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Abstract

Reasoning over commonsense knowledge
bases (CSKBs) whose elements are in the
form of free-text is an important yet hard task
in NLP. While CSKB completion only fills
the missing links within the domain of the
CSKB, CSKB population is alternatively pro-
posed with the goal of reasoning unseen as-
sertions from external resources. In this task,
CSKBs are grounded to a large-scale eventual-
ity (activity, state, and event) graph to discrimi-
nate whether novel triples from the eventuality
graph are plausible or not. However, existing
evaluations on the population task are either
not accurate (automatic evaluation with ran-
domly sampled negative examples) or of small
scale (human annotation). In this paper, we
benchmark the CSKB population task with a
new large-scale dataset by first aligning four
popular CSKBs, and then presenting a high-
quality human-annotated evaluation set to
probe neural models’ commonsense reasoning
ability. We also propose a novel inductive com-
monsense reasoning model that reasons over
graphs. Experimental results show that gen-
eralizing commonsense reasoning on unseen
assertions is inherently a hard task. Models
achieving high accuracy during training per-
form poorly on the evaluation set, with a large
gap between human performance. Codes and
data are available at https://github.com/
HKUST-KnowComp/CSKB-Population.

1 Introduction

Commonsense reasoning is one of the core prob-
lems in the field of artificial intelligence. Through-
out the development in computational common-
sense, commonsense knowledge bases (CSKB)
(Speer et al., 2017; Sap et al., 2019) are constructed
to enhance models’ reasoning ability. As human-
annotated CSKBs are far from complete due to

∗ Equal Contribution

Figure 1: Comparison between CSKB completion and
population. An example of aligning eventuality graph
as candidate commonsense knowledge triples is also
provided.

the scale of crowd-sourcing, reasoning tasks such
as CSKB completion (Li et al., 2016; Malaviya
et al., 2020; Moghimifar et al., 2021) and popu-
lation (Fang et al., 2021) are proposed to enrich
the missing facts. The CSKB completion task is
defined based on the setting of predicting missing
links within the CSKB. On the other hand, the pop-
ulation task grounds commonsense knowledge in
CSKBs to large-scale automatically extracted can-
didates, and requires models to determine whether
a candidate triple, (head, relation, tail), is plausi-
ble or not, based on the information from both the
CSKB and the large number of candidates which
essentially form a large-scale graph structure. An
illustration of the difference between completion
and population is shown in Figure 1.

There are two advantages of the population task.
First, the population can not only add links but also
nodes to an existing CSKB, while completion can
only add links. The populated CSKB can also help
reduce the selection bias problem (Heckman, 1979)
from which most machine learning models would

https://github.com/HKUST-KnowComp/CSKB-Population
https://github.com/HKUST-KnowComp/CSKB-Population


8950

suffer, and will benefit a lot of downstream appli-
cations such as commonsense generation (Bosse-
lut et al., 2019). Second, commonsense knowl-
edge is usually implicit knowledge that requires
multiple-hop reasoning, while current CSKBs are
lacking such complex graph structures. For ex-
ample, in ATOMIC (Sap et al., 2019), a human-
annotated if-then commonsense knowledge base
among daily events and (mental) states, the av-
erage hops between matched heads and tails in
ASER, an automatically extracted knowledge base
among activities, states, and events based on dis-
course relationships, is 2.4 (Zhang et al., 2021).
Evidence in Section 4.5 (Table 3) also shows sim-
ilar results for other CSKBs. However, reasoning
solely on existing CSKBs can be viewed as a sim-
ple triple classification task without considering
complex graph structure (as shown in Table 3, the
graphs in CSKBs are much sparser). The popula-
tion task, which provides a richer graph structure,
can explicitly leverage the large-scale corpus to per-
form commonsense reasoning over multiple hops
on the graph.

However, there are two major limitations for
the evaluation of the CSKB population task. First,
automatic evaluation metrics, which are based on
distinguishing ground truth annotations from au-
tomatically sampled negative examples (either a
random head or a random tail), are not accurate
enough. Instead of directly treating the random
samples as negative, solid human annotations are
needed to provide hard labels for commonsense
triples. Second, the human evaluation in the origi-
nal paper of CSKB population (Fang et al., 2021)
cannot be generally used for benchmarking. They
first populate the CSKB and then asked human an-
notators to annotate a small subset to check whether
the populated results are accurate or not. A better
benchmark should be based on random samples
from all candidates and the scale should be large
enough to cover diverse events and states.

To effectively and accurately evaluate CSKB
population, in this paper, we benchmark CSKB
population by firstly proposing a comprehensive
dataset aligning four popular CSKBs and a large-
scale automatically extracted knowledge graph,
and then providing a large-scale human-annotated
evaluation set. Four event-centered CSKBs that
cover daily events, namly ConceptNet (Speer et al.,
2017) (the event-related relations are selected),
ATOMIC (Sap et al., 2019), ATOMIC20

20 (Hwang

et al., 2020), and GLUCOSE (Mostafazadeh et al.,
2020), are used to constitute the commonsense rela-
tions. We align the CSKBs together into the same
format and ground them to a large-scale eventual-
ity (including activity, state, and event) knowledge
graph, ASER (Zhang et al., 2020, 2021). Then, in-
stead of annotating every possible node pair in the
graph, which takes an infeasible O(|V |2) amount
of annotation, we sample a large subset of can-
didate edges grounded in ASER to annotate. In
total, 31.7K high-quality triples are annotated as
the development set and test set.

To evaluate the commonsense reasoning ability
of machine learning models based on our bench-
mark data, we first propose some models that learn
to perform CSKB population inductively over the
knowledge graph. Then we conduct extensive eval-
uations and analysis of the results to demonstrate
that CSKB population is a hard task where mod-
els perform poorly on our evaluation set far below
human performance.

We summarize the contributions of the paper
as follow: (1) We provide a novel benchmark for
CSKB population over new assertions that cover
four human-annotated CSKBs, with a large-scale
human-annotated evaluation set. (2) We propose a
novel inductive commonsense reasoning model that
incorporates both semantics and graph structure.
(3) We conduct extensive experiments and eval-
uations on how different models, commonsense
resources for training, and graph structures may
influence the commonsense reasoning results.

2 Related Works

2.1 Commonsense Knowledge Bases

Since the proposal of Cyc (Lenat, 1995) and Con-
ceptNet (Liu and Singh, 2004; Speer et al., 2017),
a growing number of large-scale human-annotated
CSKBs are developed (Sap et al., 2019; Bisk et al.,
2020; Sakaguchi et al., 2020; Mostafazadeh et al.,
2020; Forbes et al., 2020; Lourie et al., 2020;
Hwang et al., 2020; Ilievski et al., 2020). While
ConceptNet mainly depicts the commonsense re-
lations between entities and only small portion of
events, recent important CSKBs have been more
devoted to event-centric commonsense knowledge.
For example, ATOMIC (Sap et al., 2019) defines
9 social interaction relations and ~880K triples are
annotated. ATOMIC20

20 (Hwang et al., 2020) further
unifies the relations with ConceptNet, together with
several new relations, to form a larger CSKB con-
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taining 16 event-related relations. Another CSKB
is GLUCOSE (Mostafazadeh et al., 2020), which
extracts sentences from ROC Stories and defines 10
commonsense dimensions to explores the causes
and effects given the base event. In this paper,
we select ConceptNet, ATOMIC, ATOMIC20

20, and
GLUCOSE to align them together because they
are all event-centric and relatively more normal-
ized compared to other CSKBs like SocialChem-
istry101 (Forbes et al., 2020).

