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Abstract 

In previous similarity-based WSD systems, 
studies have allocated much effort on 
learning comprehensive sense embeddings 
using contextual representations and 
knowledge sources. However, the context 
embedding of an ambiguous word is 
learned using only the sentence where the 
word appears, neglecting its global context. 
In this paper, we investigate the 
contribution of both word-level and sense-
level global context of an ambiguous word 
for disambiguation. Experiments have 
shown that the Context-Oriented 
Embedding (COE) can enhance a 
similarity-based system’s performance on 
WSD by relatively large margins, achieving 
state-of-the-art on all-words WSD 
benchmarks in knowledge-based category. 

1 Introduction 

Word sense disambiguation (WSD) is aimed at 
selecting the correct sense for a word given its 
context. Potential senses of a word are from a 
sense inventory such as WordNet (Miller, 1995). 
WSD can be classified into lexical sample WSD 
and all-words WSD. The former focuses on 
disambiguating some particular words in many 
sentences, while the latter conducts WSD on 
every ambiguous word in the provided text. 

The nature of all-words WSD allows the task to 
be more compatible to downstream applications. 
Nevertheless, the task becomes more difficult 
(Pradhan et al., 2007) while it also provides more 
context information (rather than a single sentence). 

 
* corresponding author 

Utilizing such global context can assist the 
systems to tackle WSD from an overall 
perspective. 

Recent development of contextual 
representation models, has accelerated the 
progress of WSD. Many systems are proposed to 
tackle WSD by employing BERT either by 
extracting features (Vial et al., 2019; Loureiro and 
Jorge, 2019) or fine-tuning (Peters et al., 2019; 
Levine et al., 2020). However, these systems are 
mostly implemented with a single sentence 
context, especially for the systems (Huang et al., 
2019; Blevins and Zettlemoyer, 2020) that fine-
tune BERT (Devlin et al., 2019). As for the others 
(Scarlini et al., 2020a; Wang and Wang, 2020, 
Scarlini et al., 2020b), efforts are allocated to 
construct sense embeddings using WordNet or 
SemCor (Miller et al., 1994), while context 
embeddings for ambiguous words are learned 
merely from a single sentence. This has led to an 
issue that the information volume of context 
embeddings and sense embeddings is not 
balanced. 

In this paper, we introduce COE, a context-
oriented embedding technique to learn 
comprehensive context representations for 
ambiguous words. This is aimed at enhancing the 
context embeddings by considering both the 
global and local sentences in the provided 
document. In summary, our approach has the 
following contributions: 
• We propose a novel technique to capture 
both local and global context information for 
context representation learning. The obtained 
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context embeddings are further enhanced with 
the embeddings of senses appeared in the context. 
• We show that the proposed technique can 
elevate previous systems’ performance on all-
words WSD to new state-of-the-art in the 
knowledge-based category. 

2 Method 

2.1 Similarity-based WSD 

Given a document 𝑑𝑑  that contains several 
sentences, a system is required to determine the 
correct sense 𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗  of each word 𝑤𝑤𝑖𝑖,𝑗𝑗  ⋲ 
{𝑤𝑤𝑖𝑖,1,𝑤𝑤𝑖𝑖,2, … ,𝑤𝑤𝑖𝑖,𝑚𝑚}  in sentence 𝑆𝑆𝑖𝑖  ⋲ 
{𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛} . 𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗  is one of the potential 
senses in 𝑆𝑆𝑤𝑤𝑖𝑖,𝑗𝑗  retrieved from WordNet by the 
lemma and part-of-speech (POS) of word 𝑤𝑤𝑖𝑖,𝑗𝑗. In 
previous similarity-based WSD models (Loureiro 
and Jorge, 2019; Scarlini et al., 2020a; Wang and 
Wang, 2020; Scarlini et al., 2020b), sense 
embeddings of all WordNet senses are first 
learned using their definitions and other available 
resources. Then, in order to disambiguate 𝑤𝑤𝑖𝑖,𝑗𝑗, the 
sense embedding 𝑉𝑉𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗

of its potential sense 

𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗  is retrieved from the learned sense 
embedding pool. Then, the dot product of each 
potential sense embedding 𝑉𝑉𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗

 and the context 

embedding 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗 is used to select the optimal sense 
�̂�𝑠𝑤𝑤𝑖𝑖,𝑗𝑗, shown in formula (1). 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗 is learned using 
only the sentence where 𝑤𝑤𝑖𝑖,𝑗𝑗 appears. 

