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Abstract

Pre-trained language models have been found
to capture a surprisingly rich amount of lexical
knowledge, ranging from commonsense prop-
erties of everyday concepts to detailed factual
knowledge about named entities. Among oth-
ers, this makes it possible to distill high-quality
word vectors from pre-trained language mod-
els. However, it is currently unclear to what ex-
tent it is possible to distill relation embeddings,
i.e. vectors that characterize the relationship
between two words. Such relation embeddings
are appealing because they can, in principle,
encode relational knowledge in a more fine-
grained way than is possible with knowledge
graphs. To obtain relation embeddings from a
pre-trained language model, we encode word
pairs using a (manually or automatically gen-
erated) prompt, and we fine-tune the language
model such that relationally similar word pairs
yield similar output vectors. We find that
the resulting relation embeddings are highly
competitive on analogy (unsupervised) and re-
lation classification (supervised) benchmarks,
even without any task-specific fine-tuning.1

1 Introduction

One of the most widely studied aspects of word
embeddings is the fact that word vector differences
capture lexical relations (Mikolov et al., 2013a).
While not being directly connected to downstream
performance on NLP tasks, this ability of word em-
beddings is nonetheless important. For instance,
understanding lexical relations is an important pre-
requisite for understanding the meaning of com-
pound nouns (Turney, 2012). Moreover, the ability
of word vectors to capture semantic relations has
enabled a wide range of applications beyond NLP,
including flexible querying of relational databases
(Bordawekar and Shmueli, 2017), schema match-

1Source code to reproduce our experimental results and the
model checkpoints are available in the following repository:
https://github.com/asahi417/relbert

ing (Fernandez et al., 2018), completion and re-
trieval of Web tables (Zhang et al., 2019), ontology
completion (Bouraoui and Schockaert, 2019) and
information retrieval in the medical domain (Ar-
guello Casteleiro et al., 2020). More generally,
relational similarity (or analogy) plays a central
role in computational creativity (Goel, 2019), le-
gal reasoning (Ashley, 1988; Walton, 2010), on-
tology alignment (Raad and Evermann, 2015) and
instance-based learning (Miclet et al., 2008).

Given the recent success of pre-trained language
models (Devlin et al., 2019; Liu et al., 2019; Brown
et al., 2020), we may wonder whether such mod-
els are able to capture lexical relations in a more
faithful or fine-grained way than traditional word
embeddings. However, for language models (LMs),
there is no direct equivalent to the word vector
difference. In this paper, we therefore propose a
strategy for extracting relation embeddings from
pre-trained LMs, i.e. vectors encoding the relation-
ship between two words. On the one hand, this
will allow us to gain a better understanding of how
well lexical relations are captured by these models.
On the other hand, this will also provide us with a
practical method for obtaining relation embeddings
in applications such as the ones mentioned above.

Since it is unclear how LMs store relational
knowledge, rather than directly extracting relation
embeddings, we first fine-tune the LM, such that re-
lation embeddings can be obtained from its output.
To this end, we need a prompt, i.e. a template to
convert a given word pair into a sentence, and some
training data to fine-tune the model. To illustrate
the process, consider the word pair Paris-France.
As a possible input to the model, we could use
a sentence such as “The relation between Paris
and France is <mask>". Note that our aim is to
find a strategy that can be applied to any pair of
words, hence the way in which the input is repre-
sented needs to be sufficiently generic. We then
fine-tune the LM such that its output corresponds

https://github.com/asahi417/relbert
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to a relation embedding. To this end, we use a
crowdsourced dataset of relational similarity judge-
ments that was collected in the context of SemEval
2012 Task 2 (Jurgens et al., 2012). Despite the
relatively small size of this dataset, we show that
the resulting fine-tuned LM allows us to produce
high-quality relation embeddings, as confirmed in
our extensive evaluation in analogy and relation
classification tasks. Importantly, this also holds for
relations that are of a different nature than those
in the SemEval dataset, showing that this process
allows us to distill relational knowledge that is en-
coded in the pre-trained LM, rather than merely
generalising from the examples that were used for
fine-tuning.

2 Related Work

Probing LMs for Relational Knowledge Since
the introduction of transformer-based LMs, a large
number of works have focused on analysing the
capabilities of such models, covering the extent to
which they capture syntax (Goldberg, 2019; Saphra
and Lopez, 2019; Hewitt and Manning, 2019; van
Schijndel et al., 2019; Jawahar et al., 2019; Tenney
et al., 2019), lexical semantics (Ethayarajh, 2019;
Bommasani et al., 2020; Vulic et al., 2020), and var-
ious forms of factual and commonsense knowledge
(Petroni et al., 2019; Forbes et al., 2019; Davison
et al., 2019; Zhou et al., 2020; Talmor et al., 2020;
Roberts et al., 2020), among others. The idea of
extracting relational knowledge from LMs, in par-
ticular, has also been studied. For instance, Petroni
et al. (2019) use BERT for link prediction. To this
end, they use a manually defined prompt for each
relation type, in which the tail entity is replaced
by a <mask> token. To complete a knowledge
graph triple such as (Dante, born-in, ?) they create
the input “Dante was born in <mask>” and then
look at the predictions of BERT for the masked
token to retrieve the correct answer. It is notable
that BERT is thus used for extracting relational
knowledge without any fine-tuning. This clearly
shows that a substantial amount of factual knowl-
edge is encoded in the parameters of pre-trained
LMs. Some works have also looked at how such
knowledge is stored. Geva et al. (2020) argue that
the feed-forward layers of transformer-based LMs
act as neural memories, which would suggest that
e.g. “the place where Dante is born” is stored as
a property of Florence. Dai et al. (2021) present
further evidence of this view. What is less clear,

then, is whether relations themselves have an ex-
plicit representation, or whether transformer mod-
els essentially store a propositionalised knowledge
graph. The results we present in this paper sug-
gest that common lexical relations (e.g. hypernymy,
meronymy, has-attribute), at least, must have some
kind of explicit representation, although it remains
unclear how they are encoded.