2.2 Knowledge Base Completion and
Population

Knowledge Base (KB) completion is well stud-
ied using knowledge base embedding learned from
triples (Bordes et al., 2013; Yang et al., 2015; Sun
et al., 2019) and graph neural networks with a scor-
ing function decoder (Shang et al., 2019). Pre-
trained language models are also applied on such
completion task (Yao et al., 2019; Wang et al.,
2020b) where information of knowledge triples is
translated into the input to BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019). Knowl-
edge base population (Ji and Grishman, 2011) typ-
ically includes entity linking (Shen et al., 2014)
and slot filling (Surdeanu and Ji, 2014) for con-
ventional KBs, and many relation extraction ap-
proaches have been proposed (Roth and Yih, 2002;
Chan and Roth, 2010; Mintz et al., 2009; Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Lin et al., 2016; Zeng et al., 2017). Universal
schema and matrix factorization can also be used
to learn latent features of databases and perform
population (Riedel et al., 2013; Verga et al., 2016;
Toutanova et al., 2015; McCallum et al., 2017).

Besides completion tasks on conventional entity-
centric KBs like Freebase (Bollacker et al., 2008),
completion tasks on CSKBs are also studied on
ConceptNet and ATOMIC. Bi-linear models are
used to conduct triple classification on Concept-
Net (Li et al., 2016; Saito et al., 2018). Besides,
knowledge base embedding models plus BERT-
based graph densifier (Malaviya et al., 2020; Wang
et al., 2020a) are used to perform link predic-
tion. For CSKB population, BERT plus Graph-
SAGE (Hamilton et al., 2017) is designed to learn
a reasoning model on unseen assertions (Fang et al.,
2021).

Commonsense knowledge generation,
such as COMET (Bosselut et al., 2019) and
LAMA (Petroni et al., 2019), is essentially a

Glucose ATOMIC Relations

Dim 1, 6 xEffect, oEffect
Dim 2 xAttr (“feels”), xIntent (otherwise)
Dim 3, 4, 8, 9 Causes
Dim 5, 10 xWant, oWant
Dim 7 xReact, oReact

Table 1: The conversion from GLUCOSE relations
to ATOMIC20

20 relations, inherited from Mostafazadeh
et al. (2020).

CSKB population problem. However, it requires
the known heads and relations to acquire more tails
so it does not fit our evaluation. Recently, various
prompts are proposed to change the predicate
lexicalization (Jiang et al., 2020; Shin et al., 2020;
Zhong et al., 2021) but still how to obtain more
legitimate heads for probing remains unclear. Our
work can benefit them by obtaining more training
examples, mining more commonsense prompts,
as well as getting more potential heads for the
generation.

3 Task Definition

Denote the source CSKB about events as C =
{(h, r, t)|h ∈ H, r ∈ R, t ∈ T }, whereH,R, and
T are the set of the commonsense heads, relations,
and tails. Suppose we have another much larger
eventuality (including activity, state, and event)
knowledge graph extracted from texts, denoted as
G = (V, E), where V is the set of all vertices and
E is the set of edges. Gc is the graph acquired by
aligning C and G into the same format. The goal
of CSKB population is to learn a scoring function
given a candidate triple (h, r, t), where plausible
commonsense triples should be scored higher. The
training of CSKB population can inherit the setting
of triple classification, where ground truth exam-
ples are from the CSKB C and negative triples are
randomly sampled. In the evaluation phase, the
model is required to score the triples from G that
are not included in C and be compared with human-
annotated labels.

4 Dataset Preparation

4.1 Selection of CSKBs
As we aim at exploring commonsense relations
among general events, we summarize several crite-
ria for selecting CSKBs. First, the CSKB should
be well symbolically structured to be generaliz-
able. While the nodes in CSKB can inevitably
be free-text to represent more diverse semantics,
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ATOMIC
(No clause)

ATOMIC20
20

(4 relations)
ConceptNet

(Event-centered) GLUCOSE # Eventuality

# Triples 449,056 124,935 10,159 117,828 -

Knowlywood 2.63% 2.87% 16.50% 2.96% 929,546
ASER 61.95% 38.50% 44.94% 84.57% 52,940,258

Table 2: Overlaps between eventuality graphs and commonsense knowledge graphs. We report the proportion of
(h, r, t) triples where both the head and tail can be found in the eventuality graph.

we select the knowledge resources where format
normalization is conducted. Second, the com-
monsense relations are encoded as (head, rela-
tion, tail) triples. To this end, among all CSKB
resources, we choose the event-related relations
in ConceptNet, ATOMIC, ATOMIC20

20, and GLU-
COSE as the final commonsense resources. For the
event-related relations in ConceptNet, the elements
are mostly lemmatized predicate-object pairs. In
ATOMIC and ATOMIC20

20, the subjects of eventual-
ities are normalized to placeholders “PersonX” and
“PersonY”. The nodes in GLUCOSE are also nor-
malized and syntactically parsed manually, where
human-related pronouns are written as “SomeoneA”
or “SomeoneB”, and object-related pronouns are
written as “SomethingA”. Other commonsense re-
sources like SocialChemistry101 (Forbes et al.,
2020) are not selected as they include over loosely-
structured events.

For ConceptNet, we select the event-related rela-
tions Causes and HasSubEvent, and the triples
where nodes are noun phrases are filtered out. For
ATOMIC, we restrict the events to be those sim-
ple and explicit events that do not contain wild-
cards and clauses. As ATOMIC20

20 itself includes
the triples in ATOMIC and ConceptNet, to distin-
guish different relations, we refer to ATOMIC20

20 as
the new event-related relations annotated in Hwang
et al. (2020), which are xReason, HinderedBy,
isBefore, and isAfter. In the rest of the
paper, ATOMIC(2020) means the combination of
ATOMIC and the new relations in ATOMIC20

20.