           �̂�𝑠𝑤𝑤𝑖𝑖,𝑗𝑗 =  argmax
𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗⋲𝑆𝑆𝑤𝑤𝑖𝑖,𝑗𝑗

   𝑉𝑉𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗
∙ 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗            (1) 

Typically, 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗 is the sum of BERT’s last four 
layers at the position of 𝑤𝑤𝑖𝑖,𝑗𝑗, taking 𝑠𝑠𝑖𝑖 as its input. 
When 𝑤𝑤𝑖𝑖,𝑗𝑗  is tokenized into several pieces, the 
sum of all its pieces’ embeddings is taken as 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗. 
However, this naïve context representation 
learning process has limited the system’s ability 
to capture global context information. In order to 
relieve this issue, we devise several methods to 
learn more comprehensive context embeddings by 
combining 𝑆𝑆𝑖𝑖 and the other sentences in the same 
document. Note that, this work does not involve 
any attempt on sense embedding learning. 

2.2 Context Embedding Learning 

Local Context Embedding Following the 
approaches in prior works (Agirre et al. 2018, 

Wang et al., 2020), we utilize the directly 
surrounding sentences {𝑆𝑆1, … , 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1, … , 𝑆𝑆𝑛𝑛} 
of the ambiguous sentence 𝑆𝑆𝑖𝑖 for a more effective 
local context embedding. Here, we use a 
development set to select the optimal number of 
surrounding sentences on both sides of 𝑆𝑆𝑖𝑖 and use 
the expanded sentence set as BERT’s input to get 
the local context embedding 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗

𝑙𝑙 . 
Global Context Embedding Except for the 

sentences that are in the same small window as the 
ambiguous sentence 𝑆𝑆𝑖𝑖, distant sentences are also 
beneficial for understanding the words in 𝑆𝑆𝑖𝑖  in 
many cases. Here, we transform the problem into 
a sentence selection problem, i.e., to determine 
which sentences can better incorporate global 
context information for the disambiguation of the 
words in 𝑆𝑆𝑖𝑖. 

We hence formally define the problem as 
follows: for each sentence 𝑆𝑆𝑖𝑖  ⋲ {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛} 
under disambiguation, we aim at ranking the other 
sentences in the same document according to their 
contributions from different perspectives. Then, 
we use 𝑆𝑆𝑖𝑖 and its top ranked sentences to learn the 
global context embedding 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗

𝑔𝑔 . We design three 
methods to rank the sentences: word overlap 
(WO), TF-IDF score (TF-IDF WO), gloss-
expanded word overlap (GeWO). 
• Word overlap: the overlap count between 𝑆𝑆𝑖𝑖 
and 𝑆𝑆𝑗𝑗, i.e., the sum of the number of times that 
𝑆𝑆𝑖𝑖’s words appear in 𝑆𝑆𝑗𝑗. 
• TF-IDF weighted word overlap: we regard 
each sentence 𝑆𝑆𝑖𝑖 ⋲ {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛} as a document 
and calculate the TF-IDF score of each word in 
the sentences; the TF-IDF score is then used to 
weight the overlap count between  𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗 for 
each word. The score of 𝑆𝑆𝑗𝑗 with respect to 𝑆𝑆𝑖𝑖 is 
calculated as follows: 

     𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑗𝑗
𝑆𝑆𝑖𝑖 = ∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡𝑤𝑤 ∗ 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡(𝑤𝑤, 𝑆𝑆𝑗𝑗)𝑤𝑤∈𝑆𝑆𝑖𝑖     (2) 

• Gloss-expanded word overlap: we first 
expand each sentence  𝑆𝑆𝑖𝑖 ⋲ {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛}  with 
all the synsets’ definition words of each 
monosemous word 𝑤𝑤𝑖𝑖,𝑗𝑗  and then calculate the 
overlap between expended  𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗. 

