
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8849–8861
November 7–11, 2021. c©2021 Association for Computational Linguistics

8849

BeliefBank: Adding Memory to a Pre-Trained Language Model for a
Systematic Notion of Belief

Nora Kassner1,2, Oyvind Tafjord1, Hinrich Schütze2, Peter Clark1

1Allen Institute for AI, Seattle, WA
2Center for Information and Language Processing, LMU Munich, Germany

kassner@cis.lmu.de
{oyvindt,peterc}@allenai.org

Abstract

Although pretrained language models
(PTLMs) contain significant amounts of world
knowledge, they can still produce inconsistent
answers to questions when probed, even
after specialized training. As a result, it can
be hard to identify what the model actually
“believes” about the world, making it sus-
ceptible to inconsistent behavior and simple
errors. Our goal is to reduce these problems.
Our approach is to embed a PTLM in a
broader system that also includes an evolving,
symbolic memory of beliefs – a BeliefBank
– that records but then may modify the raw
PTLM answers. We describe two mechanisms
to improve belief consistency in the overall
system. First, a reasoning component – a
weighted MaxSAT solver – revises beliefs
that significantly clash with others. Second, a
feedback component issues future queries to
the PTLM using known beliefs as context. We
show that, in a controlled experimental setting,
these two mechanisms result in more consis-
tent beliefs in the overall system, improving
both the accuracy and consistency of its
answers over time. This is significant as it is
a first step towards PTLM-based architectures
with a systematic notion of belief, enabling
them to construct a more coherent picture
of the world, and improve over time without
model retraining.

1 Introduction

Intelligent agents are typically considered to have
beliefs about the world – propositions that they take
as true (Genin and Huber, 2021). In general, a sys-
tem can be said to (appear to) believe a proposition
p, e.g., “eagles are birds”, if it produces answers
consistent with p (and its other beliefs). Pragmati-
cally, we expect the system to (a) give a consistent
answer to different paraphrases of the question "p?"
("Are eagles birds?", "Is an eagle a type of bird?",
...), and (b) give correct answers about implications
of p ("Eagles lay eggs", "Eagles have feathers", ...),

Figure 1: The proposed architecture. The model’s raw
answers are stored in a persistent, symbolic memory
(BeliefBank), and two mechanisms attempt to improve
them: (a) A constraint solver flips beliefs (e.g., the be-
lief that “a swallow is a fish”) that clash significantly
with others. (b) A feedback mechanism poses new
questions using existing, relevant beliefs (e.g., “a swal-
low is not a fish”) as the query context. We find that
both consistency and accuracy of the overall system
improve. Example: The model M shown in the fig-
ure incorrectly answers “yes”, when asked “a swallow
has gills?”. But (as shown above) if reminded of its
previous answer “a swallow is not a fish”, M correctly
answers "no".

conditional on its other knowledge and reasoning
abilities.

Maintaining a consistent set of beliefs (a “belief
system”) is a key facet of intelligence, as it can
help debug errors and encourage rational behav-
ior. However, although PTLMs contain substan-
tial world knowledge (Petroni et al., 2019), their
answers to probing questions can be inconsistent
(Elazar et al., 2021; Kassner and Schütze, 2020),
even after specialized training to reduce inconsis-
tency (Ribeiro et al., 2019; Li et al., 2019). As
a result, it is sometimes hard to pin down what a
PTLM actually “believes”, making them suscepti-
ble to inconsistent and/or irrational behavior. Our
goal is a first step to avoid these problems by em-
bedding a PTLM in a broader system with a clearer
notion of belief (see Figure 1).