4.2 Alignment of CSKBs

To effectively align the four CSKBs, we propose
best-effort rules to align the formats for both nodes
and edges. First, for the nodes in each CSKB, we
normalize the person-centric subjects and objects
as “PersonX”, “PersonY”, and “PersonZ”, etc, ac-
cording to the order of their occurrence, and the
object-centric subjects and objects as “SomethingA”
and “SomethingB”. Second, to reduce the seman-

tic overlaps of different relations, we aggregate
all commonsense relations to the relations defined
in ATOMIC(2020), as it is comprehensive enough to
cover the relations in other resources like GLU-
COSE, with some simple alignment in Table 1.
ConceptNet. We select Causes and
HasSubEvent from ConceptNet to consti-
tute the event-related relations. As heads and tails
in ConceptNet don’t contain subjects, we add a
“PersonX” in front of the original heads and tails to
make them complete eventualities.
ATOMIC(2020). In ATOMIC and ATOMIC20

20, heads
are structured events with “PersonX” as subjects,
while tails are human-written free-text where sub-
jects tend to be missing. We add “PersonX” for the
tails without subjects under agent-driven relations,
the relations that aim to investigate causes or ef-
fects on “PersonX” himself, and add “PersonY” for
the tails missing subjects under theme-driven rela-
tions, the relations that investigate commonsense
causes or effects on other people like “PersonY” .
GLUCOSE. For GLUCOSE, we leverage the
parsed and structured version in this study. We
replace the personal pronouns “SomeoneA” and
“SomeoneB” with “PersonX” and “PersonY” respec-
tively. For other object-centric placeholders like
“Something”, we keep them unchanged. The rela-
tions in GLUCOSE are then converted to ATOMIC
relations according to the conversion rule in the
original paper (Mostafazadeh et al., 2020). More-
over, gWant, gReact, and gEffect are the new
relations for the triples in GLUCOSE where the
subjects are object-centric. The prefix “g” stands
for general, to be distinguished from “x” (for Per-
sonX) and “o” (for PersonY).

4.3 Selection of the Eventuality KG

Taking scale and the diversity of relationships in
the KG into account, we select two automatically
extracted eventuality knowledge graphs as candi-
dates for the population task, Knowlywood (Tan-
don et al., 2015) and ASER (Zhang et al., 2020).
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ASERnorm Coverage Avg. Degree in ASERnorm Avg. Degree in C
In-Degree Out-Degree In-Degree Out-Degree

head(%) tail(%) edge(%) #hops head tail head tail head tail head tail

ATOMIC 79.76 77.11 59.32 2.57 90.9 61.3 91.2 61.6 4.2 3.4 34.6 1.5
ATOMIC20

20 80.39 47.33 36.73 2.65 96.9 66.9 97.3 67.3 4.3 2.9 34.6 1.5
ConceptNet 77.72 54.79 43.51 2.37 210.7 88.9 211.6 88.9 15.1 8.0 26.2 4.1
GLUCOSE 91.48 91.85 81.01 2.37 224.9 246.4 226.6 248.0 7.2 7.7 6.7 5.5

Table 3: The overall matching statistics for the four CSKBs. The edge column indicates the proportion of edges
where their heads and tails can be connected by paths in ASER. Average (in and out)-degree on ASERnorm and
C for nodes from the CSKBs is also presented. The statistics in C is different from (Malaviya et al., 2020) as we
check the degree on the aligned CSKB C instead of each individual CSKB.

They both have complex graph structures that are
suitable for multiple-hop reasoning. We first check
how much commonsense knowledge is included in
those eventuality graphs to see if it’s possible to
ground a large proportion of commonsense knowl-
edge triples on the graphs. Best-effort alignment
rules are designed to align the formats of CSKBs
and eventuality KGs. For Knowlywood, as the
patterns are mostly simple verb-object pairs, we
leverage the v-o pairs directly and add a subject
in front of the pairs. For ASER, we aggregate the
raw personal pronouns like he and she to normal-
ized “PersonX”. As ASER adopts more compli-
cated patterns of defining eventualities, a more de-
tailed pre-process of the alignment between ASER
and CSKBs will be illustrated in Section 4.4. We
report the proportion of triples in every CSKB
whose head and tail can both be matched to the
eventuality graph in Table 2. ASER covers a sig-
nificantly larger proportion of head-tail pairs in
the four CSKBs than Knowlywood. The reason
behind is that on the one hand ASER is of much
larger scale, and on the other hand ASER contains
eventualities with more complicated structures like
s-v-o-p-o (s for subject, v for verb, o for object,
and p for preposition), compared with the fact that
Knowlywood mostly covers s-v or s-v-o only. In
the end, we select ASER as the eventuality graph
for population.

4.4 Pre-process of the Eventuality Graph

We introduce the normalization process of ASER,
which converts its knowledge among everyday
eventualities into normalized form to be aligned
with the CSKBs as discussed in Section 4.2. Each
eventuality in ASER has a subject. We consider
singular personal pronouns, i.e., “I”, “you”, “he”,
“she”, “someone”, “guy”, “man”, “woman”, “some-
body”, and replace the concrete personal pronouns
in ASER with normalized formats such as “Per-

He accepts my offer

I praise his work

he is happy

Conjunction

X accepts Y’s offer

Y praise X’s work

X be happy

Y accepts X’s offer

X praise Y’s work

Y be happy

Work is done well

Work is done well

Result

Precedence

Precedence

Reason

Result

Conjunction

Conjunction

Result

Precedence

Precedence

Reason

Reason

Figure 2: An example of normalizing ASER. The coral
nodes and edges are raw data from ASER, and the blue
ones are the normalized graph by converting “he” and
“she” to placeholders “PersonX” and “PersonY”

sonX” and “PersonY”. Specifically, for an original
ASER edge where both the head and tail share the
same person-centric subject, we replace the sub-
ject with “PersonX” and the subsequent personal
pronouns in the two eventualities with “PersonY”
and “PersonZ” according to the order of the occur-
rence if exists. For the two neighboring eventuali-
ties where the subjects are different person-centric
pronouns, we replace one with “PersonX” and the
other with “PersonY”. In addition, to preserve the
complex graph structure in ASER, for all the con-
verted edges, we duplicate them by replacing the
“PersonX” in it with “PersonY”, and “PersonY”
with “PersonX”, to preserve the sub-structure in
ASER as much as possible. An illustration of the
converting process is shown in Figure 2. The nor-
malized version of ASER is denoted as ASERnorm.

4.5 The Aligned Graph Gc

With the pre-process in Section 4.2 and 4.4, we
can successfully align the CSKBs and ASER to-
gether in the same format. To demonstrate ASER’s
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coverage on the knowledge in CSKBs, we present
the proportion of heads, tails, and edges that can
be found in the ASERnorm via exact string match
in Table 3. For edges, we report the proportion
of edges where the corresponding heads and tails
can be connected by a path in ASER. We also re-
port the average shortest path length in ASER for
those matched edges from the CSKB in the #hops
column, showing that ASER can entail such com-
monsense knowledge within several hops of path
reasoning, which builds the foundation of common-
sense reasoning on ASER. In addition, the average
degree in Gc and C for heads and tails from each
CSKB is also presented in the table. The total num-
ber of triples for each relation in the CSKBs is
presented in Table 4. There are 18 commonsense
relations in total for CSKBs and 15 relations in
ASER. More detailed descriptions and examples
of the unification are presented in the Appendix
(Table 11, 12, and 14).