After we obtain the score of sentence 𝑆𝑆𝑗𝑗  ⋲ 
{𝑆𝑆1, … , 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1, … , 𝑆𝑆𝑛𝑛}  with respect to 𝑆𝑆𝑖𝑖 , we 
rank them based on the scores and combine 𝑆𝑆𝑖𝑖 and 
its top related sentences to learn a global context 
embedding. We note that, the sentence order is 
maintained when using them to learn the context 
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embedding. For instance, if 𝑆𝑆𝑖𝑖−4 and 𝑆𝑆𝑖𝑖+9 are the 
top 2 related sentences of 𝑆𝑆𝑖𝑖 , we take 
{𝑆𝑆𝑖𝑖−4, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+9} as BERT’s input for learning the 
global context embedding of each word in 𝑆𝑆𝑖𝑖. We 
also employ a development set to acquire the 
optimal number of related sentences for the global 
context embedding learning. 

Sense-aware Context Embedding In most 
cases, the words in a given document are not 
always polysemous. This is verified by the 
statistics that 16.4% of words are monosemous in 
SemCor. These monosemous words can provide 
some general background information about the 
whole document. Here, we utilize the sense 
embeddings of the monosemous words to 
compose a sense-aware context embedding 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗

𝑠𝑠 .  
In detail, all the sense embeddings of the 

monosemous words in the same document as 𝑤𝑤𝑖𝑖,𝑗𝑗 
are added together to obtain 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗

𝑠𝑠  only when 𝑤𝑤𝑖𝑖,𝑗𝑗 
is a noun or verb. This is because the 
disambiguation of adjectives and adverbs tend to 
rely more on the local context information, 
indicating that it is a modifier (adjective or adverb) 
of which word (noun or verb) in the same sentence. 
We note that, for the knowledge-based approach, 
we also use the sense embedding of WordNet 1st 
sense for polysemous words in the document. 

We combine the above local and global context 
embeddings after normalization to get the final 
enhanced context embedding 𝑃𝑃�𝑤𝑤𝑖𝑖,𝑗𝑗 , detailed in 
formula (3). 

                  𝑃𝑃�𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗
𝑙𝑙  + 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗

𝑔𝑔 + 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗
𝑠𝑠                 (3) 

2.3 Try-again Mechanism (TaM) 

Wang and Wang (2020) proposed a try-again 
mechanism that exploits WordNet synset relations 
and super-sense connections to conduct a second 
WSD. Precisely, when disambiguating 𝑤𝑤𝑖𝑖,𝑗𝑗 , the 
method takes into account two similarity scores. 

One is from Formula (1). The other is calculated 
from a broader perspective, e.g., the maximal 
similarity between 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗  and one potential sense’ 
(𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗 ) related synsets (𝑅𝑅𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗

). These related 

synsets are connected to 𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗  by WordNet 
synset relations and the super-sense connection. 
Here, synsets that are in the same super-sense 
category are regarded as connected by the super-
sense connection. For example, toy.n.03 (toy) {a 
device regarded as providing amusement} and  
bell.n.01 (bell) {a hollow device made of metal 
that makes a ringing sound when struck} are both 
in the super-sense category of noun.artifact. 

Formula (4) illustrates the final WSD 
calculation. The method manages to boost the 
knowledge-based system’s performance by a 
relatively large margin, while slightly damages 
the performance of the supervised system. 

�̂�𝑠𝑤𝑤𝑖𝑖,𝑗𝑗 =  argmax
𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗⋲𝑆𝑆𝑤𝑤𝑖𝑖,𝑗𝑗

 ( 𝑉𝑉𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗
∙ 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗  +

                max
𝑠𝑠𝑙𝑙⋲𝑅𝑅𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗

   𝑉𝑉𝑠𝑠𝑙𝑙 ∙ 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗  )                          (4) 

We improve the original mechanism by 
utilizing a higher quality of synset category 
named coarse sense inventory (CSI, Lacerra et al., 
2020). CSI defines 45 labels in its inventory and 
covers 83,000 WordNet synsets. We replace the 
super-sense connection with CSI in the modified 
try-again mechanism. The revised mechanism 
leads our model to a better performance.  

3 Experiment 

3.1 Datasets and Systems 

 We use the evaluation framework in (Raganato et 
al., 2017b) to evaluate our method’s effectiveness.  

