-the-art
(SOTA) works, the UCRN shows competitive
performances and strong robustness against
noisy and absent some unimodal inputs.

2 Related Work

2.1 Multimodal Sequence Learning
Multimodal sequence learning extracts the inter-
and isntra-dependencies of multimodal data and
uses complementary information to improve model
performance. Many methods captured the sequen-
tial information by taking the advantage of LSTM
(Hochreiter and Schmidhuber, 1997). (Zadeh
et al., 2018a) used a recurrent model for multi-
modal learning, where a dynamic memory module
was proposed for crossmodal interaction learning.
MARN (Zadeh et al., 2018b) learned multimodal
information by a hybrid LSTM component while
MV-LSTM (Rajagopalan et al., 2016) computed
representations for each modality inside a multi-
modal LSTM variant. Mu-Net (Shenoy and Sar-
dana, 2020) took context information into account
and adopted a recurrent model to learn the depen-
dency among speakers. However, LSTM is difficult
to train, and certain intermediate information may
cause interference or bring conflicts in fusion, thus
leading to unsatisfactory results.

To extract complementary information and to
perform multimodal sequence fusion, many meth-
ods have investigated the fusion strategies. Early
fusion performed fusion at the input level by simply
concatenating multimodal features (Morency et al.,
2011; Pérez-Rosas et al., 2013; Poria et al., 2016),
which did not model the intra-modality dynamics
efficiently because unimodal representations can
be complicated and are not easy to learn in the
whole model, as well as posing the potential of
overfitting. Late fusion approaches trained uni-
modal classifiers individually and made fusion by
voting (Wang et al., 2016; zad). Although this made
intra-dynamic modeling more effective, simply ap-
plying a weighted average might not produce the
best fusion results.

2.2 Translation-based Method
To better model the interactions among multimodal
sequences, translation-based methods (Tsai et al.,
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2019; Pham et al., 2019; Mai et al., 2020) as-
sumed that the representation of one modality can
be converted to another, thus minimizing the gap
between unimodal representations. For example,
MulT (Tsai et al., 2019) proposed a multimodal
transformer architecture that translated any two
modalities to the remaining one, then combined the
translated features for final fusion; MCTN (Pham
et al., 2019) leveraged an encoder-decoder structure
to convert one modality to another, as well as using
a cyclic consistency loss to produce better modal-
ity translation results. AGFN (Mai et al., 2020)
was proposed to learn a common embedding space
via translating a modality to a target one, which
takes adversarial training and graph-based fusion
mechanism for prediction. CIA (Chauhan et al.,
2019) implemented translation-based fusion on
contextual attention modeling, where crossmodal
auto-encoding was utilized to extract features.
Translation-based methods directly converted one
modality representation to another, which relied
upon much reference information from pairwise
modalities, imposing a limit on solving the modal-
ity missing issue.

2.3 Transformer and Self-attention

Transformer (Vaswani et al., 2017) is an effective
and strong network to conduct sequence model-
ing. Different from recurrence modeling, it shows
superiority in training and performance on many
tasks (Yu et al., 2019; Hu et al., 2020; Naseem
et al., 2020) based on attention mechanism. It trans-
forms one sequence to another with an encoder-
decoder structure, where the attention mechanism
weighs the input sequence to decide which part is
important at each step. By using Transformer en-
coding, TBJE (Delbrouck et al., 2020) proposed
monomodal and multimodal variants; yet, they
were not in a unified architecture, leading to a prob-
lem of model selection. Besides, the performance
degraded when modulating the added visual infor-
mation by language features, which was unsatisfac-
tory in terms of multimodal fusion.

Different from the attention mechanism in Trans-
former, self-attention (Hu et al., 2018) was also a
technique that has been widely used to extract con-
textual and correlated information within features.
The attention-based mechanism shows promising
results of modeling sequences. Thus, it is also
adopted in the proposed UCRN. However, instead
of using modal translation or separated models,

this paper highlights the unimodal representations
refinement and the crossmodal representation re-
finement by regularizing the multi-modality inputs
into a common space.

