A Differentiable Relaxation of Graph Segmentation
and Alignment for AMR Parsing

Chunchuan Lyu'

Shay B. Cohen'!

Ivan Titov'?2

ILCC, School of Informatics, University of Edinburgh
2 ILLC, University of Amsterdam

chunchuan.lv@gmail.com

Abstract

Abstract Meaning Representations (AMR) are
a broad-coverage semantic formalism which
represents sentence meaning as a directed
acyclic graph. To train most AMR parsers, one
needs to segment the graph into subgraphs and
align each such subgraph to a word in a sen-
tence; this is normally done at preprocessing,
relying on hand-crafted rules. In contrast, we
treat both alignment and segmentation as la-
tent variables in our model and induce them as
part of end-to-end training. As marginalizing
over the structured latent variables is infeasi-
ble, we use the variational autoencoding frame-
work. To ensure end-to-end differentiable op-
timization, we introduce a differentiable relax-
ation of the segmentation and alignment prob-
lems. We observe that inducing segmentation
yields substantial gains over using a ‘greedy’
segmentation heuristic. The performance of
our method also approaches that of a model
that relies on the segmentation rules of Lyu
and Titov (2018), which were hand-crafted to
handle individual AMR constructions.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al. 2013) is a broad-coverage semantic
formalism which represents sentence meaning as
rooted labeled directed acyclic graphs. The rep-
resentations have been exploited in a wide range
of tasks, including text summarization (Liu et al.,
2015; Dohare and Karnick, 2017; Hardy and Vla-
chos, 2018), machine translation (Jones et al., 2012;
Song et al., 2019), paraphrase detection (Issa et al.,
2018) and question answering (Mitra and Baral,
2016).

An AMR graph can be regarded as consisting
of multiple concept subgraphs, which can be indi-
vidually aligned to sentence tokens (Flanigan et al.,
2014). In Figure 1, each dashed box represents
the boundary of a single semantic subgraph. Red
arrows represent the alignment between subgraphs

scohen@inf.ed.ac.uk

ititov@inf.ed.ac.uk

3

x
boy

The0 opin.ion1 of ’ the

Figure 1: An example of AMR, the dashed red arrows
mark latent alignment. Dashed blue boxes represent the
latent segmentation.

and tokens. For example, ‘(o / opine-01: ARGI (t
/ thing))’ refers to a combination of the predicate
‘opine-01" and a filler of its semantic role ARGI.
Intuitively, this subgraph needs to be aligned to the
token ‘opinion’. Similarly, ‘(b / boy)’ should be
aligned to the token ‘boy’. Given such an alignment
and segmentation, it is straightforward to construct
a simple parser: parsing can be framed as tagging
input tokens with subgraphs (including empty sub-
graphs), followed by predicting relations between
the subgraphs. The key obstacle to training such an
AMR parser is that the segmentation and alignment
between AMR subgraphs and words are latent, i.e.
not annotated in the data.

Most previous work adopts a pipeline approach
to handling this obstacle. They rely on a pre-
learned aligner (e.g., (Pourdamghani et al., 2014))
to produce the alignment, and apply a rule sys-
tem to segment the AMR subgraph (Flanigan et al.,
2014; Werling et al., 2015; Damonte et al., 2017;
Ballesteros and Al-Onaizan, 2017; Peng et al.,
2015; Artzi et al., 2015; Groschwitz et al., 2018).
While Lyu and Titov (2018) jointly optimize the
parser and the alignment model, the rules handling
specific constructions still needed to be crafted to
segment the graph. The segmentation rules are rel-
atively complex — e.g., the rules of Lyu and Titov
(2018) targeted 40 different AMR subgraph types —
and language-dependent. AMR has never been in-
tended to be used as an interlingua (Banarescu et al.,

9075

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9075-9091
November 7-11, 2021. (©)2021 Association for Computational Linguistics

2013; Damonte and Cohen, 2018) and AMR banks
for individual languages substantially diverge from
English AMR. For example, Spanish AMR repre-
sents pronouns and ellipsis differently from the En-
glish one (Migueles-Abraira et al., 2018). As new
AMR sembanks in languages other than English are
being developed (Anchiéta and Pardo, 2018; Song
et al., 2020), domain-specific AMR extensions get
developed (Bonn et al., 2020; Bonial et al., 2020),
and extra constructions are getting introduced to
AMRs (Bonial et al., 2018), eliminating the need
for rules while learning graph segmentation from
scratch is becoming an important problem to solve.

We propose to optimize a graph-based parser
that treats the alignment and graph segmentation as
latent variables. The graph-based parser consists
of two parts: concept identification and relation
identification. The concept identification model
generates the AMR nodes, and the relation identi-
fication component decides on the labeled edges.
During training, both components rely on latent
alignment and segmentation, which are being in-
duced simultaneously. Importantly, at test time,
the parser simply tags the input with the subgraphs
and predicts the relations, so there is no test-time
overhead from using the latent-structure appara-
tus. An extra benefit of this approach, in contrast
to encoder-decoder AMR models (Konstas et al.,
2017; van Noord and Bos, 2017; Cai and Lam,
2020) is its transparency, as one can readily see
which input token triggers each subgraph. !

To develop our parser, we frame the alignment
and segmentation problems as choosing a gener-
ation order of concept nodes, as we explain in
Section 2.2. As marginalization over the latent
generation orders is infeasible, we adopt the vari-
ational auto-encoder (VAE) framework (Kingma
and Welling, 2014). Intuitively, a trainable neural
module (an encoder in the VAE) is used to sample
a plausible generation order (i.e., a segmentation
plus an alignment), which is then used to train the
parser (a decoder in the VAE). As one cannot ‘dif-
ferentiate through’ a sample of discrete variables
to train the encoder, we introduce a differentiable
relaxation which makes our objective end-to-end
differentiable.

We experiment on the AMR 2.0 and 3.0 datasets.
We compare to a greedy segmentation heuristic, in-
spired by Naseem et al. (2019), that produces a seg-

"The code is available at https://github.com/
ChunchuanLv/graph-parser.

mentation deterministically and provides a strong
baseline to our segmentation induction method. We
also use a version of our model with segmentation
induction replaced by a hand-crafted rule-based
segmentation system from previous work;? it can
be thought of as an upper bound on how well induc-
tion can work. On AMR 2.0 (LDC2016E25), we
found that our VAE system obtained a competitive
Smatch score of 76.1, reducing the gap between
using the segmentation heristic (75.2) and the rules
exploiting the prior knowledge about AMR (76.8).
On AMR 3.0 (LDC2020T02), the VAE system gets
even closer to the rule-based system (75.5 vs 75.7),
possibly because the rules were designed for AMR
2.0. Our main contributions are:

* we frame the alignment and segmentation
problems as inducing a generation order, and
provide a continuous relaxation to this discrete
optimization problem;

* we empirically show that our method out-
performs a strong heuristic baseline and ap-
proaches the performance of a complex hand-
crafted rule system.

Our method makes very few assumptions about
the nature of the graphs, so it may be effective in
other tasks that can be framed as graph prediction
(e.g., executable semantic parsing, Liang 2016, or
scene graph prediction, Xu et al. 2017).

2 Casting Alignment and Segmentation
as Choosing a Generation Order

2.1 Preliminaries

We start by introducing the basic concepts and
notation. We refer to words in a sentence as
(zoy...,on—1), where n is the sentence
length. The concepts (i.e. labeled nodes) are
v = (vo,v1,...,Vn), where m is the number of
concepts. In particular, v,,, = () denotes a dummy
terminal node; its purpose will be clear in Section
2.2 where we will define the generative model. We
refer to all nodes, except for the terminal node (0),
as concept nodes.

A relation between ‘predicate concept’ ¢ and
‘argument concept’ j is denoted by E;;. It is set
to () if j is not an argument of i. We will use E
to denote all edges (i.e. relations) in the graph.

X =

2We adopt the code from Zhang et al. (2019a), which is an
extension of the system introduced by Lyu and Titov (2018),
and also used by Cai and Lam (2020).