4.6 Evaluation Set Preparation

For the ground truth commonsense triples from
the CSKBs, we split them into train, development,
and test set with the proportion 8:1:1. Negative
examples are sampled by selecting a random head
and a random tail from the aligned Gc such that
the ratio of negative and ground truth triples is 1:1.
To form a diverse evaluation set, we sample 20K
triples from the original automatically constructed
test set (denoted as “Original Test Set”), 20K from
the edges in ASER where heads come from CSKBs
and tails are from ASER (denoted as “CSKB head
+ ASER tail”), and 20K triples in ASER where
both heads and tails come from ASER (denoted
as “ASER edges”). The detailed methods of se-
lecting candidate triples for annotation is listed in
the Appendix B.2. The distribution of different
relations in this evaluation set is the same as in the
original test set. The sampled evaluation set is then
annotated to acquire ground labels.

5 Human Annotation

5.1 Setups

The human annotation is carried out on Amazon
Mechanical Turk. Workers are provided with sen-
tences in the form of natural language translated
from knowledge triples (e.g., for xReact, an (h,
r, t) triple is translated to “If h, then, PersonX feels
t”). Additionally, following Hwang et al. (2020),
annotators are asked to rate each triple in a four-

Relation ATOMIC(2020) ConceptNet GLUCOSE

oEffect 21,497 0 7,595
xEffect 61,021 0 30,596
gEffect 0 0 8,577
oWant 35,477 0 1,766
xWant 83,776 0 11,439
gWant 0 0 5,138
oReact 21,110 0 3,077
xReact 50,535 0 13,203
gReact 0 0 2,683
xAttr 89,337 0 7,664
xNeed 61,487 0 0
xIntent 29,034 0 8,292
isBefore 18,798 0 0
isAfter 18,600 0 0
HinderedBy 87,580 0 0
xReason 189 0 0
Causes 0 42 26,746
HasSubEvent 0 9,934 0

Total 578,252 10,165 126,776

Table 4: Relation distribution statistics for different
CSKBs. Due to the filter in Section 4.1, the statistics
are different from the original papers.

point Likert scale: Always/Often, Sometimes/Likely,
Farfetched/Never, and Invalid. Triples receiving
the former two labels will be treated as Plausible
or otherwise Implausible. Each HIT (task) includes
10 triples with the same relation type, and each
sentence is labeled by 5 workers. We take the ma-
jority vote among 5 votes as the final result for each
triple. To avoid ambiguity and control the quality,
we finalize the dataset by selecting triples where
workers reach an agreement on at least 4 votes.

5.2 Quality Control
For strict quality control, we carry out two rounds
of qualification tests to select workers and provide
a special training round. First, workers satisfying
the following requirements are invited to partici-
pate in our qualification tests: 1) at least 1K HITs
approved, and 2) at least 95% approval rate. Sec-
ond, a qualification question set including both
straightforward and tricky questions is created by
experts, who are authors of this paper and have a
clear understanding of this task. 760 triples sam-
pled from the original dataset are annotated by the
experts. Each worker needs to answer a HIT con-
taining 10 questions from the qualification set and
their answers are compared with the expert anno-
tation. Annotators who correctly answer at least 8
out of 10 questions are selected in the second round.
671 workers participated in the qualification test,
among which 141 (21.01%) workers are selected
as our main round annotators. To further enhance
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Dev Test Train

# Triples 6,217 25,514 1,100,362
% Plausible 51.05% 51.74% -
% Novel Nodes 67.40% 70.01% -

Table 5: Statistics of the annotated evaluation set. #
triples indicates the number of triples in the dataset, %
Plausible indicates the proportion of plausible triples
after majority voting, and % Novel Nodes is the propor-
tion of nodes that do not appear in the training CSKBs.
We also report the scale of the un-annotated training set
(including random negative examples) for reference.

the quality, we carry out an extra training round
for the main round annotators. For each relation,
annotators are asked to rate 10 tricky triples care-
fully selected by experts. A grading report with
detailed explanations on every triple is sent to all
workers afterward to help them fully understand
the annotation task.

After filtering, we acquire human-annotated la-
bels for 31,731 triples. The IAA score is 71.51%
calculated using pairwise agreement proportion,
and the Fleiss’s κ (Fleiss, 1971) is 0.43. We further
split the proportion of the development set and test
set as 2:8. The overall statistics of this evaluation
set are presented in Table 5. To acquire human per-
formance, we sample 5% of the triples from the test
set, and ask experts as introduced above to provide
two additional votes for the triples. The agreement
between labels acquired by majority voting and the
5+2 annotation labels is used as the final human
performance of this task.

6 Experiments

In this section, we introduce the baselines and our
proposed model KG-BERTSAGE for the CSKB
population task, as well as the experimental setups.

6.1 Model

The objective of a population model is to determine
the plausibility of an (h, r, t) triple, where nodes
can frequently be out of the domain of the train-
ing set. In this sense, transductive methods based
on knowledge base embeddings (Malaviya et al.,
2020) are not studied here. We present several
ways of encoding triples in an inductive manner.
BERT. The embeddings of h, r, t are encoded
as the embeddings of the [CLS] tokens after feed-
ing them separately as sentences to BERT. For
example, the relation xReact is encoded as the
BERT embedding of “[CLS] xReact [SEP]”. The

Relation #Eval. #Train

xWant 2,605 152,634
oWant 999 59,688
gWant 207 8,093
xEffect 2,757 144,799
oEffect 667 46,555
gEffect 287 13,529
xReact 2,999 100,853
oReact 921 38,581
gReact 164 4,169
xAttr 2,561 152,949
xIntent 1,017 59,138
xNeed 1,532 98,830
Causes 1,422 40,450
xReason 16 320
isBefore 879 27,784
isAfter 1,152 27,414
HinderedBy 4,870 127,320
HasSubEvent 459 16,410

Table 6: Number of triples of each relation in the Eval.
(dev+test) and Train set.

embeddings are then concatenated as the final rep-
resentation of the triple, [sh, sr, st].
BERTSAGE. The idea of BERTSAGE (Fang et al.,
2021) is to leverage the neighbor information of
nodes through a graph neural network layer for
their final embedding. For h, denote its BERT em-
bedding as sh, then the final embedding of h is
eh = [sh,

∑
v∈N (h) sv/|N (h)|], where N (h) is

the neighbor function that returns the neighbors of
h from G. The final representation of the triple is
then [eh, sr, et].
KG-BERT. KG-BERT(a) (Yao et al., 2019) en-
codes a triple by concatenating the elements in
(h, r, t) into a single sentence and encode it with
BERT. Specifically, the input is the string concate-
nation of [CLS], h, [SEP], r, [SEP], t, and [SEP].
KG-BERTSAGE. As KG-BERT doesn’t take into
account graph structures directly, we propose to
add an additional graph SAmpling and AGgrega-
tion layer (Hamilton et al., 2017) to better learn
the graph structures. Specifically, denoting the
embedding of the (h, r, t) triple by KG-BERT as
KG-BERT(h, r, t), the model of KG-BERTSAGE
is the concatenation of KG-BERT(h, r, t),∑

(r′,v)∈N (h) KG-BERT (h, r′, v)/|N (h)|, and∑
(r′,v)∈N (t) KG-BERT (v, r′, t)/|N (t)|. Here,

N (h) returns the neighboring edges of node h.
More details about the models and experimental

details are listed in the Appendix Section C.