3 Unimodal and Crossmodal Refinement
Network (UCRN)

In this paper, Unimodal and Crossmodal Refine-
ment Network (UCRN) is proposed. As shown
in Figure 1, UCRN is comprised of three main
parts, where the first part conducts unimodal rep-
resentation refinement, the second part refines all
the previous information for fusion and learns a
modality-common representation, and the last part
performs prediction. The Unimodal Refinement
Module (URM) takes unimodal features (i.e., lan-
guage, audio, vision features) as input to learn
the refined unimodal representations. Then the
refined unimodal representations are mapped to a
common latent space by imposing a Multimodal
Jenson-Shannon (MJS) divergence regularizer. Fol-
lowing this, the Self-Quality Improvement Layers
(SQIL) are used to further extract desired weighted
unimodal representations for fusion. Lastly, the
Crossmodal Refinement Module (CRM) integrates
all information and extracts multimodal interac-
tions.

3.1 Problem Definition
Suppose we have the i-th input feature Xi, Xi =
{xim ∈ Rdm×tm ;m ∈ {l, a, v}}, where l, a, v rep-
resents language, audio, and vision, respectively,
and dm and tm denote the dimensions of the modal
feature and time sequence, respectively. Let K be
the batch size. The goal of multimodal sequence
fusion is to determine a deep fusion network F (Xi)
so that the output ŷi is expected to approximate the
target yi. This can be achieved by minimizing the
loss as

min
F

1

K

K∑
i=1

L(ŷi = F (Xi), yi). (1)

3.2 Unimodal Refinement
Unimodal Refinement Module (URM) is designed
to reinforce the modality-specific learning. High
quality unimodal representations would benefit
multimodal fusion. URM based on a transformer
architecture takes a single modal feature as input to
learn a robust and refined unimodal representation.

As shown in Fig. 1, Um is corresponding to
the URM for modality m. The Um is trained to
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Figure 1: (a). Architecture of Unimodal and Crossmodal Refinement Network (UCRN). xl, xa, and xv are input
unimodal features. Unimodal Refinement Module (URM) takes unimodal features to learn the refined unimodal
representations xUm, m ∈ {l, a, v}. SQIL is followed to extract desired weighted unimodal representations for
fusion. Crossmodal Refinements Module (CRM) integrates all information and refines multimodal interactions for
prediction. LM and LC are multimodal JS divergence loss and classification loss; (b). Multi-head Transformer
Encoder. Unimodal representations are split to each head and then concatenated to produce activated refined
results; (c). Self-quality Improvement Layers (SQIL). The results are learned weighted unimodal representations.

learn the unimodal representation with a multi-
layer transformer-based network. Therefore, we
have,

xUm = Um(xm; θm), (2)

where xUm represents the refined unimodal repre-
sentation for modality m, while θm stands for the
parameters of Um. In fact, before inputting each
unimodal feature to the URM, it is first sent to a
projection layer to convert each feature to a specific
dimension, which can simplify the subsequent uni-
fied operations. Then, the unimodal representation
is passed to a multi-layer multi-head transformer.
Five layers and three heads are used. LetHk, where
k = {1, 2, 3}, denote the head in each layer and
xdm×tm
m be the projected feature. As presented in

Fig. 1 (b), for xdm×tm
m , dm is evenly split to dhk,

which is the feature dimension in head k. The oper-
ations of the mutli-head transformer are described
by the following equations,

xdh×tm
m,h = ⊕{Hk(x

dhk×tm
m,hk ) + xdhk×tm

m,hk }, (3)

x̂dh×tm
m,h = Ffc1(x

dh×tm
m,h ), (4)

x̃
dh×tm
m,h = Ffc3(ReLU(Ffc2(LN(x̂

dh×tm
m,h )))) + x̂

dh×tm
m,h ,

(5)

where Ffci(·), i ∈ {1, 2, 3}, is a fully connected
layer, and LN(·) denotes a layer normalization.
xdhk×tm
m,hk is the input andHk(x

dhk×tm
m,hk ) is the output

from head k. ⊕ is the operation of concatenation
over the output from each head. URM can learn
the sequence representation by extracting the last
time step in the time dimension as the key step,
thus the time space collapses to one. Here, we have
the overall definition:

xUm = x̃dm×1
m = Um(xm; θm). (6)