9076

https://github.com/ChunchuanLv/graph-parser
https://github.com/ChunchuanLv/graph-parser

0

The' opir)ion1 of the

3

»
boy

Figure 2: AMR concept identification model gener-
ates nodes following latent generation order at training
time.

t=2
= CDEDCDED

The op/mon of the boy

Figure 3: At test time, the AMR concept identification
model generates nodes autoregressively, starting from
each sentence token. Importantly, it is just an ‘unrolled’
form of the order shown in Figure 2.

In addition, we refer to the whole AMR graph as
G =(v,E).

Our goal is to associate each input token with
a (potentially empty) subset of the concept nodes
in the AMR graph, while making sure that we get
a partition of the node set. In other words, each
node in the original AMR graph belongs to exactly
one subset. In that way, we deal with both seg-
mentation and alignment. Each subset uniquely
corresponds to a vertex-induced subgraph (i.e., the
subset of nodes together with any edges whose
both endpoints are in this subset). For this reason,
we will refer to the problem as graph decomposi-
tion® and to each subset as a subgraph. We will
explain how we deal with edges of the AMR graph
in Section 3.2.

2.2 Generation Order

We choose a subset of nodes for each token by
assigning an order to which the nodes are selected
for such subset. In Figure 2, dashed red arrows
point from every node to the subsequent node to be
selected. For example, given the word ‘opinion’,
the node ‘opine-01’ is chosen first, and then it is
followed by another node ‘thing’. After this node,
we have an arrow pointing to the node (), signifying

3We slightly abuse the terminology as, in graph theory,
graph decomposition usually refers to a partition of edges —
rather than nodes — of the original graph.

that we finished generating nodes aligned to the
word ‘opinion’. We refer to these red arrows as a
generation order.

A generation order determines a graph decompo-
sition. To recover it from a generation order, we as-
sign connected nodes (excluding the terminal node)
to the same subgraph. Then, a subgraph will be
aligned to the token that generated those nodes. In
our example, ‘opine-01’ and ‘thing’ are connected,
and, thus, they are both aligned to the word ‘opin-
ion’. The alignment is encoded by arrows between
tokens and concept nodes, while the segmentation
is represented by arrows between concept nodes.

From a modeling perspective, the nodes will be

generated with an autoregressive model, which is
easy to use at test time (Figure 3). From each token,
a chain of nodes is generated until the stop symbol
() is predicted. It is more challenging to see how
to induce the order and train the autoregressive
model at the same time; we will discuss this in
Sections 3 and 4.
Constraints While in Figure 2 the red arrows de-
termine a valid generation order, in general, the ar-
rows have to obey certain constraints. Formally, we
denote alignment by A € {0,1}™*(m+1) where
Aj; = 1 means that for token k& we start by gen-
erating node ¢. As the token can only point to one
node, we have a constraint) ., Ay, = 1. Similarly,
for a segmentation S € {0, 1}*("+1) we have a
constraint Zj S;; = 1. Setting S;; = 1 indicates
that node i is followed by node j. In Figure 2, we
have A03 = AlO = A23 = A33 = A42 =1and
So1 = Si3 = Sog3 = 1; the rest is 0. Now, we
have the full generation order as their concatena-
tion O = [A;S] € {0,1}(+m)x(m+1) - Ag one
node can only be generated once (except for (),
we have a joint constraint: Vj # m, >, 0;; = 1.
Furthermore, the graph defined by O should be
acyclic, as it represents the generative process. We
denote the set of all valid generation orders as O.
In the following sections, we will discuss how this
generation order is used in the model and how to in-
fer it as a latent variable while enforcing the above
constraints.

3 Our Model

Formally, we aim at estimating Py(v, E|x), the
likelihood of an AMR graph given the sentence.
Our graph-based parser is composed of two parts:
concept identification FPy(v|x,O) and relation
identification Py(E|x, O, v). The concept iden-

9077

|

_________________ ST
«>| | BILSTM

The opinion of the

Figure 4: AMR concept identification model runs sev-
eral independent LSTMs to generate nodes autoregres-
sively at test time.

tification model generates concept nodes, and the
relation identification model assigns relations be-
tween them. Both require the latent generation
order at the training time, denoted by O. Overall,
we have the following objective:

log Py(v, E|x) (1)

—log Y Py(O)Py(v|x,0)Py(E[x,0,v) , (2)
O

where Py(O) is a prior on the generation orders,
discussed in Section 4.2. To efficiently optimize
this objective end-to-end, as will be discussed in
Section 4, we need to ensure that both concept and
relation identification models admit relaxation, i.e.,
they should be well-defined for real-valued O.

In the following subsections, we go through con-
cept identification, relation identification, and their
corresponding relaxations.

3.1 Concept Identification

As shown in Figure 4, our neural model first en-
codes the sentence with BiLLSTM, producing token
representations h}fken (k € [0,...n—1]), then gen-
erates nodes autoregressively at each token with
another LSTM.

In training, we need to be able to run the models
with any potential generation order and compute
Py(v|x,O). If we take the order defined in Fig-
ure 2, the node 1 (‘thing’) is predicted relying on
the corresponding hidden representation; we refer
to this representation as h}°%¢ where is 1 is the
node index. With the discrete generation order de-
fined by red arrows in Figure 2, h‘f"de is just the
LSTM state of its parent (i.e. ‘opine-01’). How-
ever, to admit relaxations, our computation should
be well-defined when the generation order O is
soft (i.e. attention-like). In that case, h‘f"de will be
a weighted sum of LSTM representations of other

nodes and input tokens, where the weights are de-
fined by O. Similarly, the termination symbol () for
the token ‘opinion’ is predicted from its hidden rep-
resentation; we refer to this representation as h‘ia“,
where 1 is the position of ‘opine’ in the sentence.
With the hard generation order of Figure 2, h{?! is
just the LSTM state computed after choosing the
preceding node (i.e. ‘thing’). In the relaxed case,
it will again be a weighted sum with the weights
defined by O.

Formally, the probability of concept identifica-
tion step can be decomposed into probability of
generating m concepts nodes and n terminal nodes
(one for each token):

m—1 n—1
Py(v|x,0)= [Po(vilai*®) [[Po(00i™) (3)
i=0 k=0

Representation h?Ode is computed as the weighted
sum of the LSTM states of preceding nodes as
defined by O (recall that O = [A; S]):
m—1
hyode ;=" 8, LSTM(h}°%, v))
j=0
n—1
+) Agghiken,)
k=0
Note that the preceding node can be either a con-
cept node (then the output of the LSTM, consuming
the preceding node, is used) or a word (then we
use its contextualized encoding). The first term in
Equation 4 corresponds to the former situation, and
the second one to the latter.

Note that this expression is ‘recursive’ — each
node’s representation h1°%° is computed based
on representations of all the nodes h?"de; 1,] €
1,...m — 1. Iterating the assignment defined by
Equation 4 for a valid discrete generation order
(i.e., a DAG, like the one given in Figure 2), will
converge to a stationary point. Crucially, in this
discrete case, the stationary point will be equal to
the result of applying the autoregressive model (as
used in test time, see Figure 4). The stationary
point will be reached after T steps, where T is the
number of nodes in the largest subgraph.* This
‘message passing’ process is fully differentiable
and, importantly, well-defined for a relaxed genera-
tion order where A; and Sj; are non-binary. The
equivalence between the train-time message pass-
ing and the test-time autoregressive computation
with discrete O prevents the gap between training

*We use T' = 4, as we do not expect subgraphs with more
than 4 nodes.

9078

and testing, as long as the optimization converges
to a near-discrete solution.

The representations h}fﬂ, needed for the terms
Py(P|ht?) in Equation 3, are computed as:

m—1
hi?! = " B LSTM(h}*%, v;)
j=0
m—1
+ (1= Bj)hpken, 5)
=0

where B, = 1 denotes that the concept node j is
the last concept node before generating () for the
token k, else Bj;, = 0. E.g. in Figure 2, we have
Bi1 = By = 1, and others are 0. Again, in the
discrete case, the result will be exactly equivalent
to what is obtained by running the corresponding
autoregressive model (as in test time, Figure 4),
but the computation is also well-defined and differ-
entiable in the relaxed cases, where By are real-
valued.