In the following section, we report the 
performance of systems in the knowledge-based 
category for all-words WSD task, in comparison 
with ours. They consist of UKB (Agirre et al.,  

COEkb ALL A N R V 

-w/ WO 76.3 80.5 80.6 81.8 61.4 

-w/ TF-IDF 
WO 76.0 80.8 80.2 81.5 61.2 

-w/ GeWO 76.1 81.0 80.3 81.5 61.1 

Table 2: COEkb performance on ALL with different 
scoring strategies for the global context embedding 
learning 

  ALL A N R V 
COEkb 76.3 80.5 80.6 81.8 61.4 
-w/o local 75.1 80.7 79.4 81.2 59.3 
-w/o global 74.8 80.6 78.9 81.8 59.4 
-w/o sense 74.3 80.5 78.7 81.8 57.7 
-w/o TaM 75.1 79.2 79.8 80.9 59.3 
-w/o 
local+global 73.9 80.0 78.0 79.2 58.7 

-w/o all 
(SREFkb) 

73.9 79.0 78.4 77.7 58.6 

Table 1: Ablation Study on ALL (F1 in %) 
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2018), Babelfy (Moro et al., 2014), WSD-TM 
(Chaplot and Salakhutdinov, 2018), KEF (Wang et 
al., 2020), SyntagNet (Maru et al., 2019) and 
SREF (Wang and Wang, 2020).  

Throughout the whole paper, we utilize the 
knowledge-based version of SREF (Wang and 
Wang, 2020) sense embeddings to validate the 
effectiveness of our method. 

Except for the knowledge-based version, we 
also implement the proposed method in some 
supervised similarity-based systems, achieving 
better performance than their original versions. 
However, the margin is not significant. Details are 
shown in Appendix. 

4 Evaluation 

4.1 Ablation Analysis 

Table 1 demonstrates the ablation study on the 
combined dataset (ALL). An overall conclusion 
can be drawn that each of the proposed factors 
manages to raise the system’s performance. F1 
measure is reported in percentage in all the tables.  

 As one can see, although the sense-aware 
context embedding is simple and easy to 
implement, the strategy alone enhances the 
system’s performance by 2 F1. This astonishing 
contribution owes to a fine quality sense 
embedding and the employment of WordNet 1st 
senses, an essential prior knowledge in WordNet. 
As for the other two factors regarding context 
sentence usage, the contribution of each factor is 
not as significant. 

Viewing from another perspective, when both 
the local and global context embeddings are 
removed, the performance drop exceeds that of 
the system that ignores the sense-aware 
embeddings. This has illustrated a fact that both 
word-level and sense-level context embeddings 
are crucial for WSD. It is interesting to note that 
merely adding the sense-aware context 

embedding can ruin the contribution of TaM, 
which makes the last two systems (use only 𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗  
as the context embedding) perform identically on 
ALL. 

 In Table 2, the performance of COEkb on ALL 
has shown that the simplest strategy (WO) has led 
to the best performance, although the margin is 
not significant.  

4.2 Overall Results 

Table 3 shows how different systems perform on 
several partitions of ALL. Our system in both 
categories produces a new state-of-the-art. 

The knowledge-based version of our system, 
COEkb, outperforms the previous state-of-the-art 
system (SREF) on ALL by a relatively large 
margin, 2.8 F1. From the perspective of POS 
performance, COEkb is the first system that 
reaches 80 F1 on noun disambiguation, surpassing 
the previous SOTA by 3.1 F1.  

In fact, the performance of COEkb has exceeded 
that of many supervised systems including GLU. 
GLU utilizes BERT as a feature extraction tool in 
a supervised manner. The fact that it merely relies 
on SemCor hampers the system’s generalization 
ability since SemCor only covers a small 
proportion of WordNet senses. It is shown that 
those systems (EWISE and GLU) that fail to 

  SREFkb COEkb 
overlap 5052 
non-overlap 310 482 

  