3.3 Multimodal Jenson-Shannon Divergence
Regularizer

Due to heterogeneity across divergent modalities,
the fused multimodal representation follows an un-
known yet complex distribution. In order to fur-
ther enhance crossmodal refinement, we propose
to regularize the distribution by explicitly adding
a regularizer. It is well known that the Kullback-
Leibler Divergence,DKL, can measure distribution
differences. However, since the commutative con-
sistency of a pair of modalities should be kept in
our framework, the multimodal Jensen-Shannon
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divergence DM is employed, which is defined as:

DM (α, β) =

1

2
(DKL(p(α),

p(α) + p(β)

2
) +DKL(p(β),

p(α) + p(β)

2
)),

(7)

where (α, β) ∈ [(l, a), (a, v), (v, l)], p(α)
and p(β) represent the probability distribu-
tions of the learned features for n classes:
p(α) = {p1(α), p2(α), . . . , pn(α)} and p(β) =
{p1(β), p2(β), . . . , pn(β)}. DM serves as a reg-
ularizer on xUm and aims to optimize the whole
framework. To learn a common representation for
fusion, the objective function LM regularizing the
probability distributions of all modalities is defined
as

LM = DM (l, a) +DM (a, v) +DM (v, l). (8)

3.4 Self-Quality Improvement Layers

Self-Quality Improvement Layers (SQIL) are
added to further produce the desired unimodal rep-
resentations for fusion. SQIL is a stack of simple
self-attention layers that learns the weighted uni-
modal representations for fusion.

WS =FS(x
U
m),

xSm =Sm(xUm; θs) = xUm ·WS ,
(9)

where FS represents the linear transformation and
nonlinear activations (ReLU), and WS is the self-
attention weight matrix. xUm is the output obtained
from the URM as shown in Fig. 1 (a).

3.5 Crossmodal Refinement

Crossmodal Refinement Module (CRM) aims to
learn effective crossmodal representations by inte-
grating all refined unimodal representations. CRM
(in Fig. 1 (a)) is also built based on a multi-head
transformer, which takes the concatenation of the
weighted unimodal representations as input. CRM
becomes a bimodal or unimodal fusion module if
one or two modalities are missing. CRM adaptively
captures the dynamics of multimodal interactions
and extracts key information among the inputs. It
is a light yet effective fusion module. Specially, to
ensure the proposed modal robust to noise and miss-
ing information in any modalities, flexible modality
combinations are supported herein. Let C(xj ; θc)
be the transformation of CRM with θc being the
parameters.

xj = ⊕ xSm, (10)

where j ∈ {l, a, v, (l, a), (a, v), (v, a), (l, a, v)}
denotes any possible combinations from the three
multimodal inputs. ⊕ denotes the concatenation
operation and xSm are features obtained from Eq.
(9). Note that xSm are from modalities in j. Then
the fused representation can be represented as:

xCj = C(xj ; θc). (11)

Lastly, the fused feature xCj is passed to two
fully connected layers Ffc(·) before performing
classification or regression with a loss function of
LC . Here, either the cross-entropy loss Lce or the
least absolute deviations L1 is applied for diffident
learning tasks. Specifically,

LC =Lce(Ffc(x
C
j,c), yj,c) = −

N∑
c=1

yj,c log(Ffc(x
C
j,c)),

or LC = L1(Ffc(x
C
j,c), zj,c) =

M∑
c=1

|Ffc(x
C
j,c)− zj,c|,

(12)

where N is the number of classes, and yj,c is the
ground-truth label for Lce, and M is the number
data and zj,c is the target regression value for L1.
The final UCRN objective function is

L = λmLM + λcLC , (13)

where URM, SQIL, and CRM are jointly optimized,
and λm and λc are two trade-off parameters for the
two loss terms. They are set to 1 as default in our
experiments. Extensive experiments in the follow-
ing section demonstrate that UCRN not only im-
proves the performance over multiple multimodal
datasets but also is robust against modality missing
and noise.