While it is clear how Sj; and Ay; in Equation 4
and Bjj in Equation 5 are defined with discrete
O = [A;S], we show how they can defined with
relaxed (non-binary) O in Appendix B. The MLPs
used to compute Pp(v;|hi°d¢) and Py(f|hi*) are
also defined there.

3.2 Relation Identification

Similarly to Lyu and Titov (2018), we use an arc-
factored model for relation identification (i.e. pre-
dicting AMR edges):

m

Py(Blx,0,v) = [] Po(Ei;/h* h5%) (6)
ij=1
where P (E;;|h®&, h';-dge) is the softmax of the
biaffine function of node representations hjdge and
h;dge. The node representations are defined as
n—1
h;}dge _ NNedge(h?Ode o Z Az?h};{oken), (7)
k=0
where o denotes concatenation, h?Ode is defined in
section 3.1, and A}7 determines whether node i
is in a subgraph aligned to token & or not. Note
that this is different from A j; which encodes that
the node 1 is the first node in the subgraph (e.g., in
Figure 2, A1 = 0 but A7} = 1). In the continuous
case, as used during training, A?? can be thought of
as the alignment probability that can be computed
from O (see Appendix C).

’ Compute logits Fy (G, x) ‘

A%\%
Fosochh
W

Iterative LP Optimization
via Bregman’s method

(relaxed) alignment +
segmentation
O=AoS

Loss: predicting Loss: predicting
concepts relations

Figure 5: Overview of the computation graph.

4 Estimating Latent Generation Order

We show how to estimate the latent generation or-
der jointly with the parser, as also illustrated in
Figure 5.

4.1 Variational Inference

In Equation 2, marginalization over O is in-
tractable due to the use of neural parameterization
in Py(v|x,0) and Py(E|x, O, v). Instead, we re-
sort to the variational auto-encoder (VAE) frame-
work (Kingma and Welling, 2014). VAEs optimize
a lower bound on the marginal likelihood:

log Y Ps(0)Py(v|x,0)P4(E[x,0,v)
)

ZONQQ}(_EO\G,X) log P@(V|Xa O)PG(E|Xa o, V)

— KL(Q4(0IG, x)||F5(0)) , ®
where KL is the KL divergence, and Q4(O|G, x)
(the encoder, aka the inference network) is a distri-
bution parameterized with a neural network. The
lower bound is maximized with respect to both
the original parameters # and the variational pa-
rameters ¢. The distribution Q4(O|G, x) can be
thought of as an approximation to the intractable
posterior distribution Py(O|G, x).

4.2 Stochastic Softmax

In order to estimate the gradient with respect to
the encoder parameters ¢, we use the perturb-and-
MAP framework (Papandreou and Yuille, 2011;
Hazan and Jaakkola, 2012), specifically the stochas-
tic softmax (Paulus et al., 2020), which is a gen-
eralization the Gumbel-softmax trick (Jang et al.,
2016; Maddison et al., 2017) to the structured case.

With Stochastic Softmax, instead of sampling
O directly, we independently compute logits W €

9079

R Hm)x(m+1) for all the potential edges in the
generation order, and perturb them:
W =Fy(G,x))]

W=W + e, where ¢€;~G(0,1) (10)
where F is a neural module computing the logits
(see Section 4.2.2), G(0,1) is the standard Gum-
bel distribution, and € € R(+m)x(m+1) - Thep,
those perturbed logits W are fed into a constrained
convex optimization problem:

O(W, 1) := argmax(W, O) — 7(0, log O)
0>0

n+m—1 m
st¥j<m Y Oy =1LViy O5=1 (1)
i=0 =0

This is a linear programming (LP) relaxation of
constraints discussed in Section 2.2, where we per-
mit continuous-valued O. Importantly, this LP
relaxation is ‘tight’, and ensures that O(W,0) is a
valid generation order.’

Now, as we will show in the next section, the
solution to this optimization O(W, 7) can be ob-
tained with a differentiable computation, thus, we
write:

0,(e, G,x) = O(W, 1) (12)
The entropy regularizor, weighted by 7 > 0 (‘the
temperature’), ensures differentiability with respect
to W and, thus, with respect to ¢, as needed to train
the encoder.

We still need to handle the KL term in Equa-
tion 8. We define the prior probability Py(O) im-
plicitly by having W = 0 in the stochastic softmax
framework. Even then, KL(Q4(O|G,x)||Py(O))
cannot be easily computed. Following Mena
et al. (2018), we upper bound it by replacing it
with KL(G(W, 1)||G(0, 1)), which is available in
closed form.

4.2.1 Bregman’s Method

To optimize objective (11) we iterate over the fol-
lowing steps of optimization:

0O = exp w (13)
T
1
vji<m, 05 =70 4
1
o!'t2) — o) (15)
1
vi, 0 — 70"y (16)

where {i, :} index ith row, {:, 7} index jth column
and T = ZD-{X' normalize the vectors. Intuitively,

the alignment scores are initially computed from

3See proof in Appendix J.

the logits W, without taking constraints into ac-
count, and then alternating optimization is used to
‘fit’ the constraints on columns and rows.

Proposition 1. lim;_,,, O) = O(W,T) where
O(W, 1) is defined in Equation 11.

See Appendix I for a proof based on the proof for
the Bregman method (Bregman, 1967). In practice,
we take 7 = 50, and have Oy(e, G,x) = OT).
Importantly, this algorithm is highly parallelizable
and amendable to batch implementation on GPU.
We compute the gradients with unrolled optimiza-
tion.

4.2.2 Neural Parameterization

We introduce the neural modules used for estimat-
ing logits W = F (G, x) and also the masking
mechanism that both ensures acyclicity and en-
ables the use of the copy mechanism. We have
W = Wrw 4 Wmask Eiret we define the un-
masked logits, W™V = AW o Sraw:
h& = RelGCN(G; 0) € R™*4

AW BiAfﬁIleahgn(htOken, he o hend; ¢)

S = BiAffine™8™ " (h#, h® o h*"%; ¢)
where RelGCN is a relational graph convolutional
network (Schlichtkrull et al., 2018) that takes an
AMR graph G and produces embeddings of its
nodes informed by their neighbourhood in G.
hend ¢ R1X4 is the trainable embedding of the
terminal node, and htoke" € R”*4 jg the BiLSTM
encoding of a sentence from Section 3.1.

The masking also consists of two parts, the align-
ment mask and the segmentation mask, W™ask —
Amask o gmask If 5 node is copy-able from at
least one token, the alignment mask prohibits align-
ments from other tokens by setting the correspond-
ing components A?;aSk to —oo.

Acyclicity is ensured by setting S™k so that
generation order with circles will get negative in-
finity in Equation 11. While there may be more
general ways to encode acyclicity (Martins et al.,
2009), we simply perform a depth-first search
(DFS) from the root node® and permit an edge
from node ¢ and j only if ¢ precedes j (not neces-
sarily immediately) in the traversal. In other words,
S?;aSk is set to —oo for edges (i, j) violating this
constraint. The rest of components in S™*¢ are
set to 0. Note that this masking approach does not
require changes in the optimization method.

®We use lexicographic ordering of edge labels in DFS.

9080

S Parsing

While we relied on the latent variable machinery
to train the parser, we do not use it at test time.
In fact, the encoder Q4 (O|G, x) is discarded after
training. At test time, the first step is to predict sets
of concept nodes for every token using the concept
identification model Py(v|x, O) (as shown in Fig-
ure 4). Note that the token-specific autoregressive
models can be run in parallel across tokens. The
second step is predicting relations between all the
nodes, relying on the relation identification model
Py(E|x,0,v).

6 Experiments

We experiment on LDC2016E25 (AMR2.0) and
LDC2020T02 (AMR3.0). The evaluation is based
on Smatch (Cai and Knight, 2013), and the evalua-
tion tool of Damonte et al. (2017). We compare our
generation-order induction framework to pre-set
segmentations, i.e., producing the segmentation on
a preprocessing step. We vary the segmentation
methods while keeping the rest of the model identi-
cal to our full model (i.e., the same autoregressive
model and the learned alignment). We provide ab-
lation studies for our induction framework. We
further provide visualization of the induced genera-
tion order, along with extra details, in Appendix.