6.2 Setup
We train the population model using a triple clas-
sification task, where ground truth triples come
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Relation xWnt oWnt gWnt xEfct oEfct gEfct xRct oRct gRct xAttr xInt xNeed Cause xRsn isBfr isAft Hndr. HasSubE. all

BERT 57.7 64.9 66.3 59.1 66.2 60.0 50.6 68.7 72.3 56.2 63.9 56.4 48.3 34.5 59.2 58.0 66.1 73.0 59.4
BERTSAGE 54.7 58.9 58.0 58.0 70.0 54.7 52.8 62.4 76.6 55.0 61.0 57.1 46.2 45.5 66.7 64.9 69.6 80.4 60.0
KG-BERT 63.2 69.8 69.0 68.0 70.6 61.0 57.0 64.0 73.8 59.5 64.9 64.6 47.4 90.9 78.0 77.5 75.9 68.5 66.1
KG-BERTSAGE 66.0 68.9 68.6 68.2 70.8 62.3 60.5 64.6 74.1 59.1 63.0 65.4 50.0 76.4 78.2 77.4 77.5 67.0 67.2

Human 86.2 86.8 83.3 85.2 83.9 79.8 81.1 82.6 76.5 82.6 85.6 87.4 80.1 73.7 89.8 89.9 85.3 85.7 84.4

Table 7: Experimental results on CSKB population. We report the AUC (×100) here for each relation. The
improvement under “all” is statistically significant using Randomization Test (Cohen, 1995), with p < 0.05.

Relation xWnt oWnt gWnt xEfct oEfct gEfct xRct oRct gRct xAttr xInt xNeed Cause xRsn isBfr isAft Hndr. HasSubE. all

KG-BERT

· on ATOMIC(2020) 61.0 64.2 68.0 62.9 67.1 64.8 58.8 60.2 68.6 58.9 62.4 63.7 55.8 58.2 77.7 76.7 75.5 67.6 65.2
· on GLUCOSE 62.3 67.6 69.2 61.6 71.5 57.3 58.0 63.4 77.0 57.7 61.0 50.4 48.1 72.7 61.0 50.6 59.2 68.0 59.2
· on ConceptNet 58.0 62.0 59.4 56.2 52.5 61.4 52.3 57.0 54.4 57.1 61.8 57.4 55.6 78.2 61.8 60.8 63.2 60.9 58.3
· on all 63.2 69.8 69.0 68.0 70.6 61.0 57.0 64.0 73.8 59.5 64.9 64.6 47.4 90.9 78.0 77.5 75.9 68.5 66.1

KG-BERTSAGE
· on ATOMIC(2020) 63.1 64.7 65.6 63.7 67.5 65.7 56.1 60.3 64.9 56.8 60.5 63.7 56.5 65.5 76.9 76.6 76.9 63.8 65.1
· on GLUCOSE 61.7 68.3 70.8 61.1 71.9 60.1 56.1 61.4 71.3 56.5 60.5 46.8 50.5 69.1 60.6 51.7 60.0 72.4 58.9
· on ConceptNet 57.7 55.0 59.8 60.1 57.3 62.2 50.2 50.9 50.9 52.3 56.8 52.1 52.6 70.9 53.8 44.5 58.3 59.8 55.0
· on all 66.0 68.9 68.6 68.2 70.8 62.3 60.5 64.6 74.1 59.1 63.0 65.4 50.0 76.4 78.2 77.4 77.5 67.0 67.2

Table 8: Effects of different training sets.

from the original CSKB, and the negative exam-
ples are randomly sampled from the aligned graph
Gc . The model needs to discriminate whether an
(h, r, t) triple in the human-annotated evaluation
set is plausible or not. For evaluation, we use the
AUC score as the evaluation metric, as this com-
monsense reasoning task is essentially a ranking
task that is expected to rank plausible assertions
higher than those farfetched assertions.

We use BERTbase from the Transformer1 library,
and use learning rate 5×10−5 and batch size 32 for
all models. The statistics of each relation is shown
in Table 6. We select the best models individu-
ally for each relation based on the corresponding
development set. Besides AUC scores for each rela-
tion, we also report the AUC score for all relations
by the weighted sum of the break-down scores,
weighted by the proportion of test examples of the
relation. This is reasonable as AUC essentially rep-
resents the probability that a positive example will
be ranked higher than a negative example.

6.3 Main Results

The main experimental results are shown in Table 7.
KG-BERTSAGE performs the best among all, as it
both encodes an (h, r, t) as a whole and takes full
advantage of neighboring information in the graph.
Moreover, all models are significantly lower than
human performance with a relatively large margin.

1https://transformer.huggingface.co/

ASER can on the one hand provide candidate
triples for populating CSKBs, and can on the other
hand provide graph structure for learning common-
sense reasoning. From the average degree in Ta-
ble 3, the graph acquired by grounding CSKBs
to ASER can provide far more neighbor informa-
tion than using the CSKBs only. While KG-BERT

treats the task directly as a simple triple classi-
fication task and takes only the triples as input,
it does not explicitly take into consideration the
graph structure. KG-BERTSAGE on the other hand
leverages an additional GraphSAGE layer to ag-
gregate the graph information from ASER, thus
achieving better performance. It demonstrates that
it is beneficial to incorporate those un-annotated
ASER graph structures where multiple-hop paths
are grounded between commonsense heads and
tails. Though BERTSAGE also incorporates neigh-
boring information, it only leverages the ASER
nodes representation and ignores the complete re-
lational information of triples as KG-BERTSAGE
does. As a result, it doesn’t outperform BERT by
much for the task.

6.4 Zero-shot Setting

We also investigate the effects of different train-
ing CSKBs as shown in Table 8. Models are then
trained on the graphs only consisting of common-
sense knowledge from ATOMIC(2020), GLUCOSE,
and ConceptNet, respectively. The models trained
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Model Original
Test Set

CSKB head
+ ASER tail

ASER
edges

BERT 65.0 47.9 44.6
BERTSAGE 67.2 49.4 46.2
KG-BERT 77.8 55.2 50.3
KG-BERTSAGE 78.2 57.5 52.3

Table 9: AUC scores grouped by the types of the eval-
uation sets defined in 4.6. The latter two groups are
harder for neural models to distinguish.

on all CSKBs achieve better performance both for
each individual relation and on the whole. We
can conclude that more high-quality commonsense
triples for training from diverse dimensions can
benefit the performance of such commonsense rea-
soning.

When trained on each CSKB dataset, there are
some relations that are never seen in the training
set. As all of the models use BERT to encode rela-
tions, the models are inductive and can thus reason
triples for unseen relations in a zero-shot setting.
For example, the isBefore and isAfter rela-
tions are not presented in GLUCOSE, while after
training KG-BERTSAGE on GLUCOSE, it can still
achieve fair AUC scores. Though not trained ex-
plicitly on the isBefore and isAfter relations,
the model can transfer the knowledge from other
relations and apply them to the unseen ones.