4 Experiments

4.1 Datasets
CMU-MOSI (Zadeh et al., 2016) dataset is
a multimodal opinion sentiment intensity analy-
sis dataset, which consists of 2,199 short mono-
logue video clips (opinion utterances). There are
35 facial action units that record facial muscle
movement (Ekman et al., 1980; Ekman, 1992).
Low-level acoustic features are extracted by CO-
VAREP (Degottex et al., 2014). Language data are
segmented by word and expressed as discrete word
embedding (Pennington et al., 2014).

CMU-MOSEI (Zadeh et al., 2018c) is a sen-
timent and emotion analysis dataset made up of
23,454 movie review video clips. The feature ex-
traction methods are the same as MOSI.
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Sentiment Emotion
Method 2-class 7-class Emot Happy Sad Angry Fear Disgust Surprise WA

A A avg A A F1 A F1 A F1 A F1 A F1 A F1
GRAPH-mfn† 76.9 45.0 62.35 66.3 66.3 60.4 66.9 62.6 72.8 62.0 89.9 69.1 76.6 53.7 85.5 3

Mu-net † 82.1 - 82.77 70.0 68.4 76.1 74.5 83.1 80.9 89.7 87 90.3 87.3 87.4 84 3
UCRN † 82.25 42.76 83.25 70.8 65.2 77.2 67.9 84.4 75.6 90.5 86.4 88.7 84.5 87.9 85.5 3

TBJE* 81.5 44.4 80.68 65 64 72 67.9 81.6 74.7 89.1 84 85.9 83.6 90.5 86.1 7
UCRN* 84.36 46.84 82.27 67.3 67.1 74.5 68.6 82.8 76.8 89.7 88.6 87.8 85.2 91.5 86.7 7

Table 1: Sentiment and emotion accuracy (%) and F1 score (%) comparisons on CMU-MOSEI (marked by †) and
TBJE-MOSEI (marked by *). ‘A’ stands for accuracy and ‘F1’ stands for F1 score. WA indicates weighted accuracy
on the emotion task. For a fair comparison, WAs are compared with GRAPH-mfn and Mu-Net on CMU-MOSEI
and standard accuracies are compared with TBJE on TBJE-MOSEI.

Method avg F1 avg Acc MAE Corr
LMF 75.7 76.4 0.91 0.67

BC-LSTM 78.1 77.9 - -
TFN 78.3 78.3 - -

LMFN-e2e 79.4 79.4 - -
MulT 81.0 81.1 0.87 0.69
ARGF 81.4 81.3 - -
Mu-net 80.10 81.19 - -
UCRN 82.01 81.71 0.89 0.69

Table 2: 2-class sentiment performance comparison on
CMU-MOSI. Avg F1 and avg Acc are percentages (%).

Method avg F1 avg Acc MAE Corr
LMF 55.80 59.41 - -

LMFN 59.48 61.31 - -
ARGF 59.03 60.77 - -

GRAFH-mfn 77.0 76.9 0.71 0.54
CIA 78.23 80.37 0.68 0.55

MulT 81.6 81.6 0.59 0.69
Mu-net 80.01 82.10 0.59 0.50
UCRN 82.30 82.25 0.60 0.68

Table 3: 2-class sentiment performance comparison
on CMU-MOSEI. Avg F1 and avg Acc are percentages
(%).

TBJE-MOSEI (Delbrouck et al., 2020) is pre-
processed from original CMU-MOSEI dataset but
using different feature extraction methods. For fair
comparision with TBJE, the experimental results
are also reported on this dataset.

Metrics 2-class sentiment accuracy2, F1 score,
MAE (mean square error, the lower the better) and
Corr (Correlation) are used as performance indexes.
7-class sentiment accuracy and emotion classifica-
tion results are also reported for comparing several
strong benchmarks.

4.2 Implementation Details
Experimental Settings All the multi-head
transformer-based architectures in the URM and
CRM are implemented with 5 layers and 3 heads.