Prior work in AI, including in formal logic
(Genesereth and Nilsson, 1987), belief mainte-
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nance (De Kleer, 1986; Dechter and Dechter,
1988), and uncertainty (Pearl, 1986), offers models
for how beliefs can be managed. Most importantly,
it posits that creating a coherent set of beliefs –
a kind of “mental model” of the world (Johnson-
Laird, 1983) - is a constructive process requiring ex-
plicit representation of beliefs, and inference about
their dependencies. Based on this, our approach
is to embed a PTLM in a broader system with an
evolving, symbolic memory of beliefs - a Belief-
Bank - along with two mechanisms to improve
belief consistency of the overall system. First a
reasoning component – a weighted MaxSAT (sat-
isfiability) solver – reasons about belief dependen-
cies and revises beliefs that significantly clash with
others. Second, a feedback component poses fu-
ture queries to the model using known beliefs as
context, aiming for more accurate and consistent
answers from the PTLM itself. The BeliefBank
represents the overall system’s beliefs (a “mental
model”) about the world, constructed by deliberat-
ing over the noisy output of a raw PTLM.

We explore this in a controlled experimental set-
ting where both candidate beliefs and constraints
between them are provided. Candidate facts are
simple sentences that may be true or false, e.g., "An
eagle is a bird" (T), “An eagle is a mammal” (F).
Constraints are between (variabilized) facts, e.g.,
“X is a bird→X has wings”. These allow us to both
probe and measure improvement in the consistency
and accuracy of a system’s beliefs, compared with
an original PTLM.

In contrast to prior work, this system does not
rely on fine-tuning the PTLM. Fine-tuning requires
expensive training data, and risks destabilizing the
model’s performance on other tasks outside the
scope of training. Instead, our system functions
without training data, explicitly reasoning about
beliefs using an external mechanism, thus allow-
ing both controllability and interpretability. Most
significantly, we find that improving consistency
in this way improves accuracy, while earlier fine-
tuning-based approaches report either no accuracy
gains (Ribeiro et al., 2019; Minervini and Riedel,
2018; Li et al., 2019) or only slight gains (Asai and
Hajishirzi, 2020).

We make the following contributions:
1. We show that a PTLM-based system can be

given a consistent notion of belief by aug-
menting the PTLM with a global memory –
the BeliefBank – that can be deliberated over.

Specifically, we show that two mechanisms –
constraint reasoning and feedback – improve
the overall system’s accuracy and consistency
over time.

2. We contribute a targeted dataset to measure
a system’s consistency against given con-
straints.

3. We provide an analysis of the failure modes
and directions for future work.

This work is significant as it is a first step towards
PTLM-based architectures that have a systematic
notion of belief, allowing them to construct a more
coherent picture of the world, and improve over
time without model retraining.1

2 Related work

The idea that agents should have a belief system
dates back to the earliest years of AI, e.g., Mc-
Carthy (1959) envisioned representing a system’s
beliefs as formal propositions along with a rea-
soning process to identify what follows. Multiple
subfields of AI have explored ways of represent-
ing and updating beliefs, including in formal logic
(Genesereth and Nilsson, 1987; Moore, 1983), be-
lief revision (De Kleer, 1986; Dechter and Dechter,
1988), and uncertainty (Pearl, 1986). Similarly,
work in cognitive science has promoted mental
models – coherent, constructed representations of
the way the world is believed to be – as central to
understanding and communication (Johnson-Laird,
1983; Gentner and Stevens, 1983; Hilton, 1996).
We draw on these ideas, proposing how they can be
layered on top of PTLMs, here representing beliefs
as NL statements rather than formal structures.

Although PTLMs contain extensive world
knowledge (Petroni et al., 2019; Roberts et al.,
2020), they can be inconsistent in their answers to
probing questions (Ettinger, 2020; Davison et al.,
2019; Ravichander et al., 2020; Elazar et al., 2021;
Subramanian et al., 2020), making their “world
model” unclear. Although various approaches have
improved answer consistency, mainly through mod-
ified model training, e.g., (Ribeiro et al., 2019; Min-
ervini and Riedel, 2018; Li et al., 2019; Asai and
Hajishirzi, 2020), they have not solved the prob-
lem. Current PTLMs still behave as a source of
noisy knowledge, rather than projecting a coherent
picture of the world (Kassner and Schütze, 2020).