Rule-based Segmentation We introduce a
hand-crafted rule-based segmentation method,
which relies on rules designed to handle specific
AMR constructions. In particular, we use the
hand-crafted segmentation system of Lyu and Titov
(2018), or, more specifically, its re-implementation
by Zhang et al. (2019a). Arguably, this can be
thought of as an upper bound for how well an induc-
tion method can do. This fixed segmentation can
be incorporated into our latent-generation-order
framework, so that the alignment between concept
nodes and the tokens will still be induced. This is
achieved by fixing S, while still inducing A.

Greedy Segmentation We provide a greedy
strategy for segmentation that serves as a determin-
istic baseline. Many nodes are aligned to tokens
with the copy mechanism. We could force the un-
aligned nodes to join its neighbors. This is very
similar to the forced alignment of unaligned nodes
used in the transition parser of Naseem et al. (2019).
Again, the segmentation can be incorporated into
our latent-generation-order framework by enforc-
ing S and inducing A. See Appendix E for extra

details about the strategy.

Results In Table 1, we compare our models with
recent AMR parsers (Xu et al., 2020a; Cai and
Lam, 2020, 2019; Zhang et al., 2019a; Naseem
et al., 2019; Lindemann et al., 2020; Lee et al.,
2020), as well as (Lyu and Titov, 2018), which
we build on, and (van Noord and Bos, 2017), the
earliest model which does not exploit any rules.
Overall, our model (‘full’) performs competitively,
but lags behind scores reported by some of the
very recent parsers.” However, except for a no-rule
version of Cai and Lam (2020), all these models
either use rules (Lee et al., 2020) (see Section 7) or
specialized pretraining (Xu et al., 2020a).

Both our VAE model and the rule-based seg-
mentation achieve high concept identification
scores (Damonte et al., 2017). The relation iden-
tification component is however weaker than, e.g.,
(Cai and Lam, 2020). This may not be surprising,
as we, following Lyu and Titov (2018), score edges
independently, whereas (Cai and Lam, 2020) per-
form iterative refinement which is known to boost
performance on relations (Lyu et al., 2019). Also,
we use BiILSTM encoders, which — while cheaper
to train and easier to tune — is likely weaker than
Transformer encoders used by Astudillo et al.; Lee
et al. While these modifications, along with using
extra pre-training techniques and data augmenta-
tion, may further boost performance of our model,
we believe that our model is strong enough for our
purposes, i.e. demonstrating that informative seg-
mentation can be induced without relying on any
rules.

Indeed, our approach beats the greedy baseline
and approaches the rule-based system. The per-
formance gap between the rule-based system and
VAE is smaller on AMR 3.0 (0.2 Smatch), possibly
because the rules were developed for AMR 2.0.
Alignment Analysis We analyzed the align-
ment induced by our full model and the model
which uses rule-based segmentation. The align-
ments were evaluated at the level of individual
concepts: if a subgraph was aligned to a token,
all its concepts were considered aligned to that to-
ken. The evaluation was done on 40 sentences.
The alignment error rates were 12%, 15% and 14%
for the full model, greedy methods and the rule-
based method, respectively. This suggests that our

"Results from Lee et al. replace Roberta-large with
Roberta-base in Astudillo et al.. With semi-supervised learn-
ing, Lee et al. (2020) achieved 81.3 Smatch score.

9081

R Concept SRL Smatch

vNoord17 - 71.0
Lyul8 + 85.9 69.8 74.4
Zhang19 + 86 71 77.0
Naseem19 + 86 72 75.5
Cail9 - 73.2
Lindemann20 + 76.8
Lee20 + 88.1 78.2 80.2
Cai20:

w/ rules + 88.1 74.2 80.2

w/orules - 88.1 74.5 78.7
Xu20 - 874 78.9 80.2
greedy - 875401 71.3+0.1 752 40.1
rule + 88.7+02 73.6+02 76.8+04
full - 883403 73.0+02 76.1 £0.2
Table 1: Scores with standard deviation on the AMR

2.0 test set. digits. The columns 'R’ indicate if hand-
crafted rules are used for segmentation, <> indicates that
the system used specialized pretraining or self-training.
Our results are averaged over 4 runs.

Metric Concept SRL Smatch

greedy 87.0 71.5 748
rule 88.0 726 75.8
full 87.8 729 756

Table 2: AMR 3.0 test set, averaged over 2 runs.

Concept SRL Smatch
nothing learned 81.7 62.6 61.9
segmentation learned 86.0 69.1 70.5
alignment learned 87.6 71.1 74.4
full (all learned) 88.3 73.0 76.1

Table 3: Scores with different versions of latent seg-
mentation on the AMR 2.0 test set, averaged over 2
runs

method is able to induce relatively accurate align-
ments, and joint induction of alignments with seg-
mentation may be beneficial, or, at the very least,
not detrimental to alignment quality.

Ablations To reconfirm that it is important to
learn the segmentation and alignment, rather than
to sample it randomly, we perform further ablations.
In our parameterization, discussed in Section 4.2.2,
it is possible to set A™" = 0 and/or SV = 0,
which corresponds to sampling from the prior in
training (i.e. quasi-uniformly while respecting the
constraints defined by masking) rather than learn-
ing them. We consider 4 potential options, from
sampling everything uniformly to learning every-
thing (as in our method). The results are summa-

rized in Table 3. As expected, the full model per-
forms the best, demonstrating that it is important to
learn both alignments and segmentation. Interest-
ingly, both ‘segmentation learned’ and ‘alignment
learned’ obtain reasonable performance, but the
‘nothing learned’ model fails badly.

7 Related Work

A wide range of approaches for AMR parsing
have been explored, including graph-based mod-
els (Flanigan et al., 2014; Werling et al., 2015; Lyu
and Titov, 2018; Zhang et al., 2019a), transition-
based models (Damonte et al., 2017; Balles-
teros and Al-Onaizan, 2017), grammar-based mod-
els (Peng et al., 2015; Artzi et al., 2015; Groschwitz
et al., 2018; Lindemann et al., 2020) and neural
autoregressive models (Konstas et al., 2017; van
Noord and Bos, 2017; Zhang et al., 2019b; Cai and
Lam, 2020; Xu et al., 2020b).

The majority of strong parsers rely on explicit
graph segmentation in training. Typically, the seg-
mentation is dealt with hand-crafted rules, with
rule templates developed by studying training set
statistics and ensuring the necessary level of cover-
age. Alternatively, Artzi et al. (2015); Groschwitz
et al. (2017, 2018); Lindemann et al. (2020); Peng
et al. (2015) using existing grammar formalisms to
segment the AMR graphs. Astudillo et al. (2020);
Lee et al. (2020) - while not not relying on graph
recategorization rules - use a rule system to ‘pack’
and ‘unpack’ nodes. In recent work, strong results
were obtained without using any explicit segmenta-
tion and alignment, relying on sequence-sequence
models (Xu et al., 2020b; Cai and Lam, 2020), still
the rules appear useful even with these strong mod-
els (Cai and Lam, 2020).

More generally, outside of AMR parsing, dif-
ferentiable relaxations of latent structure repre-
sentations have received attention in NLP (Kim
et al., 2017; Liu and Lapata, 2018), including pre-
vious applications of the perturb-and-MAP frame-
work (Corro and Titov, 2019). From a more gen-
eral goal perspective — inducing a segmentation
of a linguistic structure — our work is related to
tree-substitution grammar induction (Sima’an et al.,
1995; Cohn et al., 2010), the DOP paradigm (Bod
et al.,, 2003) and unsupervised semantic pars-
ing (Poon and Domingos, 2009; Titov and Kle-
mentiev, 2011), though the methods used in that
previous work are very different from ours.