2Please refer to the officially released evaluation metrics
from https://github.com/A2Zadeh/CMU-MultimodalSDK

In each transformer encoding layer in the URM,
refined unimodal representation is trained by
parsing query, key, and value the same input. In
SQIL, the refined unimodal representation is first
passed through a global average pooling on feature
dimension, and then a fully connected layer to
learn the correlation within features, resulting in a
weighted unimodal representation. In CRM, the
query, key and value of the transform inputs are the
concatenated refined multimodal representation.

Training UCRN is trained in an end-to-end man-
ner. It is light and easy to train. The batch size
is set to 16 (32) and a basic learning rate is 1e-3
(2e-3) on MOSI (MOSEI).

Test The proposed model is tested on MOSI and
MOSEI for sentiments and emotions. More de-
tails are reported in the supplementary materials
for readers to reproduce.

4.3 Quantitative Results Compared with
Benchmarks

Extensive experiments are conducted on several
multimodal sentiment analysis and emotion predic-
tion datasets. The methods compared in this work
are the state-of-the-arts, among which MulT (Tsai
et al., 2019), Mu-Net (Shenoy and Sardana, 2020),
and TBJE (Delbrouck et al., 2020) are strong
benchmarks. MulT (Tsai et al., 2019) used
explicit source-target modality translation, Mu-
Net (Shenoy and Sardana, 2020) adopted a pairwise
attention mechanism for fusion, and TBJE (Del-
brouck et al., 2020) implicitly used one modality
(language) to modulate others.

Table 1 lists both sentiment and emotion perfor-
mance comparisons. Specifically, for sentiment
analysis, 2-class and 7-class standard accuracies
are both reported on CMU-MOSEI (marked by †)
and TBJE-MOSEI (marked by *). UCRN shows
competitive results on these two tasks. On the emo-

https://github.com/A2Zadeh/CMU-MultimodalSDK
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Method Acc-2 (%)
(L+A/L+V/A+V)

Acc-7(%)
(L+A/L+V/A+V)

Emot avg A(%)
(L+A/L+V/A+V) WA

MulT† 1.30 / 4.33 / 10.16 - - -
Mu-Net† 2.34 / 2.48 / 8.45 - 10.22 / 8.41 / 12.71 3
TBJE† -0.68 / 2.94 / 7.52 -0.49 / 5.43 / 7.10 - -

UCRN† 1.17 / 2.18 / 6.16 2.69 / 4.44 / 6.10 1.39 / 0.79 / 2.62 3

TBJE* -1.10 / 1.69 / 2.27 -2.48 / 3.27 / 6.85 -0.83 / 1.08 / 2.18 7
UCRN* 1.19 / 0.59 / 1.53 2.49 / 2.16 / 1.52 0.44 / 0.29 / 1.22 7

Table 4: Performance percentage drop comparison by masking a certain modality on CMU-MOSEI (marked by†)
and TBJE-MOSEI (marked by *). WA indicates average weighted accuracy of emotion. ‘L’, ‘A’, and ‘V’ are
abbreviations for language, audio, and visual modalities, respectively.

Method Acc-2(%) Acc-7(%) Emot
avg A(%) WA

MulT† 5.48 - - -
Mu-Net† 3.59 - 10.44 3
TBJE† 2.63 5.38 - -

UCRN† 2.37 4.05 2.87 3

TBJE* 2.87 10.86 2.69 7
UCRN* 1.87 4.53 2.54 7

Table 5: Performance percentage drop comparison by
adding random noise on CMU-MOSEI (marked by †)
and TBJE-MOSEI (marked by *). WA indicates aver-
age weighted accuracy of emotion.

tion classification task, for a fair comparison, the
weighted accuracies (WA) are reported as Mu-Net
and GRAPH-mfn adopted it. The unweighted re-
sults are compared with TBJE. UCRN shows the
best average accuracy for emotion classification
over all compared methods.

Further comparisons on 2-class sentiment analy-
sis are presented in Table 2 and Table 3. The com-
pared methods include LSTM-based, translation-
based, and pairwise-learning based. On both CMU-
MOSI and CMU-MOSEI datasets, UCRN shows
improvement over the compared methods and out-
performs the strong benchmark methods in terms
of average F1 score and accuracy.