7 Error Analysis

As defined in Section 4.6, the evaluation set is
composed of three parts, edges coming from the
original test set (Original Test Set), edges where
heads come from CSKBs and tails from ASER
(CSKB head + ASER tail), and edges from the
whole ASER graph (ASER edges). The break-down
AUC scores of different groups given all models
are shown in Table 9. The performances under the
Original Test Set of all models are remarkably bet-
ter than the other two groups, as the edges in the
original test set are from the same domain as the
training examples. The other two groups, where
there are more unseen nodes and edges, are harder
for the neural models to distinguish. The results
show that simple commonsense reasoning mod-
els studied in this paper struggle to be generalized
to unseen nodes and edges. As a result, in order
to improve the performance of this CSKB popu-
lation task, more attention should be paid to the
generalization ability of commonsense reasoning
on unseen nodes and edges.

Head Relation Tail Label Pred.

PersonX go to nurse xEffect PersonX use to get headache 0 1
PersonX have a quiz Causes PersonX have pen 0 1
PersonX be strong oWant PersonY like PersonX 0 1
PersonX feel a pain xIntent PersonX finger have be chop off 0 1

Table 10: Examples of error predictions made by KG-
BERTSAGE, where the head and tail are semantically
related while not conformed to the designated common-
sense relation.

Moreover, by taking a brief inspection of the test
set, we found that errors occur when encountering
triples that are not logically sound but semantically
related. Some examples are presented in Table 10.
For the triple (PersonX go to nurse, xEffect, Per-
sonX use to get headache), the head event and tail
event are highly related. However, the fact that
someone gets a headache should be the reason in-
stead of the result of going to the nurse. More
similar errors are presented in the rest of the ta-
ble. These failures may be because when using
BERT-based models the training may not be well
performed for the logical relations or discourse but
still recognizing the semantic relatedness patterns.

8 Conclusion

In this paper, we benchmark the CSKB popula-
tion task by proposing a dataset by aligning four
popular CSKBs and an eventuality graph ASER,
and provide a high-quality human-annotated evalu-
ation set to test models’ reasoning ability. We also
propose KG-BERTSAGE to both incorporate the
semantic of knowledge triples and the subgraph
structure to conduct reasoning, which achieves the
best performance among other counterparts. Exper-
imental results also show that the task of reasoning
unseen triples outside of the domain of CSKB is a
hard task where current models are far away from
human performance, which brings challenges to
the community for future research.

Acknowledgement

The authors of this paper were supported by
the NSFC Fund (U20B2053) from the NSFC of
China, the RIF (R6020-19 and R6021-20) and the
GRF (16211520) from RGC of Hong Kong, the
MHKJFS (MHP/001/19) from ITC of Hong Kong,
with special thanks to the Gift Fund from Huawei
Noah’s Ark Lab.



8958

References
Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng

Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, New York, NY, USA, February
7-12, 2020, pages 7432–7439. AAAI Press.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Neural Information Processing
Systems (NIPS), pages 1–9.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762–4779.

Yee Seng Chan and Dan Roth. 2010. Exploiting back-
ground knowledge for relation extraction. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics, pages 152–160.

Paul R Cohen. 1995. Empirical methods for artificial
intelligence, volume 139. MIT press Cambridge,
MA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Tianqing Fang, Hongming Zhang, Weiqi Wang,
Yangqiu Song, and Bin He. 2021. Discos: Bridg-
ing the gap between discourse knowledge and com-
monsense knowledge. In Proceedings of the Web
Conference 2021, pages 2648–2659.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Maxwell Forbes, Jena D. Hwang, Vered Shwartz,
Maarten Sap, and Yejin Choi. 2020. Social chem-
istry 101: Learning to reason about social and moral
norms. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
pages 653–670. Association for Computational Lin-
guistics.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 1025–1035.

James J Heckman. 1979. Sample selection bias as a
specification error. Econometrica: Journal of the
econometric society, pages 153–161.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke S.
Zettlemoyer, and Daniel S. Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
annual meeting of the association for computational
linguistics: human language technologies, pages
541–550.

Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2020. Comet-atomic 2020: On symbolic
and neural commonsense knowledge graphs. arXiv
preprint arXiv:2010.05953.

Filip Ilievski, Pedro Szekely, and Bin Zhang. 2020.
Cskg: The commonsense knowledge graph. arXiv
preprint arXiv:2012.11490.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 1148–1158.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know. Trans. Assoc. Comput. Linguistics,
8:423–438.

Douglas B Lenat. 1995. Cyc: A large-scale investment
in knowledge infrastructure. Communications of the
ACM, 38(11):33–38.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense knowledge base completion.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1445–1455.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2124–2133.

Hugo Liu and Push Singh. 2004. Conceptnet—a practi-
cal commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

https://transacl.org/ojs/index.php/tacl/article/view/1983
https://transacl.org/ojs/index.php/tacl/article/view/1983


8959

Nicholas Lourie, Ronan Le Bras, and Yejin Choi. 2020.
Scruples: A corpus of community ethical judg-
ments on 32, 000 real-life anecdotes. arXiv preprint
arXiv:2008.09094.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
2925–2933.

Andrew McCallum, Arvind Neelakantan, and Patrick
Verga. 2017. Generalizing to unseen entities and en-
tity pairs with row-less universal schema. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 613–622.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003–1011.

Farhad Moghimifar, Lizhen Qu, Yue Zhuo, Gholam-
reza Haffari, and Mahsa Baktashmotlagh. 2021.
Neural-symbolic commonsense reasoner with rela-
tion predictors. arXiv preprint arXiv:2105.06717.

Nasrin Mostafazadeh, Aditya Kalyanpur, Lori Moon,
David Buchanan, Lauren Berkowitz, Or Biran, and
Jennifer Chu-Carroll. 2020. Glucose: Generalized
and contextualized story explanations. In The Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2463–2473. Association for
Computational Linguistics.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 148–163.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
74–84.

Dan Roth and Wen-tau Yih. 2002. Probabilistic rea-
soning for entity & relation recognition. In Proceed-
ings of the 19th international conference on Compu-
tational linguistics-Volume 1.

Itsumi Saito, Kyosuke Nishida, Hisako Asano, and
Junji Tomita. 2018. Commonsense knowledge base
completion and generation. In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning, pages 141–150.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, New York, NY, USA, February
7-12, 2020, pages 8732–8740. AAAI Press.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
3027–3035.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xi-
aodong He, and Bowen Zhou. 2019. End-to-end
structure-aware convolutional networks for knowl-
edge base completion. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 3060–3067.

Wei Shen, Jianyong Wang, and Jiawei Han. 2014. En-
tity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Transactions on Knowl-
edge and Data Engineering, 27(2):443–460.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 4222–4235. Associ-
ation for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 31.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Mihai Surdeanu and Heng Ji. 2014. Overview of the
english slot filling track at the tac2014 knowledge
base population evaluation. In Proc. Text Analysis
Conference (TAC2014).



8960

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and compu-
tational natural language learning, pages 455–465.

Niket Tandon, Gerard De Melo, Abir De, and Ger-
hard Weikum. 2015. Knowlywood: Mining activity
knowledge from hollywood narratives. In Proceed-
ings of the 24th ACM International on Conference
on Information and Knowledge Management, pages
223–232.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of
text and knowledge bases. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1499–1509.