9082

8 Conclusions

To eliminate hand-crafted segmentation systems
used in previous AMR parsers, we cast the align-
ment and segmentation as generation-order induc-
tion. We propose to treat this generation order
as a latent variable in a VAE framework. Our
method outperforms a simple segmentation heuris-
tic and approaches the performance of a method
using rules designed to handle specific AMR con-
structions. Importantly, while the latent variable
modeling machinery is used in training, the parser
is very simple at test time. It tags the input words
with AMR concept nodes with autoregressive mod-
els and then predicts relations between the nodes
independently from each other.

Vanilla sequence-to-sequence models are known
to struggle with out-of-distribution generaliza-
tion (Lake and Baroni, 2018; Bahdanau et al.,
2019), and, in the future work, it would be interest-
ing to see if this holds for AMR and if such more
constrained and structured methods as ours can
better deal with this more challenging but realistic
setting.

Acknowledgments

We thank the reviewers for their useful feedback
and comments. The project was supported by the
European Research Council (ERC StG BroadSem
678254), the Dutch National Science Foundation
(NWO VIDI 639.022.518) and Bloomberg L.P.

References

Rafael Anchiéta and Thiago Pardo. 2018. Towards
AMR-BR: A SemBank for Brazilian Portuguese lan-
guage. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage ccg semantic parsing with amr. In
EMNLP.

Ramén Ferndndez Astudillo, Miguel Ballesteros,
Tahira Naseem, A. Blodgett, and Radu Florian. 2020.
Transition-based parsing with stack-transformers.
ArXiv, abs/2010.10669.

Dzmitry Bahdanau, Shikhar Murty, Michael
Noukhovitch, Thien Huu Nguyen, Harm de Vries,
and Aaron Courville. 2019. Systematic general-
ization: what is required and can it be learned?
ICLR.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. Amr
parsing using stack-lstms. ArXiv, abs/1707.07755.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking.

Rens Bod, Remko Scha, Khalil Sima’an, et al. 2003.
Data-oriented parsing. University of Chicago Press.

Claire Bonial, Bianca Badarau, Kira Griffitt, Ulf Her-
mjakob, Kevin Knight, Tim O’Gorman, Martha
Palmer, and Nathan Schneider. 2018. Abstract
Meaning Representation of constructions: The more
we include, the better the representation. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Claire Bonial, Lucia Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David Traum, and Clare Voss. 2020.
Dialogue-AMR: Abstract Meaning Representation
for dialogue. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
684—695, Marseille, France. European Language Re-
sources Association.

Julia Bonn, Martha Palmer, Zheng Cai, and Kristin
Wright-Bettner. 2020. Spatial AMR: Expanded
spatial annotation in the context of a grounded
Minecraft corpus. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
4883-4892, Marseille, France. European Language
Resources Association.

L. M. Bregman. 1967. The relaxation method of find-
ing the common point of convex sets and its applica-
tion to the solution of problems in convex program-
ming. Ussr Computational Mathematics and Math-
ematical Physics, 7:200-217.

Deng Cai and Wai Lam. 2019. Core semantic first: A
top-down approach for AMR parsing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1IJCNLP), pages 3799-3809, Hong
Kong, China. Association for Computational Lin-
guistics.

Deng Cai and Wai Lam. 2020. Amr parsing via graph-
sequence iterative inference. In ACL.

Shu Cai and K. Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In ACL.

Trevor Cohn, Phil Blunsom, and Sharon Goldwater.
2010. Inducing tree-substitution grammars. The
Journal of Machine Learning Research, 11:3053—
3096.

9083

https://www.aclweb.org/anthology/L18-1157
https://www.aclweb.org/anthology/L18-1157
https://www.aclweb.org/anthology/L18-1157
https://www.aclweb.org/anthology/L18-1266
https://www.aclweb.org/anthology/L18-1266
https://www.aclweb.org/anthology/L18-1266
https://www.aclweb.org/anthology/2020.lrec-1.86
https://www.aclweb.org/anthology/2020.lrec-1.86
https://www.aclweb.org/anthology/2020.lrec-1.601
https://www.aclweb.org/anthology/2020.lrec-1.601
https://www.aclweb.org/anthology/2020.lrec-1.601
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/D19-1393

Michele Conforti, Gerard Cornuejols, and Giacomo
Zambelli. 2014. Integer Programming. Springer
Publishing Company, Incorporated.

Differentiable
Semi-supervised parsing with
ArXiv,

Caio Corro and Ivan Titov. 2019.
perturb-and-parse:

a structured variational autoencoder.
abs/1807.09875.

Marco Damonte and Shay B. Cohen. 2018. Cross-
lingual abstract meaning representation parsing. In
Proceedings of NAACL.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In EACL.

Shibhansh Dohare and Harish Karnick. 2017. Text
Summarization using Abstract Meaning Representa-
tion. arXiv preprint arXiv:1706.01678.

Jeffrey Flanigan, Sam Thomson, Jaime G. Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In ACL.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, M. Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. ArXiv, abs/1803.07640.

Jonas Groschwitz, Meaghan Fowlie, Mark Johnson,
and Alexander Koller. 2017. A constrained graph
algebra for semantic parsing with AMRs. In IWCS
2017 - 12th International Conference on Computa-
tional Semantics - Long papers.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
Amr dependency parsing with a typed semantic al-
gebra. In ACL.

Hardy and Andreas Vlachos. 2018. Guided neural lan-
guage generation for abstractive summarization us-
ing abstract meaning representation. In EMNLP.

Tamir Hazan and Tommi Jaakkola. 2012. On the parti-
tion function and random maximum a-posteriori per-
turbations. arXiv preprint arXiv:1206.6410.

Fuad Issa, Marco Damonte, Shay B. Cohen, Xiaohui
Yan, and Yi Chang. 2018. Abstract meaning repre-
sentation for paraphrase detection. In NAACL-HLT.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with gumbel-softmax.
ArXiv, abs/1611.01144.

Bevan K. Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-based machine translation with hyper-
edge replacement grammars. In COLING.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M Rush. 2017. Structured attention networks.
arXiv preprint arXiv:1702.00887.

Diederik P. Kingma and Jimmy Ba. 2015.
A method for stochastic optimization.
abs/1412.6980.

Adam:
CoRR,

Diederik P. Kingma, Tim Salimans, and M. Welling.
2017. Improved variational inference with inverse
autoregressive flow. ArXiv, abs/1606.04934.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. International Confer-
ence on Learning Representations.

Ioannis Konstas, Srini Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gen-
eration. In ACL.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873-2882. PMLR.

Youngsuk Lee, Ramoén Ferndndez Astudillo, Tahira
Naseem, Revanth Gangi Reddy, Radu Florian, and
S. Roukos. 2020. Pushing the limits of amr parsing
with self-learning. ArXiv, abs/2010.10673.

Percy Liang. 2016. Learning executable semantic
parsers for natural language understanding. Commu-
nications of the ACM, 59(9):68-76.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2020. Fast semantic parsing with well-
typedness guarantees. ArXiv, abs/2009.07365.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman M.
Sadeh, and Noah A. Smith. 2015. Toward Ab-
stractive Summarization Using Semantic Represen-
tations. In HLT-NAACL.

Yang Liu and Mirella Lapata. 2018. Learning struc-
tured text representations. Transactions of the Asso-
ciation for Computational Linguistics, 6:63-75.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Chunchuan Lyu, Shay B. Cohen, and Ivan Titov. 2019.
Semantic role labeling with iterative structure refine-
ment. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1071-1082, Hong Kong, China. Association for
Computational Linguistics.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 397-407, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

9084

https://www.aclweb.org/anthology/W17-6810
https://www.aclweb.org/anthology/W17-6810
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.18653/v1/D19-1099
https://doi.org/10.18653/v1/D19-1099
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous
relaxation of discrete random variables. ArXiv,
abs/1611.00712.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55-60.

André FT Martins, Noah A Smith, and Eric Xing. 2009.
Concise integer linear programming formulations
for dependency parsing. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP, pages 342—
350.

Gonzalo E. Mena, David Belanger, Scott W. Linder-
man, and Jasper Snoek. 2018. Learning latent per-
mutations with gumbel-sinkhorn networks. ArXiv,
abs/1802.08665.