Ambiguity 7.17 8.27 
Noun 54% 55% 
Verb 33% 31% 
Adjective 10% 10% 
Adverb 3% 5% 

Table 4: Correctly predicted instances by two 
models in ALL 

Pretrained 
Model Systems Test Datasets Concatenation of all Test Datasets 

SE2 SE3 SE07 SE13 SE15 ALL N V A R 

/ 

UKB (2018) 68.8 66.1 53.0 68.8 70.3 67.3 71.2 50.7 75.0 77.7 
WSD-TM (2018) 69.0 66.9 55.6 65.3 69.6 66.9 69.7 51.2 76.0 80.9 
KEF (2020) 69.6 66.1 56.9 68.4 72.3 68.0 71.9 51.6 74.0 80.6 
SyntagNet (2019) 71.2 71.6 59.6 72.4 75.6 71.5 - - - - 

BERT 
SENSEMBERT (2020) 70.8 65.4 58.0 74.8 75.0 70.1 75.9 50.3 74.3 80.9 
SREFkb (2020) 72.7 71.5 61.8 76.4 79.5 73.5 78.5 56.6 79.0 76.9 
COEkb 76.0 74.2 69.2* 78.2 80.9 76.3* 80.6 61.4 80.5 81.8 

Table 3: All-words WSD performance on different partitions of ALL, including dataset and POS (noun-N, 
verb-V, adjective-A and adverb-R) partitions. * indicates the performance that are obtained (partially) as a 
development set. Bold and underlined figures represent the current and previous state-of-the-art performance. 
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incorporate WordNet knowledge (especially 
definitions) perform poorly on SE13 and cannot 
outperform many lately proposed knowledge-
based systems such as SyntagNet, SREF and COE. 
The performance of the systems in supervised 
category is shown in Appendix. 

4.3 Case Study 

In this subsection, we compare the experimental 
result of SREFkb and COEkb in a detailed manner 
so as to find out on what aspects COEkb performs 
well and poorly respectively. Table 4 shows the 
number of instances in ALL that are correctly 
disambiguated by SREFkb or COEkb only (non-
overlap). It also details the ambiguity (average 
number of potential senses per instance) and POS 
proportions of the above instances. 

A key factor is revealed that COEkb does not 
outperform SREFkb incrementally, which means 
COEkb has falsely predicted many, 310, instances 
that are correctly predicted by SREFkb. In this case, 
although COEkb can disambiguate more 
ambiguous instances, it has somehow 
compromised the ability of disambiguating easier 
instances. This has triggered a question regarding 
how to customize the context exploitation for 
different instances. Nevertheless, the POS 
proportions of the instances that are only correctly 
predicted by each model is almost identical.  

4.4 Error analysis 

In Table 5, a falsely predicted example, among 
others, from SE15 is given to demonstrate what 
kind of instance COEkb are typically weak at 
disambiguating. It is shown that the similarity of 
the top ranked senses to the context of contact is 
very close to each other. This is logical since the 
definition of these senses are semantically similar, 
which are hard to distinguish even for human 
beings. 

The above dilemma has raised concerns about 
whether the systems have reached the upper 

bound of their capability, 80%. This is an 
estimated inter-annotator agreement in Navigli 
(2009), which means the percentage of words 
tagged with the same sense by two or more human 
annotators. Further, if a system’s performance 
outperforms this upper bound, is it because of 
overfitting? To tackle the above issue, a plausible 
choice might be to construct a coarse-grained 
sense inventory, similar to Navigli et al. (2007). 
This might also lead to an easier application of 
WSD to downstream tasks.  

5 Conclusion 

In this paper, we have presented COE, a context-
oriented embedding technique for similarity-
based WSD systems. It takes better advantage of 
both word-level and sense-level information from 
the document where an ambiguous word appears. 
Experiments have shown that the proposed 
method can enhance a system’s performance on 
all-words WSD by relatively large margins. The 
ablation study has shown the contribution of each 
proposed factor. The source code will be made 
available at GitHub for further development. 
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lemma contact (semeval2015.d003.s022.t005-noun) 
sentence 
(in lemma) 

what be the precaution for the person who give the medicine or come_into contact with the 
animal? 

senses 

contact.n.01 2.202 close interaction 
contact.n.02 2.182 the state or condition of touching or of being in immediate proximity 
contact.n.03 2.174 the physical coming together of two or more things 
contact.n.04 2.168 the act of touching physically 

contact.n.05 2.113 (electronics) a junction where things (as two electrical conductors) touch 
or are in physical contact 