Patrick Verga, David Belanger, Emma Strubell, Ben-
jamin Roth, and Andrew McCallum. 2016. Multi-
lingual relation extraction using compositional uni-
versal schema. In NAACL HLT 2016, The 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA,
June 12-17, 2016, pages 886–896.

Bin Wang, Guangtao Wang, Jing Huang, Jiaxuan You,
Jure Leskovec, and C-C Jay Kuo. 2020a. Inductive
learning on commonsense knowledge graph comple-
tion. arXiv preprint arXiv:2009.09263.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou,
and Yi Chang. 2020b. Semantic triple encoder
for fast open-set link prediction. arXiv preprint
arXiv:2004.14781.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. arXiv
preprint arXiv:1909.03193.

Wenyuan Zeng, Yankai Lin, Zhiyuan Liu, and
Maosong Sun. 2017. Incorporating relation paths
in neural relation extraction. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1768–1777.

Hongming Zhang, Xin Liu, Haojie Pan, Haowen
Ke, Jiefu Ou, Tianqing Fang, and Yangqiu Song.
2021. Aser: Towards large-scale commonsense
knowledge acquisition via higher-order selectional
preference over eventualities. arXiv preprint
arXiv:2104.02137.

Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song,
and Cane Wing-Ki Leung. 2020. Aser: A large-
scale eventuality knowledge graph. In Proceedings
of The Web Conference 2020, pages 201–211.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: learning vs. learning to
recall. arXiv preprint arXiv: 2104.05240.



8961

A Additional Details of Commonsense
Relations

During human annotation, we translate the sym-
bolic knowledge triples into human language for
annotators to better understand the questions. A
(h, r, t) triple where h, r, and t are the head, rela-
tion, and tail, is translated to if h, then [Descrip-
tion], t. Here, the description placeholder [De-
scription] comes from rules in Table 11, which is
modified from Hwang et al. (2020). These descrip-
tions can also be regarded as definitions of those
commonsense relations.

Moreover, the definitions of the discourse re-
lations in ASER are presented in Table 12. We
also present the statistics of relation distribution for
ASERnorm in Table 13.

B Additional Details of Pre-processing

B.1 Examples of Format Unification
Table 14 demonstrates several examples for uni-
fying the formats of different resources. In Con-
ceptNet and Knowlywood, the nodes are mostly
verb or verb-object phrases, and we add a subject
“PersonX” in front of each node. For ATOMIC, the
main modification part is the tails, where subjects
tend to be missing. We treat agent-driven (relations
investigating causes and effects on PersonX) and
theme-driven (relations investigating causes and
effects on PersonY) differently, and add PersonX
or PersonY in front of the tails whose subjects are
missing. For ASER, rules are used to discrimi-
nate PersonX and PersonY in a certain edge. Two
examples for ASER and ATOMIC demonstrating
the differences between PersonX and PersonY are
provided in the table. For GLUCOSE, we simply
replace SomeoneA with PersonX and SomeoneB
with PersonY accordingly. Moreover, all the words
are lemmatized using Stanford CoreNLP parser2 to
normalized forms.

B.2 Selecting Candidate Triples from ASER
The evaluation set comes from three parts:

1. Original Test Set: The edges that are randomly
sampled from the original automatically con-
structed test set, as illustrated in Section 4.6.

2. CSKB head + ASER tail: The edges are sam-
pled from the edges in ASER where the heads
come from the nodes in CSKBs and tails

2https://stanfordnlp.github.io/CoreNLP/

Relation Decriptions

oEffect then, PersonY will
xEffect then, PersonX will
gEffect then, other people or things will
oWant then, PersonY wants to
xWant then, PersonX wants to
gWant then, other people or things want to
oReact then, PersonY feels
xReact then, PersonX feels
gReact then, other people or things feel
xAttr PersonX is seen as
xNeed but before, PersonX needed
xIntent because PersonX wanted
isBefore happens before
isAfter happens after
HinderedBy can be hindered by
xReason because
Causes causes
HasSubEvent includes the event/action

Table 11: Descriptions of different commonsense re-
lations, which are translation rules from knowledge
triples (h, r, t) to human language, “if h, then [Descrip-
tion], t” (Hwang et al., 2020).

Relation Decriptions

Precedence h happens before t
Succession h happens after h
Synchronous h happens the same time as t
Reason h happens because t
Result h result in t
Condition Only when t happens, h can happen
Contrast h and t share significant difference regarding

some property
Concession h and t result in another opposite event
Alternative h and t are alternative situations of each other.
Conjunction h and t both happen
Restatement h restates t
Instantiation t is a more detailed description of h
ChosenAlternative h and t are alternative situations of each other,

but the subject prefers h
Exception t is an exception of h
Co_Occurrence h and t co-occur at the same sentence

Table 12: Descriptions of discourse relations in
ASER (Zhang et al., 2021).

from ASER. This corresponds to the settings
in COMET (Bosselut et al., 2019) and DIS-
COS (Fang et al., 2021).

3. ASER edges: The edges are sampled from the
whole ASER graph.

Instead of randomly sampling negative exam-
ples which may be easy to distinguish, we sample
some candidate edges from ASER with some sim-
ple rules to fit the chronological order and syntac-
tical patterns for each commonsense relation, thus
providing a harder evaluation set for machines to
concentrate more on commonsense. The discourse
relations defined in ASER at Table 12 inherently
represent some chronological order, which can be
matched to each commonsense relation based on
some alignment rules.

First, for each commonsense relation, we sample
the edges in ASER with the same basic chronologi-
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Relation number of edges

Precedence 4,957,481
Succession 1,783,154
Synchronous 8,317,572
Reason 5,888,968
Result 5,562,565
Condition 8,109,020
Contrast 23,208,195
Concession 1,189,167
Alternative 1,508,729
Conjunction 37,802,734
Restatement 159,667
Instantiation 33,840
ChosenAlternative 91,286
Exception 51,502
Co_Occurrence 124,330,714

Total 222,994,594

Table 13: Statistics of relations in ASERnorm.

cal and logical meaning. For example, the Result
relation from ASER, which is a discourse relation
where the tail is a result of the head, can be served
as a candidate for the xEffect commonsense re-
lation, where a tail is the effect or consequence
of the head. Alternatively, we can also regard a
(tail, Succession−1, head), which is the inver-
sion of (head, Succession, tail), as a candidate
xEffect relation, as in Succession, the head
happens after the tail. By providing candidate
triples with the same chronological relation, the
models will need to focus more on the subtle com-
monsense connection within the triple. Second, we
restrict the dependency patterns of the candidate
edges. For the stative commonsense relation such
as xAttr, where the tails are defined to be a state,
we restrict the tails from ASER to be of patterns
such as s-v-o and s-v-a. This also filters out some
triples that are obviously false as they are not actu-
ally describing a state. Detailed selection rules for
each commonsense relation are defined in Table 15.