Noelia Migueles-Abraira, Rodrigo Agerri, and Arantza
Diaz de Ilarraza. 2018. Annotating Abstract Mean-
ing Representations for Spanish. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Arindam Mitra and Chitta Baral. 2016. Addressing a
question answering challenge by combining statisti-
cal methods with inductive rule learning and reason-
ing. In AAAL

Tahira Naseem, Abhishek Shah, Hui Wan, Radu
Florian, Salim Roukos, and Miguel Ballesteros.
2019. Rewarding smatch: Transition-based amr
parsing with reinforcement learning. ArXiv,
abs/1905.13370.

George Papandreou and Alan L. Yuille. 2011. Perturb-
and-map random fields: Using discrete optimization
to learn and sample from energy models. 2011 In-
ternational Conference on Computer Vision, pages
193-200.

Max B. Paulus, Dami Choi, Daniel Tarlow, Andreas
Krause, and Chris J. Maddison. 2020. Gradient
estimation with stochastic softmax tricks. ArXiv,
abs/2006.08063.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning, pages 32—41, Beijing,
China. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532—1543.

Hoifung Poon and Pedro Domingos. 2009. Unsu-
pervised semantic parsing. In Proceedings of the
2009 conference on empirical methods in natural
language processing, pages 1-10.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings
with Abstract Meaning Representation graphs. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 425-429, Doha, Qatar. Association for Com-
putational Linguistics.

M. Schlichtkrull, Thomas Kipf, P. Bloem, R. V. Berg,
Ivan Titov, and M. Welling. 2018. Modeling rela-
tional data with graph convolutional networks. In
ESWC.

Khalil Sima’an, Rens Bod, Steven Krauwer, and
Remko Scha. 1995. Efficient disambiguation by
means of stochastic tree substitution grammars. In
Recent Advances in NLP, volume 136.

Li Song, Yuling Dai, Yihuan Liu, Bin Li, and Weiguang
Qu. 2020. Construct a sense-frame aligned pred-
icate lexicon for Chinese AMR corpus. In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 2962-2969, Marseille,
France. European Language Resources Association.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using amr. Transactions of the As-
sociation for Computational Linguistics, 7:19-31.

Ida Szubert, Marco Damonte, Shay B. Cohen, and
Mark Steedman. 2020. The role of reentrancies in

abstract meaning representation parsing. In Find-
ings of EMNLP.

Ivan Titov and Alexandre Klementiev. 2011. A
Bayesian model for unsupervised semantic parsing.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1445-1455.

Rik van Noord and Johan Bos. 2017. Neural seman-
tic parsing by character-based translation: Experi-
ments with abstract meaning representations. ArXiv,
abs/1705.09980.

Keenon Werling, Gabor Angeli, and Christopher D.
Manning. 2015. Robust subgraph generation im-
proves abstract meaning representation parsing. In
ACL.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

9085

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://www.aclweb.org/anthology/L18-1486
https://www.aclweb.org/anthology/L18-1486
https://doi.org/10.18653/v1/K15-1004
https://doi.org/10.18653/v1/K15-1004
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.3115/v1/D14-1048
https://doi.org/10.3115/v1/D14-1048
https://www.aclweb.org/anthology/2020.lrec-1.362
https://www.aclweb.org/anthology/2020.lrec-1.362

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-
Fei. 2017. Scene graph generation by iterative mes-
sage passing. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition,

pages 5410-5419.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020a. Improving AMR parsing
with sequence-to-sequence pre-training. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2501-2511, Online. Association for Computational
Linguistics.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang,
and Guodong Zhou. 2020b. Improving amr pars-
ing with sequence-to-sequence pre-training. ArXiv,
abs/2010.01771.

Sheng Zhang, Xutai Ma, Kevin Duh, and Ben-
jamin Van Durme. 2019a. Amr parsing as sequence-
to-graph transduction. ArXiv, abs/1905.08704.

Sheng Zhang, Xutai Ma, Kevin Duh, and Ben-
jamin Van Durme. 2019b. Broad-coverage semantic
parsing as transduction. ArXiv, abs/1909.02607.

9086

https://doi.org/10.18653/v1/2020.emnlp-main.196
https://doi.org/10.18653/v1/2020.emnlp-main.196

A Decoding

We need to model the identification of the root

node of the AMR graph. We specify the root iden-
tification as:
Py(ifx, 0,v) = — P b))
> j=o exp((h™°t, hf))
where h™°! is a trainable vector. Inspired by Zhang
et al. (2019a), who rely on AMR graphs being
closely related to dependency trees, we first decode
the AMR graph as a maximum spanning tree with
log probability of most likely arc-label as edge
weights. The reentrancy edges are added after-
wards, if their probability is larger than 0.5. We
add at most 5 reentrancy edges, based on the em-
pirical founding of Szubert et al. (2020).

A7

B Concept Identification Detail

Now, we specify Pp(v;/h?°4¢) and Ppy(v,, hil)
with a copy mechanism. Formally, we have a small
set of candidate nodes V(x;) for each token x;, and
a shared set of candidate nodes V*"*, which con-
tain veopy. This, however, depends on the token, yet
we are learning a latent alignment. During training,
we consider all the union of candidate nodes from
all possible tokensV(v;) = Uj.y,cv(x,) V(X;). We
abuse notation slightly, and denote the embedding
of node 7 by v;. At training time, for node v;, we
have

hlc — NNnode(h?ode; 9)

[[vi € V"] exp({vs, hf))

2 vev xP((v; b))
[[vi € V(vi)]l exp({veopy, bf))

2 vev €xP((v, b))

exp(S(v;, hy))
ZveV(vi) eXp(S(’U, hf)
where NN is a standard one-layer feedforward neu-
ral network, and [[. . .]] denotes the indicator func-
tion. S(v, hf) assigns a score to candidate nodes
given the hidden state. To use pre-trained word
embedding (Pennington et al., 2014), the repre-
sentation of v is decomposed into primitive cate-
gory embedding (C(v)® and surface lemma embed-
ding. The score function is then a biaffine scoring
based on the embeddings and hidden states(L(v)

S(v,h§) = Biaffine(C(v) o L(v), h{;6). For the

(18)

Py(vif o) =

(19)

8 AMR nodes have primitive category, including string,
number, frame, concept and special nodes (e.g. polarity).

terminal nodes, we have:
hj = NN"%(hi*!; 9)
1 1 b

exp((Vm, hf))
> vev exp((v, hi))
At testing time, we perform greedy decoding to
generate nodes from each token in parallel until
either terminal node or 7" nodes are generated.

(20)

Pp(vip |0 = (21)

C Computing B and A

We obtain B by having:

B = A[S.... + Diag(S.,.)]"; (22)
where S. .;,, takes the submatrix of S, excluding the
last column, and Diag(S. ,, is the diagonal matrix
whose diagonal entries are the last column of S.
Intuitively, [S. .., + Diag(S. ;)] can be thought as
a Markov transition matrix that passes down the
alignment along the generation order, but keeps the
alignment mass if the node will generate (). We
truncate the transition at 7' = 4, as we do not
expect a subgraph containing more than 4 nodes.

To obtain A*°, we observe A° should obey the
following self-consistency equation:
A® =A>S..,+A (23)
This means, node j is generated from token k iff
node ¢ is is generated from token £ and node @
generates node j or node j is directly generated
from token k. This A can be computed by ini-
tializing A>° = A, and repeating Equation 23 as
assignment for 7' = 4 times. Intuitively, the A
alignment is passed down along the generation or-
der, while keeping getting alignment mass from the
first node alignment. As a result, all nodes get as-
signed an alignment. As an alternative motivation,
the above algorithmic assignment works as a trun-
cated power series expansion of self-consistency
equation solution A® = [I — S. .,,] 1A.

D Ablation on Stochastic Softmax

Our full model uses the Straight-Through (ST)
gradient estimator and the Free Bits trick with
A = 10 (Kingma et al., 2017).° We perform an
analysis of different variations of the stochastic soft-
max: (1) the soft stochastic softmax is the original
one with the entropic regularizer (see Section 4.2);
(2) the rounded stochastic softmax, which selects
the highest scored next node from each tokens and

°The Free Bits trick is used to prevent ‘the posterior
collapse’ (Kingma et al., 2017). In other words, we use
max (A, KL(G(W, 1)]|G(0,1))) for the KL divergence regu-
larizer.