Another notable work focusing on link pre-
diction is (Bosselut et al., 2019), where GPT is
fine-tuned to complete triples from commonsense
knowledge graphs, in particular ConceptNet (Speer
et al., 2017) and ATOMIC (Sap et al., 2019). While
their model was able to generate new knowledge
graph triples, it is unclear to what extent this is
achieved by extracting commonsense knowledge
that was already captured by the pre-trained GPT
model, or whether this rather comes from the abil-
ity to generalise from the training triples. For the
ConceptNet dataset, for instance, Jastrzębski et al.
(2018) found that most test triples are in fact minor
variations of training triples. In this paper, we also
rely on fine-tuning, which makes it harder to de-
termine to what extent the pre-trained LM already
captures relational knowledge. We address this con-
cern by including relation types in our evaluation
which are different from the ones that have been
used for fine-tuning.

Unsupervised Relation Discovery Modelling
how different words are related is a long-standing
challenge in NLP. An early approach is DIRT (Lin
and Pantel, 2001), which encodes the relation be-
tween two nouns as the dependency path connect-
ing them. Their view is that two such depen-
dency paths are similar if the sets of word pairs
with which they co-occur are similar. Hasegawa
et al. (2004) cluster named entity pairs based on
the bag-of-words representations of the contexts in
which they appear. Along the same lines, Yao et al.
(2011) proposed a generative probabilistic model,
inspired by LDA (Blei et al., 2003), in which re-
lations are viewed as latent variables (similar to
topics in LDA). Turney (2005) proposed a method
called Latent Relational Analysis (LRA), which
uses matrix factorization to learn relation embed-
dings based on co-occurrences of word pairs and
dependency paths. Matrix factorization is also used
in the Universal Schema approach from Riedel et
al. (Riedel et al., 2013), which jointly models the
contexts in which words appear in a corpus with a
given set of relational facts.
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The aforementioned works essentially represent
the relation between two words by summarising
the contexts in which these words co-occur. In
recent years, a number of strategies based on dis-
tributional models have been explored that rely
on similar intuitions but go beyond simple vec-
tor operations of word embeddings.2 For instance,
Jameel et al. (2018) introduced a variant of the
GloVe word embedding model, in which relation
vectors are jointly learned with word vectors. In
SeVeN (Espinosa-Anke and Schockaert, 2018) and
RELATIVE (Camacho-Collados et al., 2019), rela-
tion vectors are computed by averaging the embed-
dings of context words, while pair2vec (Joshi et al.,
2019) uses an LSTM to summarise the contexts in
which two given words occur, and Washio and Kato
(2018) learn embeddings of dependency paths to
encode word pairs. Another line of work is based
on the idea that relation embeddings should facil-
itate link prediction, i.e. given the first word and
a relation vector, we should be able to predict the
second word (Marcheggiani and Titov, 2016; Si-
mon et al., 2019). This idea also lies at the basis of
the approach from Soares et al. (2019), who train
a relation encoder by fine-tuning BERT (Devlin
et al., 2019) with a link prediction loss. However, it
should be noted that they focus on learning relation
vectors from individual sentences, as a pre-training
task for applications such as few-shot relation ex-
traction. In contrast, our focus in this paper is on
characterising the overall relationship between two
words.

3 RelBERT

In this section, we describe our proposed relation
embedding model (RelBERT henceforth). To ob-
tain a relation embedding for given a word pair
(h, t), we first convert it into a sentence s, called
the prompt. We then feed the prompt through the
LM and average the contextualized embeddings
(i.e. the output vectors) to get the relation embed-
ding of (h, t). These steps are illustrated in Figure 1
and explained in more detail in the following.

3.1 Prompt Generation

Manual Prompts A basic prompt generation
strategy is to rely on manually created templates,

2Interestingly, Roller and Erk (2016) showed that the direct
concatenation of distributional word vectors in isolation can
effectively identify Hearst Patterns (Hearst, 1992).

Figure 1: Pipeline to transform the word pair (h, t) to
the relation embedding x.

which has proven effective in factual knowledge
probing (Petroni et al., 2019) and text classifica-
tion (Schick and Schütze, 2021; Tam et al., 2021;
Le Scao and Rush, 2021), among many others. To
test whether manually generated templates can be
effective for learning relation embeddings, we will
consider the following five templates:

1. Today, I finally discovered the relation between [h] and
[t] : [h] is the <mask> of [t]

2. Today, I finally discovered the relation between [h] and
[t] : [t] is [h]’s <mask>

3. Today, I finally discovered the relation between [h] and
[t] : <mask>

4. I wasn’t aware of this relationship, but I just read in the
encyclopedia that [h] is the <mask> of [t]

5. I wasn’t aware of this relationship, but I just read in the
encyclopedia that [t] is [h]’s <mask>

where <mask> is the LM’s mask token, and [h]
and [t] are slots that are filled with the head word
h and tail word t from the given word pair (h, t)
respectively. The main intuition is that the template
should encode that we are interested in the relation-
ship between h and t. Moreover, we avoid minimal
templates such as “[h] is the <mask> of [t]”, as
LMs typically perform worse on such short inputs
(Bouraoui et al., 2020; Jiang et al., 2020).

Learned Prompts The choice of prompt can
have a significant impact on an LM’s performance.
Since it is difficult to generate manual prompts in
a systematic way, several strategies for automated
generation of task-specific prompts have been pro-
posed, e.g. based on mining patterns from a cor-
pus (Bouraoui et al., 2020), paraphrasing (Jiang
et al., 2020), training an additional LM for tem-
plate generation (Haviv et al., 2021; Gao et al.,
2020), and prompt optimization (Shin et al., 2020;
Liu et al., 2021). In our work, we focus on the
latter strategy, given its conceptual simplicity and
its strong reported performance on various bench-
marks. Specifically, we consider AutoPrompt (Shin
et al., 2020) and P-tuning (Liu et al., 2021). Note
that both methods rely on training data. We will
use the same training data and loss function that
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we use for fine-tuning the LM; see Section 3.2.