Besides the above selected edges, we also sam-
ple some edges from ASER that are reverse to the
designated discourse relations. For example, for the
commonsense relation xEffect, the above rules
will select discourse edges with patterns like (head,
Result, tail) to constitute a candidate xEffect
relation (head, xEffect, tail). In addition to that,
we also sample some edges with reverse relations,
like (tail, Result, head), to form a candidate
edge (head, xEffect, tail), to make the anno-
tated edges more diverse.

B.3 Examples of Populated Triples

Examples of the annotations of the populated
triples are listed in Table 17. The source of the
triples is from the three types defined in Section B.2.

In the Original Test Set category, the triples are
composed of two parts, one is the ground truth
triples from the original CSKBs, and one is triples
randomly sampled from Gc.

C Additional Details of the Models

C.1 Model Details
For a (h, r, t) triple, we denote the word tokens of
h and t as wh

1 , w
h
2 , · · · , wh

l and wt
1, w

t
2, · · · , wt

m,
where l and m are the lengths of the correspond-
ing sentences. For the BERT model, the model
takes “[CLS] wh

1 w
h
2 · · · wh

l [SEP]” as the input to
a BERTbase encoder, and the corresponding embed-
ding for the [CLS] token is regarded as the final
embedding sh of the head h. The tail t is encoded
as st similarly with the head. For the relation r,
we feed the name of the relation directly between
[CLS] and [SEP] into BERT, which is “[CLS] r
[SEP]”, and we use the corresponding embedding
for the [CLS] token as the embedding of r as sr.
As BERT adopts sub-word encoding, the relations,
despite being complicated symbols, can be split
into several meaningful components for BERT to
encode. For example, xReact will be split into
“x” and “react”, which can demonstrates both the
semantics of “x” (the relation is based on PersonX)
and “react” (the reaction of the head event).

For KG-BERT, we encode a (h, r, t) triple by
feeding the concatenation of the three elements
into BERT. Specifically, “[CLS] wh

1 w
h
2 · · · wh

l

[SEP] r [SEP] wt
1 w

t
2 · · · wt

l [SEP]” is fed into
BERT and we regard the embedding of [CLS] as
the final representation of the triple.

Denote the embedding of a (h, r, t) triple ac-
quired by KG-BERT as KG-BERT(h, r, t). The
functionN (v) is defined as returning the incoming
neighbor-relation pairs, which is {(r, u)|(u, r, v) ∈
G} (G is ASER in our case.) N (v) is defined as the
function that returns the set {(r, u)|(v, r, u) ∈ G},
which are neighboring edges. The model KG-
BERTSAGE then encodes a (h, r, t) triple as:

[KG-BERT(h, r, t),∑
(r′,v)∈N (h)

KG-BERT(h, r′, v)/|N (h)|,

∑
(r′,v)∈N (t)

KG-BERT(v, r′, t)/|N (t)|]

Moreover, as the average number of degrees for
nodes in ASER is quite high, we follow the idea
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Resource
Original Format Aligned Format

Head Relation Tail Head Tail

ConceptNet get exercise HasSubEvent ride bicycle PersonX get exercise PersonX ride bicycle

ATOMIC(2020)
PersonX gets exercise xReact tired PersonX get exercise PersonX be tired

PersonX visits PersonY at work oEffect say hello PersonX visits PersonY PersonY say hello

GLUCOSE SomeoneA gets exercise Dim 1 (xEffect) SomeoneA gets tired PersonX get exercise PersonX be tired

Knowlywood get exercise NextActivity take shower PersonX get exercise PersonX take shower

ASER
he gets exercise Result he is tired PersonX get exercise PersonX be tired

he visits her at work Precedence she is happy PersonX visit PersonY at work PersonY is happy

Table 14: Examples of format unification of CSKBs and eventuality graphs.

Commonsense

Relations
ASER Relations Patterns

Effect, Want

isBefore, Causes
Result, Precedence, Condition−1, Succession−1, Reason−1 -

React Result, Precedence, Condition−1, Succession−1, Reason−1 s-v/be-a/o, s-v-be-a/o, s-
v, spass-v

xIntent, xNeed,
isAfter

Condition, Succession, Reason, Result−1, Precedence−1 -

xAttr
Synchronous±1, Reason±1, Result±1, Condition±1, Conjunction±1,

Restatement±1
s-be-a/o, s-v-a, s-v-be-
a/o, s-v, spass-v

HinderedBy Concession, Alternative -

HasSubEvent Synchronous±1, Conjunction±1 -

Table 15: Rules of selecting candidate triples. For a certain commonsense relation rcs in the first column, (head,
rASER, tail) in ASER, where rASER belongs to the corresponding cell in the second column, can be selected as
a candidate (head, rcs, tail) for annotation.

Model Average AUC

KG-BERTSAGE (Dir) 66.2
KG-BERTSAGE (Undir) 67.2

Table 16: Experimental results using two different
neighboring functions.

in GraphSAGE (Hamilton et al., 2017) to conduct
uniform sampling on the neighbor set. 4 neighbors
are randomly sampled during training.

C.2 Neighboring Function N
The edges in ASER are directed. We try two kinds
of neighboring functions :

N (v) = {(r, u)|(v, r, u) ∈ G} (1)

N (v) = {(r, u)|(v, r, u) ∈ G or (u, r, v) ∈ G}
(2)

Equation (1) is the function that returns the outgo-
ing edges of vertex v. Equation (2) is the function
that returns the bi-directional edges of vertex v.
The overall results using the two mechanisms of

KG-BERTSAGE is shown in Table 16. By incorpo-
rating bi-directional information of each vertex, the
performance of CSKB population can be largely
improved.
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Head Relation Tail Label Source

PersonX give PersonY ride xNeed PersonX need to wear proper clothes Plau.
Triples in CSKBs

(Original Test Set)
PersonX be wait for taxi isAfter PersonX hail a taxi Plau.

PersonX be diagnose with something Causes PersonX be sad Plau.

PersonX feel something xEffect PersonX figure Implau.

Randomly sampled examplesPersonX be patient with ignorance HinderedBy PersonY have the right vocabulary Implau.

PersonY grasp PersonY meaning HasSubEvent PersonY open it mechanically Implau.

PersonX spill coffee oEffect PersonY have to server Plau.

CSKB head + ASER tail

PersonX care for PersonY xNeed PersonX want to stay together Plau.

PersonX be save money HasSubEvent PeopleX can not afford something Plau.

PersonX decide to order a pizza xReact PersonX have just move Implau.

it be almost christmas gReact PersonX be panic Implau.

arm be break isBefore PersonY ask Implau.

PersonX go early in morning xEffect PersonX do not have to deal with crowd Plau.

ASER edges

PersonX have take time to think it over PersonX xReact PersonX be glad Plau.

PersonX have a good work-life balance xIntent PersonX be happy Plau.

PersonX weight it by value oWant PersonY bet Implau.

PersonX be hang out on reddit oReact PersonY can not imagine Implau.

PersonX can get PersonY out shell xIntent PersonX just start poach PersonY Implau.

Table 17: Examples of the human-annotated populated triples.