Table 5: A falsely predicted instance by COEkb from SE15. Gold senses are in bold. 
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Appendix 

1 COEsup 
To implement the supervised version of our 
system, we utilize the supervised sense 
embedding from SREFsup. For COEsup, the context 
embedding is a concatenation of two embeddings, 
with one from COEkb (𝑃𝑃�𝑤𝑤𝑖𝑖,𝑗𝑗) and the other (𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗) 
from the output of BERT using only the original 
sentence 𝑆𝑆𝑖𝑖  as input. This is to guarantee an 
information symmetry of the embeddings since 
LMMS supervised sense embeddings in SREFsup 
are learned from SemCor with one sentence as 
input at each time. The calculation before TaM is 
shown in formula (5). To be consistent with the 
sense embeddings, we use BERTLARGE_CASED to 
learn the context embeddings. 
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�̂�𝑠𝑤𝑤𝑖𝑖,𝑗𝑗  =  argmax
𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗⋲𝑆𝑆𝑤𝑤𝑖𝑖,𝑗𝑗

[𝑉𝑉𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑘𝑘 ;𝑉𝑉𝑠𝑠𝑘𝑘,𝑤𝑤𝑖𝑖,𝑗𝑗

𝑙𝑙𝑚𝑚𝑚𝑚𝑠𝑠] ∙ [𝑃𝑃�𝑤𝑤𝑖𝑖,𝑗𝑗;𝑃𝑃𝑤𝑤𝑖𝑖,𝑗𝑗]            

(5) 

2 Systems 

Supervised systems include EWISE (Kumar et al., 
2019), LMMS (Loureiro and Jorge, 2019), 
GlossBERT (Huang et al., 2019), GLU 
(Hadiwinoto et al., 2019), Sense Vocabulary 
Compression (SVC, Vial et al., 2019), 
SENSEMBERT (Scarlini et al., 2020a), SREF 
(Wang and Wang, 2020), ARES (Scarlini et al., 
2020b), BEM (Blevins and Zettlemoyer, 2020) and 
EWISER (Bevilacqua and Navigli, 2020). In this 
category, we only report the performance 
obtained by using SemCor as the training set for a 
fair comparison. 

3 Results 

3.1 Overall Performance 

In Table 6, COEsup, outperforms its direct 
competitor, SREF, by 1.8 F1, although the margin 
between the newly proposed systems that fine-
tunes BERT (BEM) is smaller. BEM is a system 
that fine-tunes two separate BERT for encoding 
context and gloss respectively. The whole training 
process takes 2 to 3 days with 2 GPUs, which is 
comparatively expensive in terms of time and 
device. In comparison, COEkb and COEsup take 
less than half an hour to learn all the necessary 
sense embeddings. 

3.2 Rare Lemma or Sense disambiguation 

In this subsection, we implement two experiments 
on rare sense or lemma disambiguation. 
Following the setting in SREF and other previous 
works, we partition ALL into two subsets 
according to the gold label of each lemma, with 
one containing those lemmas whose sense is 
ranked 1st in WordNet (ALLWN_1st) and the others 
(ALLWN_other). The 1st sense of each lemma in 
WordNet can be regarded as the most frequent 
sense (MFS). This was manually sorted with the 
statistics from some sense-annotated corpora. 

Table 7 compares different systems’ 
performance on the two subsets of ALL. It shows 
that COEkb has obtained an advantageous position 
at disambiguating rare senses, with a 2.5 F1 higher 
than its direct competitor, SREFkb, while 
maintained a better performance on lemmas of 
MFS. COEsup has also outperformed it direct 

opponent, SREFsup, on rare sense disambiguation 
with a larger margin, 3 F1. In comparison to BEM, 
our system can scale much better to unseen or rare 
senses while still have a competitive capability of 
disambiguating MFS. 

Following Scarlini et al. (2020b), we also 
conduct an experiment on those lemmas or senses 
that are in ALL but not in the training data, 
SemCor. For zero-shot lemmas/words, 1139 
instances are extracted from ALL (ALLLFW). In 
terms of senses that do not appear in SemCor, we 
extract 222 polysemous instances from ALL 
(ALLLFS). 