AutoPrompt initializes the prompt as a fixed-
length template:

T = (z1, . . . , zπ, [h], zπ+1, . . . , zπ+τ ,

[t], zπ+τ+1, . . . , zπ+τ+γ) (1)

where π, τ , γ are hyper-parameters which deter-
mine the length of the template. The tokens of the
form zi are called trigger tokens. These tokens are
initialized as <mask>. The method then iteratively
finds the best token to replace each mask, based on
the gradient of the task-specific loss function.3

P-tuning employs the same template initializa-
tion as AutoPrompt but its trigger tokens are newly
introduced special tokens with trainable embed-
dings ê1:π+τ+γ , which are learned using a task-
specific loss function while the LM’s weights are
frozen.

3.2 Fine-tuning the LM

To fine-tune the LM, we need training data and a
loss function. As training data, we assume that,
for a number of different relation types r, we have
access to examples of word pairs (h, t) that are
instances of that relation type. The loss function is
based on the following intuition: the embeddings
of word pairs that belong to the same relation type
should be closer together than the embeddings of
pairs that belong to different relations. In particular,
we use the triplet loss from Schroff et al. (2015) and
the classification loss from Reimers and Gurevych
(2019), both of which are based on this intuition.

Triplet Loss We draw a triplet from the relation
dataset by selecting an anchor pair a = (ha, ta), a
positive example p = (hp, tp) and a negative exam-
ple n = (hn, tn), i.e. we select word pairs a, p, n
such that a and p belong to the same relation type
while n belongs to a different relation type. Let
us write xa, xp, xn for the corresponding relation
embeddings. Each relation embedding is produced
by the same LM, which is trained to make the dis-
tance between xa and xp smaller than the distance
between xa and xn. Formally, this is accomplished
using the following triplet loss function:

Lt = max
(
0, ‖xa − xp‖ − ‖xa − xn‖+ ε

)
3We note that in most implementations of AutoPrompt the

vocabulary to sample trigger tokens is restricted to that of the
training data. However, given the nature of our training data
(i.e., pairs of words and not sentences), we consider the full
pre-trained LM’s vocabulary.

where ε > 0 is the margin and ‖ · ‖ is the l2 norm.

Classification Loss Following SBERT (Reimers
and Gurevych, 2019), we use a classifier to predict
whether two word pairs belong to the same relation.
The classifier is jointly trained with the LM using
the negative log likelihood loss function:

Lc = − log(g(xa,xp))− log(1− g(xa,xn))

where

g(u,v) = sigmoid(W · [u⊕ v ⊕ |v − u|]T )

with W ∈ R3×d, u,v ∈ Rd, | · | the element-wise
absolute difference, and ⊕ concatenation.

4 Experimental Setting

In this section, we explain our experimental setting
to train and evaluate RelBERT.

4.1 RelBERT Training

Dataset We use the platinum ratings from Se-
mEval 2012 Task 2 (Jurgens et al., 2012) as our
training dataset for RelBERT. This dataset cov-
ers 79 fine-grained semantic relations, which are
grouped in 10 categories. For each of the 79 re-
lations, the dataset contains a typicality score for
a number of word pairs (around 40 on average),
indicating to what extent the word pair is a proto-
typical instance of the relation. We treat the top 10
pairs (i.e. those with the highest typicality score)
as positive examples of the relation, and the bot-
tom 10 pairs as negative examples. We use 80% of
these positive and negative examples for training
RelBERT (i.e. learning the prompt and fine-tuning
the LM) and 20% for validation.

Constructing Training Triples We rely on three
different strategies for constructing training triples.
First, we obtain triples by selecting two positive
examples of a given relation type (i.e. from the top-
10 pairs) and one negative example (i.e. from the
bottom-10 pairs). We construct 450 such triples per
relation. Second, we construct triples by using two
positive examples of the relation and one positive
example from another relation (which is assumed
to correspond to a negative example). In particu-
lar, for efficiency, we use the anchors and positive
examples of the other triples from the same batch
as negative examples (while ensuring that these
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Figure 2: Batch augmentation where the original batch
withm samples is augmented with 2m(m−1) samples.

triples are from different relations). Figure 2 il-
lustrates this idea. Note how the effective batch
size thus increases quadratically, while the num-
ber of vectors that needs to be encoded by the LM
remains unchanged. In our setting, this leads to
an additional 13500 triples per relation. Similar
in-batch negative sampling has been shown to be
effective in information retrieval (Karpukhin et al.,
2020; Gillick et al., 2019). Third, we also construct
training triples by considering the 10 high-level
categories as relation types. In this case, we choose
two positive examples from different relations that
belong to the same category, along with a positive
example from a relation from a different category.
We add 5040 triples of this kind for each of the 10
categories.

Training RelBERT training consists of two
phases: prompt optimization (unless a manually
defined prompt is used) and language model fine-
tuning. First we optimize the prompt over the
training set with the triplet loss Lt while the pa-
rameters of the LM are frozen. Subsequently, we
fine-tune the LM with the resulting prompt, using
the sum of the triplet loss Lt and the classifica-
tion loss Lc over the same training set. We do
not use the classification loss during the prompt
optimisation, as that would involve training the
classifier while optimizing the prompt. We select
the best hyper-parameters of the prompting meth-
ods based on the final loss over the validation set.
In particular, when manual prompts are used, we
choose the best template among the five candidates
described in Section 3.1. For AutoPrompt and P-
tuning, we consider all combinations of π ∈ {8, 9},
τ ∈ {1, 2}, γ ∈ {1, 2}. We use RoBERTa (Liu
et al., 2019) as our main LM, where the initial
weights were taken from the roberta-large
model checkpoint shared by the Huggingface trans-
formers model hub (Wolf et al., 2020). We use the
Adam optimizer (Kingma and Ba, 2014) with learn-

ing rate 0.00002, batch size 64 and we fine-tune the
model for 1 epoch. For AutoPrompt, the top-50 to-
kens are considered and the number of iterations is
set to 50. In each iteration, one of the input tokens
is re-sampled and the loss is re-computed across
the entire training set.4 For P-tuning, we train the
weights that define the trigger embeddings (i.e. the
weights of the input vectors and the parameters of
the LSTM) for 2 epochs. Note that we do not tune
RelBERT on any task-specific training or valida-
tion set. We thus use the same relation embeddings
across all the considered evaluation tasks.