9087

Metric Concept SRL Smatch
no free bits 83.5 66.3 66.1
soft 84.9 68.1 70.3
rounding 87.7 71.8 745
straight-through 88.3 73.0 76.1

Table 4: Scores with different versions of latent seg-
mentation on the AMR 2.0 test set. Scores are averaged
over 2 runs

concept nodes based on the soft stochastic soft-
max;'? (3) our full model with the ST estimator.
All those models use Free Bits (A = 10), while for
‘no free bits” A\ = 0. As we can see in Table 4, there
is a substantial gap between using structured ST
and the two other versions. This illustrates the need
for exposing the parsing model to discrete struc-
tures in training. Also, the Free Bits trick appears
crucial as it prevents the (partial) posterior collapse
in our model. We inspected the logits after training
and observed that, without free-bits, the learned W
are very small, in the [—0.01, 4+0.01] range.

E Greedy Segmentation

We present a greedy strategy for segmentation that
serves as a deterministic baseline. This greedy
segmentation can be used in the same way as the
rule-based segmentation by setting S™2k,

Many nodes are aligned to tokens with the copy
mechanism. We could force the unaligned nodes
to join their neighbors. This is very similar to the
forced alignment of unaligned nodes used in the
transition parser of Naseem et al. (2019). We traver-
sal the AMR graph the same way as we do when
we produce the masking (Section 4.2.2). During
the traversal, we greedily combine subgraphs until
one of the constraints is violated: (1) the combined
subgraph will have more than 4 nodes; (2) the com-
bined subgraph will have more than 2 copy-able
nodes. We present the algorithm recursively (see
Algorithm 1). Variable z; indicates whether node
1 is copy-able and T' = 4 represent the maximum
subgraph size; n denotes the current subgraph size;
z indicates whether the current subgraph contains a
copy-able node; k is the last node in the current sub-
graph, which is used to generate to future nodes in
a subgraph. The conditionn+n' <TAzZ' 42 <1
determines whether we combine the current sub-

19Such rounding does not provide any guarantee of being
a valid generation order, but serves as a baseline. In general,
a threshold function (at 0.5) can be applied if the constraints
have no structure.

Input: graph G, node index ¢
Result: segmentation S, n, 2, k

S=0,k=1t,n=1,z=1z;

forall j € Child[:] do

if 7 notvisited then

S',n', 2/ k' = Greedy(G, j) ;

S=S+¥9

ifn+n <TAzZ+z<1then
Spj=1lLn=n+n,

z=z+72 k=F,;

end
end

end
Algorithm 1: Greedy Segmentation

graph rooted at node ¢ and the subgraph rooted at
node j. Running the algorithm on an AMR graph
and the root index will get us the entire segmen-
tation. This greedy method does not require any
expert knowledge about AMR, so this should serve
as a baseline.

F Visualizing Generation Order

In Figures 6, 7, 8, 9,!' we present one example
of the induced learned for our three variations of
stochastic softmax, and one with rule-based seg-
mentation. The nodes are represented in []. Their
gold AMR is:
(m / make-01
:ARGO (t / they)
ARGl (t2 / thing
:ARG2-of (p / poster —01)
:ARGO-of (e / express—01
ARGl (t3 / thing
:ARGIl-of (o / opine-01
:ARGO t)))))

As we can see, the standard stochastic softmax
indeed produces soft latent structure that might
result in large training/testing gap. Furthermore,
the rounding strategy does not satisfy the constraint
that every concept node can only be generated from
one token or another concept node (i.e. [poster-01]
is generated twice, and [thing] is never generated.).
Meanwhile, the straight through stochastic softmax
produce a valid generation order. In Appendix J,
we will show the validity formally. It is worth to
note that our learned generation order differs from
the rule based one. When producing the rule-based
segmentation, ‘(t2 / thing :ARGO-of (e / express-01

"Incidentally, the greedy segementation produces the same
segmentation as rule-based in this example.

9088

[thing] -

[opine-01] - .
[express-01] - .
tthey1 -l
[poster-01] -
[thing] -
[make-01] - -
o W N EEEE =
Vo e R ha -
ISR e PO NN SRR
& X & LS S ¢ ¢ K & &2
&P & N T & & < 0,7@ < @,3%
\°\+° & N

Figure 6: Example of Soft Stochastic Softmax Latent
Generation Order.

[thing] -

[opine-01] - . .
[express-01] - .
[they] *.
[poster-01] - . .
[thing] -
[make-01] - -
e- [l H B EEEE B
, o [. e -
S .
/\v\@* & o & O & & & &> (gﬂ\ & >
L Qo'a Q&fq & & c}‘& @(,p N a)@& & N
o O R & N

Figure 7: Example of Rounded Stochastic Softmax La-
tent Generation Order.

[thing] - .
[opine-01] - .
[express-01] - .
eyl -}
[poster-01] - .
[thing] - B
[make-01] - .
e- H B EEEE B
o e R, R o
S .
/\V\\z* & \i_\oe’ @({’ (}oq @e,\) (-\\0(\) \(\Q\ ~ ,0\’\ (\qj\\ N .\(9\ /Q\«\
& & Q@" & & & & T &L
o &R & N

Figure 8: Example of Hard (straight-through) Stochas-
tic Softmax Latent Generation Order.

[thing] - .
[opine-01] - .
[express-01] - .
teney [
[poster-01] - .
[thing] - B
[make-01] - .
e- H H B EEEE B
,omm o, e, e, EEEEEmEeO™
S .
&(\eﬁ & o & O & & & > (gﬂ\ S &
& & Q@" & & é‘& &f? < (;@‘ & &
o &R & N

Figure 9: Example of Rule-Segmentation Stochastic
Softmax Latent Generation Order.

)’ took precedence over ‘(t2 / thing :ARG2-of (p
/ poster-01)’ due to the order over traversal edges.
The learned model, however, figured out that the
poster is the thing.

G Hyper-Parameters

We use RoBERTa-large (Liu et al., 2019) from
Wolf et al. (2019) for contextualised embeddings
before LSTMs. BiLSTM for concept identification
has 1 layer, and BiLSTM for relation identification
has 2 layers. Both have hidden size 1024. Their
averaged representation is used for alignment. Rel-
GCN used 128 hidden units and 1 hidden layer
(plus one input layer and output layer). Relation
identification used 128 hidden units. The LSTM for
the locally auto-regressive model is one layer with
1024 hidden units. Adam (Kingma and Ba, 2015)
is used with learning rate 3e — 4 and beta=0.9, 0.99.
Early stopping is used with maximum 60 epochs
of training. Dropout is set at 0.33. Those hyper-
parameters are selected manually, we basically fol-
lowed the standard model size as in (Lyu and Titov,
2018; Zhang et al., 2019a). We will release the code
based on the AllenNLP framework (Gardner et al.,
2018).

H Pre-and-Post processing

We follow Lyu and Titov (2018) for pre-and-post
processing. We use CoreNLP (Manning et al.,
2014) for tokenization and lemmatization. The
copy-able dictionary is built with the rules based
on string matching between lemmas and concept
node string as in Lyu and Titov (2018).

For post-processing, wiki tags are added after
the named entity being produced in the graph via a
look-up table built from the training set or provided
by CoreNLP. We also collapse nodes that represent
the same pronouns as heuristics for co-reference
resolution.