A close analogy to our task is in knowledge
graph (KG) construction. Pujara et al. (2013)

1Dataset is available at https://allenai.org/data/beliefbank
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define “knowledge graph identification” as the
task of building a maximally consistent KG given
noisy candidate facts and their extraction confi-
dences, and constraints between them. They de-
velop a solution using probabilistic soft logic (PSL)
(Broecheler et al., 2010) as their constraint reasoner.
Our reasoning component follows similar ideas, but
applied to the noisy predictions of a PTLM. On the
face of it, it is not clear how to plug a constraint
solver into a PTLM, given their very different na-
tures. Our solution introduces a global persistent
memory, making this novel combination of tech-
nologies possible. To our knowledge this has not
been done before.

Our work presents a broader system architec-
ture in which a PTLM is embedded, along with
a dynamic, persistent memory. While there are
prior neural architectures that include an associated
memory, e.g., (Henaff et al., 2016; Sukhbaatar et al.,
2015; Graves et al., 2016), these components typi-
cally play the role of a short-term working memory
to help computation. In contrast, our BeliefBank
is a persistent, long-term memory, and we treat the
PTLM as a component within a larger system. Our
work also differs from retrieval-augmented archi-
tectures, e.g., RAG (Lewis et al., 2020), REALM
(Guu et al., 2020), that augment model input with
external retrievals. Rather, our memory is reflective,
built from model outputs and reasoned over.

Our feedback mechanism uses old answers to
help answer new questions. This builds on prior
work such as Self-Talk (Shwartz et al., 2020),
where a model asks itself related questions to help
with new answers, and can be seen as a form of dy-
namic prompt engineering (Liu et al., 2021). In our
case, feedback is selected from a global BeliefBank,
rather than generated with templated subqueries,
potentially allowing more control over feedback
selection.

Finally, our system performs a kind of continual
learning (Parisi et al., 2019; Carlson et al., 2010).
While recent work in this area has focused on dy-
namic update of model parameters, e.g., (Ebrahimi
et al., 2021), our work leaves the model fixed, and
seeks improvement in the broader system in which
the model is embedded, exploring an alternative
and potentially more interpretable architecture to-
wards this goal.

3 Task

Our goal is to ascribe a clearer notion of “belief” to
a system that includes a model M , by improving,
over time, the consistency and accuracy of its an-
swers (compared with M ) to a stream of questions.
We measure this with true/false probing, where we
are also given a set of constraints between answers:

Given:
• a stream of sentences Q, interpreted as

questions to the model
• a set of constraints C(S) between (the

truth values of) sentences in Q, each an-
notated with a weight wi (A penalty wi is
applied if ci ∈ C(S) is violated)

• a model M that takes as input a question
q ∈ Q and optionally an (NL) context X
(consisting of answers to previously posed
questions), and predicts a True/False an-
swer A with confidence score F

Accumulate:
• the True/False labels for Q predicted by
M , optionally corrected by the constraint
solver, so as to maximally improve accu-
racy (with respect to gold labels) and con-
sistency (minimize total penalties of con-
straint violations)

4 Approach

Our approach adds a memory layer, called the Be-
liefBank, on top of the model to globally track
beliefs. Two mechanisms are then used to manage
the BeliefBank beliefs, namely constraint reason-
ing and feedback, as we now describe.

4.1 Definitions

Let

• a belief bi be a triple (si,li,wi), where
– si is a sentence ∈ S
– label li ∈ {T,F} denotes the system’s

True/False belief about the truth of si2

– weight wi is a number ∈ [0, 1] represent-
ing the system’s strength of that belief

For example:
("a poodle is a dog", T, 0.9)

denotes the belief (strength 0.9) that "a poodle
is a dog" is a true statement (T).