4.2 Evaluation Tasks

We evaluate RelBERT on two relation-centric tasks:
solving analogy questions (unsupervised) and lexi-
cal relation classification (supervised).

Analogy Questions We consider the task of solv-
ing word analogy questions. Given a query word
pair, the model is required to select the relationally
most similar word pair from a list of candidates.
To solve this task, we simply choose the candi-
date whose RelBERT embedding has the highest
cosine similarity with the RelBERT embedding of
the query pair. Note that this task is completely
unsupervised, without the need for any training or
tuning. We use the five analogy datasets that were
considered by Ushio et al. (2021): the SAT analo-
gies dataset (Turney et al., 2003), the U2 and U4
analogy datasets, which were collected from an ed-
ucational website5, and datasets that were derived6

from BATS (Gladkova et al., 2016) and the Google
analogy dataset (Mikolov et al., 2013b). These five
datasets consist of tuning and testing fragments.
In particular, they contain 37/337 (SAT), 24/228
(U2), 48/432 (U4), 50/500 (Google), and 199/1799
(BATS) questions for validation/testing. As there
is no need to tune RelBERT on task-specific data,
we only use the test fragments. For SAT, we will
also report results on the full dataset (i.e. the testing
fragment and tuning fragment combined), as this
allows us to compare the performance with pub-
lished results. We will refer to this full version of
the SAT dataset as SAT†.

4We should note that AutoPrompt takes considerably
longer than any other components of RelBERT. More details
on experimental training times are included in the appendix.

5https://englishforeveryone.org/
Topics/Analogies.html

6In particular, they were converted into the same format of
multiple-choice questions as the other datasets.

https://englishforeveryone.org/Topics/Analogies.html
https://englishforeveryone.org/Topics/Analogies.html
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BLESS CogALex EVALution K&H+N ROOT09

Random 8,529/609/3,008 2,228/3,059 - 18,319/1,313/6,746 4,479/327/1,566
Meronym 2,051/146/746 163/224 218/13/86 755/48/240 -
Event 2,657/212/955 - - - -
Hypernym 924/63/350 255/382 1,327/94/459 3,048/202/1,042 2,232/149/809
Co-hyponym 2,529/154/882 - - 18,134/1,313/6,349 2,222/162/816
Attribute 1,892/143/696 - 903/72/322 - -
Possession - - 377/25/142 - -
Antonym - 241/360 1,095/90/415 - -
Synonym - 167/235 759/50/277 - -

Table 1: Number of instances for each relation type across training/validation/test sets of all lexical relation classi-
fication datasets.

Lexical Relation Classification We consider the
task of predicting which relation a given word
pair belongs to. To solve this task, we train
a multi-layer perceptron (MLP) which takes the
(frozen) RelBERT embedding of the word pair
as input. We consider the following widely-
used multi-class relation classification benchmarks:
K&H+N (Necşulescu et al., 2015), BLESS (Ba-
roni and Lenci, 2011), ROOT09 (Santus et al.,
2016b), EVALution (Santus et al., 2015), and
CogALex-V Subtask 2 (Santus et al., 2016a). Ta-
ble 1 shows the size of the training, validation
and test sets for each of the relation classifica-
tion dataset. The hyperparameters of the MLP
classifier are tuned on the validation set of each
dataset. Concretely, we tune the learning rate from
[0.001, 0.0001, 0.00001] and the hidden layer size
from [100, 150, 200]. CogALex-V only has test-
ing fragments so for this dataset we employ the
default configuration of Scikit-Learn (Pedregosa
et al., 2011), which uses a 100-dimensional hidden
layer and is optimized using Adam with a learning
rate of 0.001. These datasets focus on the follow-
ing lexical relations: co-hyponymy (cohyp), hyper-
nymy (hyp), meronymy (mero), possession (poss),
synonymy (syn), antonymy (ant), attribute (attr),
event, and random (rand).

4.3 Baselines

As baselines, we consider two standard word em-
bedding models: GloVe (Pennington et al., 2014)
and FastText (Bojanowski et al., 2017), where word
pairs are represented by the vector difference of
their word embeddings (diff ).7 For the classifica-
tion experiments, we also consider the concatena-

7Vector difference is the most common method for encod-
ing relations, and has been shown to be the most reliable in
the context of word analogies (Hakami and Bollegala, 2017).

tion of the two word embeddings (cat) and their
element-wise multiplication8 (dot). We further-
more experiment with two pre-trained word pair
embedding models: pair2vec (Joshi et al., 2019)
(pair) and RELATIVE (Camacho-Collados et al.,
2019) (rel). For these word pair embeddings, as
well as for RelBERT, we concatenate the embed-
dings from both directions, i.e. (h, t) and (t, h).
For the analogy questions, two simple statistical
baselines are included: the expected random perfor-
mance and a strategy based on point-wise mutual
information (PMI) Church and Hanks (1990). In
particular, the PMI score of a word pair is com-
puted using the English Wikipedia, with a fixed
window size of 10. We then choose the candidate
pair with the highest PMI as the prediction. Note
that this PMI-based method completely ignores the
query pair. We also compare with the published
results from Ushio et al. (2021), where a strategy
is proposed to solve analogy questions by using
LMs to compute an analogical proportion score.
In particular, a four-word tuple (a, b, c, d) is en-
coded using a custom prompt and perplexity based
scoring strategies are used to determine whether the
word pair (a, b) has the same relation as the word
pair (c, d). Finally, for the SAT† dataset, we com-
pare with the published results from GPT-3 (Brown
et al., 2020), LRA (Turney, 2005) and SuperSim
(Turney, 2013); for relation classification we re-
port the published results of the LexNet (Shwartz
et al., 2016) and SphereRE (Wang et al., 2019) re-
lation classification models, taking the results from
the latter publication. We did not reproduce these
latter methods in similar conditions as our work,
and hence they are not fully comparable. More-

8Multiplicative features have been shown to provide consis-
tent improvements for word embeddings in supervised relation
classification tasks (Vu and Shwartz, 2018).