The results indicate that the refined unimodal
and crossmodal representations are of vital im-
portance for multimodal fusion. UCRN shows a
competitive performance owing to the ample ex-
ploration of unimodal dynamics from URM and
the effective crossmodal representation from CRM.
UCRN shows advantages to adaptively take any
combination of input modalities. More results are
presented in the following subsection.

4.4 Robustness Experiments

Missing modality and noise are ever-present in the
real world. Due to non-alignment, missing, or in-
complete modalities, the information expressed by

unimodal features is disproportionate. Therefore,
translation-based methods are inclined to become
invalid in those cases. However, UCRN can alle-
viate these problems. Defining robustness as the
percentage decrease in accuracy, i.e., (trimodal ac-
curacy - masked or noisy modality accuracy) / tri-
modal accuracy, it allows us to objectively evalu-
ate the robustness of UCRN. Two kinds of exper-
iments were conducted to validate the robustness
of UCRN against modality missing and noise with
several strong translation-based and pairwise map-
ping based benchmarks.

Firstly, to simulate missing modality, features
of a modality will be masked. Under such cir-
cumstances, UCRN still achieves a higher accuracy
than its counterparts, which demonstrates its robust-
ness. As shown in Table 4, masking one of the vi-
sion, audio, or language modality, UCRN gets more
robust results on the average performance. Assum-
ing that more modalities have a greater represen-
tation capability, the case of performance degrada-
tion given added modality should not be taken into
account in the robustness aspect. Note that TBJE
shows a degradation with trimodal input compared
to its bimodal one (i.e., 2-class accuracy L+A+V
of 81.5% and L+A of 82.4% according to (Del-
brouck et al., 2020)). This is because TBJE cannot
deal with the disparity among modalities or fully
explore vision features, which results in the overall
representation being impaired.

In spite of that, UCRN still outperforms TBJE in
terms of accuracy (i.e., 2-class accuracy L+A+V of
84.36% and L+A of 83.35%). Therefore, we only
compare the performance drops especially on the
cases of L+V and A+V.

Secondly, to simulate the presence of noise dur-
ing information acquisition in the real world, noise
that follows a Bernoulli distribution is randomly
added on the entire modality features with a prob-
ability of noise presence 0.5. Results in Table 5
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Figure 2: Visualization for distributions of multimodal
features in embedding space. Please zoom in for a bet-
ter view.

show that UCRN is more robust for both sentiment
prediction and emotion classification tasks.

UCRN is robust against missing modality and
noise because it explores the refined unimodal rep-
resentation and correlates the crossmodal features
adaptively.

We argue that the translation-based and implicit
modulation methods have a limitation on robust-
ness due to pairwise interactions and source-target
translation.

4.5 Ablation Study
UCRN is powerful to reduce modality gap. To
show this, the visualization for distributions of mul-
timodal features in embedding space is provided in
Fig. 2. The t-SNE algorithm was utilized to trans-
form feature vectors to the 2D maps. Fig. 2 (a)
shows the feature embeddings right before 2-class
sentiment prediction without SQIL and without
LM , whereas Fig. 2 (b) is obtained from UCRN
with those modules. The feature embeddings in
Fig. 2 (b) become more clustered and separable.
Fig. 2 (c) and Fig. 2 (d) show the distributions of
unimodal features before crossmodal fusion with
and without LM , respectively. Comparing with
Fig. 2 (c), the distributions of features in Fig. 2 (d)
are more regularized with a closer center distance
(as can be seen from the red center points). They
reveal that LM is beneficial to perform crossmodal
refinement by reducing modality gap for better pre-
dictions.

The proposed UCRN emphasizes the importance
of unimodal and crossmodal refinements. The con-
tributions of different components are summarized
in Table 6. We have the following observations: 1)
URM greatly boosts the performance; 2) adding

SQIL yields a better performance; 3) UCRN gains
large improvement by adding the Multimodal JS
divergence (MJS) and 4) CRM further adds values
on top. The results substantiated all our assump-
tions that unimodal refinement has significant con-
tributions and advantages to fusion and crossmodal
refinement is efficacious in exploring modality-
common information and reducing modality gap.