Table 8 shows that COEkb has attained the best 
performance on both subsets, outperforming 
SREFkb 1.6 and 4.9 F1 on ALLLFS and ALLLFW, 
respectively. The margin between COEkb and 
other newly proposed systems is even larger, 
revealing the tremendous potential of our system 
regarding zero-shot learning in WSD. It is also 
worth mentioning that COEsup performs 8.4 F1 
lower than the knowledge-based version on 
ALLLFS. This has raised a question regarding how 
to balance the exploitation of the sense 
embeddings learned from SemCor and WordNet 
knowledge. In addition, an essential conclusion 
can be drawn that knowledge-based systems 
(SREFkb and COEkb) have an overwhelming 
advantage on zero-shot sense disambiguation. 

3.3 Sense Embeddings 

Table 9 shows the performance of our systems 
using different sense embeddings, compared with 
the original system. Precisely, the proposed 
method is proven valid and robust when utilizing 
three different sense embedding sets. The largest 
margin is obtained in the knowledge-based  

Models ALLWN_1st 
(n=4728) 

ALLWN_other 
(n=2525)  

WordNet S1 100 0  
Leskenhanced 92.7 9.4  
Babelfy 93.9 12.2  
BiLSTM 93.4 22.9  
EWISE 93.5 31.2  
LMMS 87.6 52.6  
BEM 94.1 52.6  
SREFkb 83.2 55.2  
SREFsup 91.0 53.2  
COEkb 86.3 57.7  

COEsup 92.0 56.2  

Table 7: Performance on Lemmas Whose Sense 
Label is Ranked 1st in Wordnet and the Others 
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category, 2.4 F1. On the contrary, the proposed 
approach has only elevated ARES’s performance 
by 0.5 F1. 

  

Models ALLLFS 
(n=1139) 

ALLLFW 
(n=222)  

LMMS 61.6 74.8  
GlossBERT 62.0 75.6  
ARES 65.2 81.1  
SREFkb 75.9 82.9  
SREFsup 67.3 82.4  
COEkb 77.5 87.8  
COEsup 69.1 87.8  

Table 8: Performance on Lemmas or Senses in 
ALL with no annotation in SemCor 

Sense Embedding Model F1 ∆ 

LMMS † LMMS 75.4 - 
COEsup 76.5 1.1 

SREF 

† SREFkb 73.9 - 
COEkb 76.3 2.4 
† SREFsup 77.8 - 
COEsup 79.6 1.8 

ARES † ARES 77.7 - 
COEsup 78.2 0.5 

Table 9: Systems’ Performance on ALL with 
different sense embedding set. † indicates our 

 

Su
p.

 (S
em

C
or

) 
/ EWISE (2019) 73.8 71.1 67.3* 69.4 74.5 71.8* 74.0 60.2 78.0 82.1 
BERT 
(fine-
tune) 

GlossBERT (2019) 77.7 75.2 72.5* 76.1 80.4 76.8* - - - - 
GLU (2019) 75.5 73.6 68.1* 71.1 76.2 73.7* - - - - 
BEM (2020) 79.4 77.4 74.5* 79.7 81.7 79.0* 81.4 68.5 83.0 87.9 

BERT 
(feature-
extract) 

SVC (2019) 77.5 77.4 69.5 76.0 78.3 76.7 79.6 65.9 79.5 85.5 
LMMS (2019) 76.3 75.6 68.1 75.1 77.0 75.4 78.0 64.0 80.5 83.5 
ARES (2020) 78.0 77.1 71.0 77.3 83.2 77.9 80.6 68.3 80.5 83.5 
SREFsup (2020) 78.6 76.6 72.1 78 80.5 77.8 80.6 66.5 82.6 84.4 
EWISER (2020) 78.9 78.4 71.0 78.9 79.3* 78.3* 81.7 66.3 81.2 85.8 
COEsup 80.3 77.6 73.6* 80.7 82.3 79.6* 82.3 68.9 82.7 87.0 

Table 6: All-words WSD performance for both supervised (Sup.) and knowledge-based (Know.) categories on 
different partitions of ALL, including dataset and POS (noun-N, verb-V, adjective-A and adverb-R) partitions. 
* indicates the performance that are obtained (partially) as a development set. Bold and underlined figures 
represent the current and previous state-of-the-art performance, respectively. 
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