9050

over, these approaches are a different nature, as
the aim of our work is to provide universal relation
embeddings instead of task-specific models.

5 Results

In this section, we present our main experimental
results, testing the relation embeddings learned by
RelBERT on analogy questions (Section 5.1) and
relation classification (Section 5.2).

5.1 Analogy Questions

Table 2 shows the accuracy on the analogy bench-
marks. The RelBERT models substantially outper-
form the baselines on all datasets, except for the
Google analogy dataset.9 Comparing the different
prompt generation approaches, we can see that, sur-
prisingly, the manual prompt consistently outper-
forms the automatically-learned prompt strategies.

On SAT†, RelBERT outperforms LRA, which
represents the state-of-the-art in the zero-shot set-
ting, i.e. in the setting where no training data from
the SAT dataset is used. RelBERT moreover out-
performs GPT-3 in the few-shot setting, despite not
using any training examples. In contrast, GPT-3
encodes a number of training examples as part of
the prompt.

It can furthermore be noted that the other two re-
lation embedding methods (i.e. pair2vec and REL-
ATIVE) perform poorly in this unsupervised task.
The analogical proportion score from Ushio et al.
(2021) also underperforms RelBERT, even when
tuned on dataset-specific tuning data.

5.2 Lexical Relation Classification

Table 3 summarizes the results of the lexical rela-
tion classification experiments, in terms of macro
and micro averaged F1 score. The RelBERT mod-
els achieve the best results on all datasets except
for BLESS and K&H+N, where the performance
of all models is rather close. We observe a particu-
larly large improvement over the word embedding
and SotA models on the EVALution dataset. When
comparing the different prompting strategies, we
again find that the manual prompts perform sur-
prisingly well, although the best results are now
obtained with learned prompts in a few cases.

9The Google analogy dataset has been shown to be biased
toward word similarity and therefore to be well suited to word
embeddings (Linzen, 2016; Rogers et al., 2017).

Model SAT† SAT U2 U4 Google BATS

Random 20.0 20.0 23.6 24.2 25.0 25.0
PMI 23.3 23.1 32.9 39.1 57.4 42.7
LRA 56.4 - - - - -
SuperSim 54.8 - - - - -
GPT-3 (zero) 53.7 - - - - -
GPT-3 (few) 65.2* - - - - -
RELATIVE 24.9 24.6 32.5 27.1 62.0 39.0
pair2vec 33.7 34.1 25.4 28.2 66.6 53.8
GloVe 48.9 47.8 46.5 39.8 96.0 68.7
FastText 49.7 47.8 43.0 40.7 96.6 72.0

Analogical Proportion Score
· GPT-2 41.4 35.9 41.2 44.9 80.4 63.5
· BERT 32.6 32.9 32.9 34.0 80.8 61.5
· RoBERTa 49.6 42.4 49.1 49.1 90.8 69.7

Analogical Proportion Score (tuned)
· GPT-2 57.8* 56.7* 50.9* 49.5* 95.2* 81.2*
· BERT 42.8* 41.8* 44.7* 41.2* 88.8* 67.9*
· RoBERTa 55.8* 53.4* 58.3* 57.4* 93.6* 78.4*

RelBERT
·Manual 69.5 70.6 66.2 65.3 92.4 78.8
· AutoPrompt 61.0 62.3 61.4 63.0 88.2 74.6
· P-tuning 54.0 55.5 58.3 55.8 83.4 72.1

Table 2: Test accuracy (%) on analogy datasets. Re-
sults marked with * are not directly comparable, as
they use a subset or the entire dataset to tune the model.
Results in bold represent the best accuracy excluding
those marked with *. Underlined results show the best
accuracy over all the models. Results in italics were
taken from the original papers.

6 Analysis

To better understand how relation embeddings are
learned, in this section we analyze the model’s
performance in more detail.

6.1 Training Data Overlap

In our main experiments, RelBERT is trained using
the SemEval 2012 Task 2 dataset. This dataset con-
tains a broad range of semantic relations, including
hypernymy and meronymy relations. This raises
an important question: Does RelBERT provide us
with a way to extract relational knowledge from the
parameters of the pre-trained LM, or is it learning
to construct relation embeddings from the triples
in the training set? What is of particular interest is
whether RelBERT is able to model types of rela-
tions that it has not seen during training. To answer
this question, we conduct an additional experiment
to evaluate RelBERT on lexical relation classifica-
tion, using a version that was trained without the re-
lations from the Class Inclusion category, which is
the high-level category in the SemEval dataset that
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Model BLESS CogALexV EVALution K&H+N ROOT09
macro micro macro micro macro micro macro micro macro micro

GloVe

cat 92.9 93.3 42.8 73.5 56.9 58.3 88.8 94.9 86.3 86.5
cat+dot 93.1 93.7 51.9 79.2 55.9 57.3 89.6 95.1 88.8 89.0
cat+dot+pair 91.8 92.6 56.4 81.1 58.1 59.6 89.4 95.7 89.2 89.4
cat+dot+rel 91.1 92.0 53.2 79.2 58.4 58.6 89.3 94.9 89.3 89.4
diff 91.0 91.5 39.2 70.8 55.6 56.9 87.0 94.4 85.9 86.3
diff+dot 92.3 92.9 50.6 78.5 56.5 57.9 88.3 94.8 88.6 88.9
diff+dot+pair 91.3 92.2 55.5 80.2 56.0 57.4 88.0 95.5 89.1 89.4
diff+dot+rel 91.1 91.8 52.8 78.6 56.9 57.9 87.4 94.6 87.7 88.1