I Proof of Proposition 1

We prove Proposition 1 based on the Bregman
method (Bregman, 1967). The Bregman’s method
solves convex optimization with a set of linear
equalities, the setting is as follows:

min F(z) s.t. Az = b,
z€Q
where F is strongly convex and continuously dif-

ferentiable. Note that A is not our alignment,
but denotes a matrix that represents constraints.
Two important ingredients are Bregman’s diver-

(24)

9089

gence Dp(z,y) = F(z) — F(y) — (VF(y),z —
y), and Bregman’s projection: P, p(y) =
argmin,c, Dp(x,y), where w represents con-
straint. Now, the Bregman’s method works as:
Intuitively, Bregman’s method iteratively performs

pick y° € {y € Q|VF(y) = uA,u € R™};
for ¢t + 1toocodo
yo <y
for i < 1tomdo
yf A PAﬂ:bi,F(y;;—l) ;
end
Y Y
end
Algorithm 2: Bregman’s method for solving
convex optimization over linear constraints

alternating projections w.r.t. each constraint. After
each projection, the score F' is lowered by the con-
struction of Bregman’s projection. Such alternating
projections eventually converge, and with careful
initialization solve the optimization problem.

Theorem 1 (Bregman 1967). lim; ., ' solves the
optimization problem 24.

Proof of Proposition 1. We show Proposition 1 by
showing the Algorithm defined by equations 13,
14, 15 and 16 implements Bregman’s method.
Then, Proposition 1 follows from Theorem 1.
Now, we build Bregman’s method for our op-
timization problem 11. For simplicity, we fo-
cus on the linear algebraic structure, but do not
strictly follow the standard matrix notation. We
have O as variable, and F(O) = —(W,0) +
7(0,log O — >12. For initialization, we have
VF(O) = —W + 7log O. Take u = 0, we have
00 = exp(¥) <= log 0 = W . This cor-
responds to the initialization step as 1n our Equa-
tion 13. Then, we iterate through constraints to per-
form Bregman’s projection. First, the column nor-
malization constraints V5 < m, Y771 O, =
1. Take a 5 < m, we need to compute

Pz?j-m 10, (O(t)). A very important prop-
erty is that ‘our F(O) = >.; 1ij(Os5), where
fU(O”) = —WijOij —|—7‘Oij (log Ol'j — 1). More-

over, Dp(z,y) =0 <= x = y. Therefore, for
variables that are not involved in the constraints,
they are kept the same. To simplify notation, we

12This regularizer differs from the original one in 11 by a
constant m + n, due to the constraints. So, the optimization
problem is equivalent.

extend the domain of F' to parts of the variable.
e.g., F(0O.;) = >, fij(Oi;). Now, let us focus on
column 7, we have:

argmin F(z) — F(O. ;) —(VF(O.;),z — O.;
xy o, xi=1
(25)
= arg min —(W;J, x) + 7{x,logz — 1)
xy s, =1
— (VF(O:;),z) (26)
= argmin —(W;J, z) + 7(z,logz — 1)
Y, xi=1
— <—W;,j + 7 log O;J‘, l‘> (27)
= argmin 7(z,logz — 1) 4+ (1log O. ;, z)
Yy, =1
(28)
= argmin (z,logx — 1) + (log O. ;,) (29)
xy s, =1
=Softmax(log O. ;) (30)

since when iterating over these mutually non-
overlapping constraints, the non-focused variables
are always kept the same. It is hence equivalent to
computing them in parallel, which is expressed in
our column normalization step 14. Similarly, we
can derive row normalization step 16. Therefore,
our algorithm is an implementation of Bregman’s
method, and Proposition 1 follows from Theorem
1. O

J Generation Order is Discrete by LP

If O(\Wf7 0) is integral valued, it belongs to O by
definition. In most cases, there is no guarantee that
the linear programming in the relaxed space yields
a solution that is also an integer. However, in our
cases, we have the following result:

Proposition 2. With probability 1, a unique
O(W,0) € {0,1}tm)x(m+1) sypere O(W,0)
is defined in Equation 11.

Intuitively, this is a generalization of a clas-

sical result about perfect matching on bipartite
graph (Conforti et al., 2014). To prove this, we
need the following theorems from integer linear
programming.
Theorem 2 (Conforti et al. 2014, page 130,133). [
Let A be an q X p integral matrix. For all integral
vectors d,l,u and ¢ € RP, max{(c,z) : Az =
d,l < x < u} is attained by an integral vector x if
and only if A is totally unimodular."3

13 A is totally unimodular if every square submatrix has de-

terminant 0, £1. We combined a few theorems and definitions
from Conforti et al. (2014) into this theorem.

9090

Note that this theorem does not claim at all the
solution is integer, nor that it is unique. However,
one should understand this limitation as some de-
generate case of c. However, a total unimodular
matrix does characterize the convex hull of its in-
tegral points. To prove this, we need an additional
lemma.

Lemma 1 (Conforti et al. 2014, page 21). [Let
S € R" and ¢ € R"™. Then sup{({c,s) : s € S} =
sup{(c,s) : s € Conv(S)}. Furthermore, the
supremum of {c, s) is attained over S if and only if
it is attained over Conv(S).

where Conv(SS) is the convex hull of S. Now
we have the following proposition:

Proposition 3. Let A be an q X p integral matrix.
For all integral vectors d,l,u ,and ¢ € RP such
that {x € {0,1}P|Az = d,l < x < u} is a finite
set, {z € I|Az = d,| < z < u} = Conv({z €
{0,1}P|Ax = d,l < x < u}) if and only if A is
totally unimodular.

In other words, we know the LP relaxation is the
convex hull.

Proof. By Theorem 2, A is totally unimodular is
equivalent to maximum is attained by an integer
solution. Clearly, the LP relaxation contains the
convex hull. So, we only need to show that the
LP relaxation does not contain any more points.
Now suppose the LP relaxation contains another
point 2’ that’s not in the convex hull. Since, we
restrict our discussion on finite set of integer, both
the {2’} and the convex hull is closed set. Then
by the separation theorem, we have a vector c s.t.
(c,z"y > (c,z)Vx € Conv({z € {0,1}P|Ax =
d,! <z <wu}), which contradicts Lemma 1.]

Theorem 3 (Conforti et al. 2014, page 133,134). A
0, £1 matrix A with at most two nonzero elements
in each column is totally unimodular if and only if
rows of A can be partitioned into two sets, red and
blue, such that the sum of the red rows minus the
sum of the blue rows is a vector whose entries are
0, &1 (admits row-bicoloring).

Our O should be the column vector z, and con-
straints should be represented by a matrix A. In
particular, we view O as a column vector, but
still access the item by Oij.” The matrix A €
{0’ il}(m-&-(m-ﬁ-n))><((n+m)(m+l))' A:,ij denotes

the constraints involving O;; . The first m rows

' Alternatively, one could have a vector z and
Zi(m+1)+; = Oi;. However, this will gets clumsy.

of A correspond to Vj < m, Z?;“Om_l 0;; =1,
and the remaining m + n rows correspond to
Vi,Z;”:O O;; = 1. Therefore, we have Vk <
m,j < m,i,AMj =05k and Vk > m,j,’iAij =
i k—m, else Ay ;; = 0, where 0, = [[j == k]].
We have the linear constraints in standard form as
AO =1.

Lemma 2. The A defined above is totally unimod-
ular.

Proof. First, we show A admits row-bicoloring.

We color the first m rows red, and remaining

n + m rows blue. The sum of red rows is:
-1 —1 .

Rij = Yz Arig = XiZo g = [l < ml]

and the sum of blues is B;; = metn Apij =

k=m
2mtn—l i k—m = 1. Therefore, R;j — B;; =

k=m
[[j == m]] € {0,£1}, and A admits a row-
bicoloring. Since A has only 0, +1 value, and one
variable in O at most participates in two constraints
(incoming and outgoing), by Theorem 3, A is to-

tally unimodular. O
Now, we prove Proposition 2.

Proof. We have A being totally unimodular. We
have c = W ,l = 0,u = 1, by Theorem 2, the LP
solutions contain an integer vector. Since the Gum-
bel distribution has a positive and differentiable
density, by (Paulus et al., 2020, Proposition 3),
arg maxogcp (W, O) yields a unique solution with
probability 1. Clearly, this solution is the only in-
teger solution in our LP solutions. Now, suppose
another non-integer solution exists. We know the
linear programming domain is the convex hull by
Proposition 3. Clearly, another integer solution
exists, which contradicts the uniqueness of the inte-
ger solution. Hence, the O(W, 0) yields a unique
integer solution with probability 1. O

9091