Model avg F1 avg Acc MAE Corr
UCRN 82.30 82.25 0.60 0.68

UCRN w/o CRM 81.94 81.51 0.61 0.67
UCRN w/o SQIL 80.76 80.13 0.64 0.66
UCRN w/o MJS 80.30 80.49 0.63 0.65
UCRN w/o URM 65.83 64.79 0.78 0.25

Table 6: Ablation study in the 2-class sentiment task
on CMU-MOSEI. UCRN includes URM, SQIL, CRM,
and MJS components. Avg F1 and avg Acc are in per-
centages (%).

4.6 Size of Network Parameters
As listed in Table 7, UCRN is light-weight and can
achieve competitive performance with much fewer
parameters comparing with the several benchmark
methods.

Method Number of Parameters
TBJE 68,674,873

Mu-Net 21,499,212
MulT 1,071,211

UCRN(trimodal) 422,401
UCRN(bimodal) 211,681

Table 7: Network parameter comparison.

5 Conclusion

In this work, the Unimodal and Crossmodal Refine-
ment Network (UCRN) is proposed for robust and
efficient multimodal representation learning. We
hypothesis that unimodal representation is better
to be refined before crossmodal fusion, and it is
beneficial to reduce modality gaps before cross-
modal refinement. Following the line, the proposed
network is designed with a unimodal refinement
module, a multimodal JS divergence regularizer,
self-quality improvement layers, and a crossmodal
refinement module. The experimental results val-
idated all our assumptions. In particular, the ro-
bustness experiments evinced high efficiency and
validated that UCRN can handle the modality miss-
ing and noise issues. Experimental results showed
UCRN achieves state-of-the-art results on multiple
multimodal datasets.
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A Multiple Performance Evaluations

A.1 Accuracy Standard Deviation (acc-std)

In this section, the standard deviations of accura-
cies from Table 1 to Table 5 are summarized. In
Table 8, ‘acc2-std’, ‘acc7-std’, and ‘avg-emo-acc-
std’ represent the standards deviations of UCRN
from 10 runs with different initializations for 2-
class classification accuracy, 7-class classification
accuracy, and average emotion classification accu-
racy, respectively. UCRN shows less in fluctuations
on different tasks, which validates its performance
stability.

Table acc2-std acc7-std avg-emo-acc-std

Table 1 0.0049† - 0.0096†
0.0036* 0.0042* 0.0063*

Table 2 0.0120 - -
Table 3 0.0049 - -
Table 4 0.0077 0.0135 0.0129
Table 5 0.0060 0.0045 0.0050

Table 8: Standard deviations of UCRN from Table 1 to
Table 5. In Table 1, the results marked with † are from
UCRN†, and * are from UCRN*

A.2 Relative Performance Improvement
(RPI)

Table Baselines avg-acc2 avg-acc7 avg-
emo-acc

Table 1 Mu-net 0.31† - 0.50†
TBJE 7.94* 5.81* 2.52*

Table 2 MulT 0.51 - -
Mu-Net 0.43 - -

Table 3 MulT 1.33 - -
Mu-Net 0.31 - -

Table 4
MulT 2.72 - -

Mu-net 1.63 - 6.86
TBJE 0.12 0.29 -

Table 5
MulT 5.18 - -

Mu-net 2.03 - 15.14
TBJE 0.43 10.96 -

Table 9: Relative Performance Improvement (RPI) of
UCRN from Table 1 to Table 5. In Table 1, the re-
sults marked with † are from UCRN†, and * are from
UCRN*

To show the significance of our results, the
relative performance improvements are calculated
to compare with the recent strong benchmark
methods on different tasks. The metric is defined as
|our average result− baseline result| /our std.
For example, to calculate the Acc7-RPI in Table 1
with TBJE, X = |0.4684− 0.444| /0.0042 =
5.81.

As shown in Table 9, UCRN has higher per-
formance improvement compared to all baseline
methods and leads a large margin of RPIs on Acc-2
and Acc-7 with TBJE and MulT, and emo-acc with
Mu-Net. On average, UCRN has 2.20, 3.74, and
4.01 relative performance improvement, comparing
with MulT, Mu-Net, and TBJE, respectively.