FastText

cat 92.4 92.9 40.7 72.4 56.4 57.9 88.1 93.8 85.7 85.5
cat+dot 92.7 93.2 48.5 77.4 56.7 57.8 89.1 94.0 88.2 88.5
cat+dot+pair 90.9 91.5 53.0 79.3 56.1 58.2 88.3 94.3 87.7 87.8
cat+dot+rel 91.4 91.9 50.6 76.8 57.9 59.1 86.9 93.5 87.1 87.4
diff 90.7 91.2 39.7 70.2 53.2 55.5 85.8 93.3 85.5 86.0
diff+dot 92.3 92.9 49.1 77.8 55.2 57.4 86.5 93.6 88.5 88.9
diff+dot+pair 90.0 90.8 53.9 79.0 55.8 57.8 86.6 94.2 87.7 88.1
diff+dot+rel 90.6 91.3 53.6 78.2 57.1 58.0 86.3 93.4 86.9 87.4

RelBERT
Manual 91.7 92.1 71.2 87.0 68.4 69.6 88.0 96.2 90.9 91.0
AutoPrompt 91.9 92.4 68.5 85.1 69.5 70.5 91.3 97.1 90.0 90.3
P-tuning 91.3 91.8 67.8 84.9 69.1 70.2 88.5 96.3 89.8 89.9

SotA
LexNET - 89.3 - - - 60.0 - 98.5 - 81.3
SphereRE - 93.8 - - - 62.0 - 99.0 - 86.1

Table 3: Macro/micro F1 score (%) for lexical relation classification.

BLESS CogALex EVAL K&H+N ROOT09

rand 93.7 (+0.3) 94.3 (-0.2) - 97.9 (+0.2) 91.2 (-0.1)
mero 89.8 (+1.4) 72.9 (+2.7) 69.2 (+1.9) 74.5 (+5.4) -
event 86.5 (-0.3) - - - -
hyp 94.1 (+0.8) 60.9 (-0.7) 61.7 (-1.5) 93.5 (+5.0) 83.0 (-0.4)
cohyp 96.4 (+0.3) - - 97.8 (+1.2) 97.4 (-0.5)
attr 92.6 (+0.3) - 84.7 (+1.6) - -
poss - - 67.1 (-0.2) - -
ant - 76.8 (-2.6) 81.3 (-0.9) - -
syn - 49.9 (-0.6) 53.6 (+2.7) - -

macro 92.2 (+0.5) 71.0 (-0.2) 69.3 (+0.9) 90.9 (+2.9) 90.5 (-0.4)
micro 92.5 (+0.4) 86.9 (-0.1) 70.2 (+0.6) 97.2 (+1.0) 90.7 (-0.3)

Table 4: Per-class F1 score of RelBERT trained without
hypernymy relations and the absolute difference with
respect to the original model (parentheses), along with
the macro and micro averaged F1 for each dataset (%).

includes the hypernymy relation. Hypernymy is of
particular interest, as it can be found across all the
considered lexical relation classification datasets,
which is itself a reflection of its central importance
in lexical semantics. In Table 4, we report the dif-
ference in performance compared to the original
RelBERT model (i.e. the model that was fine-tuned
on the full SemEval training set). As can be seen,
the overall changes in performance are small, and
the new version actually outperforms the original
RelBERT model on a few datasets. In particular,
hypernymy is still modelled well, confirming that
RelBERT is able to generalize to unseen relations.

Model Google BATS
Mor Sem Mor Sem Lex

FastText 95.4 98.1 90.4 71.1 33.8

Manual 89.8 95.8 87.0 66.2 75.1
AutoPrompt 90.5 85.1 85.3 59.8 68.0
P-tuning 87.4 78.1 82.9 60.9 61.8

Table 5: Test accuracy for the high-level categories of
BATS and Google, comparing FastText and RelBERT.

As a further analysis, Table 5 shows a break-
down of the Google and BATS analogy results,
showing the average performance on each of the
top-level categories from these datasets.10 While
RelBERT is outperformed by FastText on the mor-
phological relations, it should be noted that the
differences are small, while such relations are of a
very different nature than those from the SemEval
dataset. This confirms that RelBERT is able to
model a broad range of relations, although it can
be expected that better results would be possible
by including task-specific training data into the
fine-tuning process (e.g. including morphological
relations for tasks where such relations matter).

10A full break-down showing the results for individual rela-
tions is provided in the appendix.
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Target Nearest Neighbors

barista:coffee baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake
bag:plastic bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass
duck:duckling chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
cooked:raw raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished
chihuahua:dog dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog
dog:dogs cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys
spy:espionage pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft

Table 6: Nearest neighbors of selected word pairs, in terms of cosine similarity between RelBERT embeddings.
Candidate word pairs are taken from the RELATIVE pair vocabulary.

6.2 Language Model Comparison

Figure 3 compares the performance of RelBERT
with that of the vanilla pre-trained RoBERTa model
(i.e. when only the prompt is optimized). As can be
seen, the fine-tuning process is critical for achiev-
ing good results. In Figure 3, we also compare the
performance of our main RelBERT model, which is
based on RoBERTa, with versions that were instead
initialized with BERT (Devlin et al., 2019) and
ALBERT (Lan et al., 2019).11 RoBERTa clearly
outperforms the other two LMs, which is in accor-
dance with findings from the literature suggesting
that RoBERTa captures more semantic knowledge
(Li et al., 2020; Warstadt et al., 2020).

6.3 Qualitative Analysis

To give further insight into the nature of RelBERT
embeddings, Table 6 shows the nearest neighbors
of some selected word pairs from the evaluation
datasets. To this end, we computed RelBERT re-
lation vectors for all pairs in the Wikipedia pre-
trained RELATIVE vocabulary (over 1M pairs).12

The neighbors are those word pairs whose Rel-
BERT embedding has the highest cosine similarity
within the full pair vocabulary. As can be seen,
the neighbors mostly represent word pairs that are
relationally similar, even for morphological rela-
tions (e.g. dog:dogs), which are not present in the
SemEval dataset. A more extensive qualitative anal-
ysis, including a comparison with RELATIVE, is
provided in the appendix.

7 Conclusion

We have proposed a strategy for learning relation
embeddings, i.e. vector representations of pairs of
words which capture their relationship. The main

11We used bert-large-cased and albert-
xlarge-v1 from the HuggingFace model hub.

12https://github.com/pedrada88/relative

Figure 3: Test accuracy (%) on analogy dataset of the
vanilla RoBERTa model (i.e. without fine-tuning) and
variants of RelBERT with different language models.
Each variant uses the best manual prompt based on the
SemEval tuning data.

idea is to fine-tune a pre-trained language model us-
ing the relational similarity dataset from SemEval
2012 Task 2, which covers a broad range of seman-
tic relations. In our experimental results, we found
the resulting relation embeddings to be of high qual-
ity, outperforming state-of-the-art methods on sev-
eral analogy and relation classification benchmarks.
Among the models tested, we obtained the best re-
sults with RoBERTa, when using manually defined
templates for encoding word pairs. Importantly, we
found that high-quality relation embeddings can
be obtained even for relations that are unlike those
from the SemEval dataset, such as morphological
and encyclopedic relations. This suggests that the
knowledge captured by our relation embeddings
is largely distilled from the pre-trained language
model, rather than being acquired during training.
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Figure 4: Test accuracy drop of the vanilla models with-
out fine-tuning (measured in terms of absolute percent-
age points in comparison with RelBERT) on analogy
datasets.

achieves the best performance within the LMs, by
a relatively large margin in most cases.

A.3 Word Embeddings

Table 9 shows additional results of word embed-
dings on analogy test together with RelBERT re-
sults. We concatenate the RELATIVE and pair2vec
vectors with the word vector difference. However,
this does not lead to better results.

B Experimental Details and Model
Configurations

In this section, we explain models’ configuration in
the experiments, and details on RelBERT’s training
time.

B.1 Prompting Configuration

Table 10 shows the best prompt configuration based
on the validation loss for the SemEval 2012 Task 2
dataset in our main experiments using RoBERTa.

B.2 MLP Configuration in Relation
Classification

Table 11 shows the best hyperparameters in the val-
idation set of the MLPs for relation classification.

B.3 Training Time

Training a single RelBERT model with a custom
prompt takes about half a day on two V100 GPUs.
Additionally, to achieve prompt by AutoPrompt

Model SAT† SAT U2 U4 Google BATS

ALBERT
·Manual 34.2 35.0 42.1 42.8 78.0 64.9
· AutoPrompt 34.0 35.0 36.4 33.8 25.0 30.5
· P-tuning 32.4 32.6 33.8 33.6 35.0 37.8

BERT
·Manual 40.6 40.9 41.2 43.5 78.2 67.9
· AutoPrompt 36.4 36.5 36.8 35.4 51.6 43.5
· P-tuning 38.0 38.0 38.2 37.0 56.6 45.3

RoBERTa
·Manual 69.5 70.6 66.2 65.3 92.4 78.8
· AutoPrompt 61.0 62.3 61.4 63.0 88.2 74.6
· P-tuning 54.0 55.5 58.3 55.8 83.4 72.1

Table 7: Test accuracy (%) of ALBERT, BERT, and
RoBERTa on analogy datasets.

technique takes about a week on a single V100,
while P-tuning takes 3 to 4 hours, also on a single
V100.

C Implementation Details of
AutoPrompt

All the trigger tokens are initialized by mask tokens
and updated based on the gradient of a loss function
Lt. Concretely, let us denote the loss value with
template T as Lt(T ). The candidate set for the jth

trigger is derived by

W̃j = top-k
w∈W

[
eTw∇jLt(T )

]
(2)

where the gradient is taken with respect to jth trig-
ger token and ew is the input embedding for the
word w. Then we evaluate each token based on the
loss function as

zj = argmin
w∈W̃j

[
Lt(rep(T, j, w))

]
(3)

where rep(T, j, w) replaces the jth token in T by
w and j is randomly chosen. We ignore any can-
didates that do not improve current loss value to
further enhance the prompt quality.

D Additional Analysis

In this section, we analyze our experimental re-
sults based on prediction breakdown and provide
an extended qualitative analysis.

D.1 Prediction Breakdown

Table 12 shows a detailed break-down of the BATS
results.
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Model BLESS CogALexV EVALution K&H+N ROOT09
macro micro macro micro macro micro macro micro macro micro

ALBERT
Manual 86.2 87.1 54.9 81.1 62.6 62.2 82.6 91.7 86.4 86.8
AutoPrompt 88.4 88.9 42.2 75.6 56.0 56.4 87.1 94.8 84.4 85.1
P-tuning 90.1 90.6 44.9 73.1 58.2 59.7 90.2 95.9 85.9 85.9

BERT
Manual 90.9 91.2 65.2 83.4 67.8 68.3 91.6 97.6 90.1 90.4
AutoPrompt 90.3 90.7 40.6 75.8 60.4 59.5 90.2 97.2 86.6 86.1
P-tuning 87.6 88.0 52.7 79.2 61.9 63.3 86.2 95.1 85.2 85.3

RoBERTa
Manual 91.7 92.1 71.2 87.0 68.4 69.6 88.0 96.2 90.9 91.0
AutoPrompt 91.9 92.4 68.5 85.1 69.5 70.5 91.3 97.1 90.0 90.3
P-tuning 91.3 91.8 67.8 84.9 69.1 70.2 88.5 96.3 89.8 89.9

Table 8: Macro/micro F1 score (%) for lexical relation classification of ALBERT, BERT, and RoBERTa.

Model SAT† SAT U2 U4 Google BATS

G
lo

V
e diff 48.9 47.8 46.5 47.8 96.0 68.7

diff +rel 45.9 40.4 46.9 35.4 87.6 67.3
diff +pair 35.1 33.8 29.4 30.6 78.0 56.3

Fa
st

Te
xt diff 49.7 47.8 43.0 40.7 96.6 72.0

diff +rel 37.3 35.9 39.5 35.6 85.8 67.5
diff +pair 33.4 33.5 27.2 28.7 75.4 52.1

R
el

B
E

R
T Manual 69.5 70.6 66.2 65.3 92.4 78.8

AutoPrompt 61.0 62.3 61.4 63.0 88.2 74.6
P-tuning 54.0 55.5 58.3 55.8 83.4 72.1

Table 9: Test accuracy (%) on analogy datasets (SAT† refers to the full SAT dataset).

Model Prompt π τ γ template type

BERT
Manual - - - 3
AutoPrompt 8 2 3 -
P-tuning 8 2 2 -

ALBERT
Manual - - - 4
AutoPrompt 8 3 3 -
P-tuning 8 2 3 -

RoBERTa
Manual - - - 4
AutoPrompt 9 2 2 -
P-tuning 9 3 2 -

Table 10: Best prompting configuration.

D.2 Qualitative Analysis

Tables 13 shows the nearest neighbors of a number
of selected word pairs, in terms of their RelBERT
and RELATIVE embeddings. In both cases cosine
similarity is used to compare the embeddings and
the pair vocabulary of the RELATIVE model is
used to determine the universe of candidate neigh-
bors.

The results for the RelBERT embeddings show
their ability to capture a wide range of relations. In
most cases the neighbors make sense, despite the
fact that many of these relations are quite different

from those in the SemEval dataset that was used
for training RelBERT. The results for RELATIVE
are in general much noisier, suggesting that REL-
ATIVE embeddings fail to capture many types of
relations. This is in particular the case for the mor-
phological examples, although various issues can
be observed for the other relations as well.
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Model Data Manual AutoPrompt P-tuning

ALBERT

BLESS (1e-4, 150) (1e-3, 200) (1e-4, 150)
CogA (1e-3, 100) (1e-3, 100) (1e-3, 100)
EVAL (1e-4, 100) (1e-3, 200) (1e-4, 100)
K&H (1e-4, 150) (1e-4, 150) (1e-4, 200)
ROOT (1e-5, 200) (1e-4, 100) (1e-4, 150)

BERT

BLESS (1e-4, 200) (1e-3, 100) (1e-3, 100)
CogA (1e-3, 100) (1e-3, 100) (1e-3, 100)
EVAL (1e-5, 150) (1e-3, 200) (1e-3, 100)
K&H (1e-4, 200) (1e-4, 200) (1e-3, 150)
ROOT (1e-5, 100) (1e-3, 150) (1e-4, 150)

RoBERTa

BLESS (1e-5, 200) (1e-3, 100) (1e-4, 200)
CogA (1e-3, 100) (1e-3, 100) (1e-3, 100)
EVAL (1e-4, 150) (1e-5, 100) (1e-5, 200)
K&H (1e-3, 200) (1e-3, 150) (1e-5, 200)
ROOT (1e-5, 100) (1e-5, 200) (1e-3, 200)

Table 11: Best MLP configuration for the relation clas-
sification experiment. Each entry shows the learning
rate and hidden layer size. Note that CogALex uses the
default configuration due to the lack of validation set.
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Relation FastText Manual AutoPrompt P-tuning

Encyclopedic

UK city:county 33.3 28.9 28.9 40.0
animal:shelter 44.4 88.9 77.8 84.4
animal:sound 80.0 86.7 82.2 75.6
animal:young 53.3 62.2 64.4 51.1
country:capital 82.2 37.8 17.8 35.6
country:language 93.3 51.1 55.6 51.1
male:female 88.9 60.0 55.6 62.2
name:nationality 60.0 73.3 51.1 40.0
name:occupation 86.7 75.6 75.6 77.8
things:color 88.9 97.8 88.9 91.1

Lexical

antonyms:binary 26.7 64.4 68.9 77.8
antonyms:gradable 44.4 88.9 93.3 88.9
hypernyms:animals 44.4 91.1 80.0 55.6
hypernyms:misc 42.2 71.1 60.0 64.4
hyponyms:misc 31.1 55.6 55.6 48.9
meronyms:member 44.4 68.9 48.9 53.3
meronyms:part 31.1 77.8 71.1 55.6
meronyms:substance 26.7 75.6 66.7 53.3
synonyms:exact 17.8 80.0 71.1 66.7
synonyms:intensity 28.9 77.8 64.4 53.3

Morphological

adj+ly 95.6 84.4 88.9 82.2
adj+ness 100.0 97.8 93.3 97.8
adj:comparative 100.0 97.8 100.0 91.1
adj:superlative 97.8 100.0 93.3 100.0
noun+less 77.8 100.0 97.8 100.0
over+adj 75.6 84.4 80.0 82.2
un+adj 60.0 97.8 91.1 97.8
verb 3pSg:v+ed 100.0 75.6 84.4 68.9
verb inf:3pSg 100.0 93.3 91.1 84.4
verb inf:v+ed 100.0 91.1 91.1 88.9
verb inf:v+ing 100.0 97.8 97.8 95.6
verb v+ing:3pSg 97.8 82.2 68.9 68.9
verb v+ing:v+ed 97.8 86.7 82.2 84.4
verb+able 97.8 93.3 80.0 84.4
verb+er 95.6 100.0 95.6 95.6
verb+ment 95.6 77.8 77.8 62.2
verb+tion 84.4 77.8 66.7 68.9
noun:plural 78.7 87.6 88.8 69.7
re+verb 75.6 62.2 86.7 66.7

Table 12: Break-down of BATS results per relation type.
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