2Strictly, the label F denotes the belief that the negation of
si is true, e.g., (“a poodle is a bird”,F,...) denotes the belief “a
poodle is not a bird”.
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• a BeliefBank B(S) = a set of beliefs over
sentences S = s1, ..., sn

• a constraint ci = a 5-tuple of the form
(si.li → sj .lj , wi) where

– si, sj are sentences ∈ S,
– li, lj ∈ {T,F}. If si has truth value li,

denoted si.li, then sj is expected to have
truth value lj , denoted sj .lj .

– wi denotes the strength of that expecta-
tion (a penalty wi is applied if violated).

For convenience, a shared variable X can be
used in si, sj , allowing a set of grounded con-
straints to be expressed in one statement, e.g.,

(“X is a dog”.T→ “X has a tail”.T, 0.8)
expresses that if something is a dog, then it
should (T) have a tail, with a penalty of 0.8
applied if it does not. Mutual exclusivity is
expressed using two rules, e.g., that fish and
birds are mutually exclusive is expressed:

(“X is a bird”.T→ “X is a fish”.F, 1.0)
(“X is a fish”.T→ “X is a bird”.F, 1.0)

where “F” indicates the conclusion should be
false if the condition here is true (T).

• a constraint graph C(S) = a set of con-
straints ci over sentences S

Given a set of beliefs B(S) about S and a set of
constraints C(S), we measure consistency using
(the complement of) Li et al. (2019)’s conditional
constraint violation (τ ) metric, namely the fraction
of constraints whose condition si.li is believed, but
whose conclusion (that sj has truth value lj) is not.
In other words, over all constraints ci ∈ C(S),
inconsistency τ is
τ = |{ ci | ¬(si.li → sj .lj) }| / |{ ci | si.li }|

i.e., the size of the set of violated constraints
(si.li → sj .sj is false) divided by the size of the
set of applicable constraints. We then define:

consistency = 1 - τ

4.2 Methods
We consider our system in a dynamic setting, where
it receives a stream of questions and gradually
builds up a BeliefBank of answers (including revis-
ing earlier answers). We evaluate two methods for
improving the BeliefBank’s accuracy and consis-
tency over time:
Constraint solving: Given a model M ’s raw an-

swers (with confidences), a constraint solver
seeks to reduce constraint violations by poten-
tially flipping answers that maximally clash
with other answers.

Feedback: Given a new question q, selected be-
liefs in the BeliefBank are provided as context
to M to help it answer q correctly.

Figure 1 shows these components.

4.2.1 Constraint Solving
Given a set of beliefs and constraints, the constraint
solver has two competing objectives: (a) flip beliefs
so as to minimize constraint violations (b) don’t
flip beliefs, so as to preserve the model’s raw an-
swers, i.e., minimize conflict between the model
and BeliefBank. To implement this tradeoff, the
model’s answers are themselves treated as just an-
other constraint, e.g., the answer that "a poodle is
a dog" is true (confidence 0.9) is treated as a con-
straint "a poodle is a dog", with penalty 0.9 if it
is violated. To balance the two objectives (a) and
(b), the model confidences are scaled by a learned
hyper-parameter λ, trained on a calibration part
of our dataset, disjoint from the data then used in
experiments (Section 5).

To implement constraint solving, we translate
the task into a weighted MaxSAT (satisfiability)
problem P , for which efficient algorithms with
guarantees exist. Each belief becomes a weighted
assertion in P , e.g., the belief ("a poodle is a dog",
T, 0.9) is expressed in SAT syntax:

0.9 "a poodle is a dog"3

while the constraint ("a poodle is a dog".T→ "a
poodle has a tail".T, 0.8) is expressed:

0.8 "a poodle has a tail" -"a poodle is a dog"
(literally: "a poodle has a tail" OR NOT ("-") "a
poodle is a dog"). We then apply the solver Z3
(De Moura and Bjørner, 2008) to P , which outputs
a set of truth assignments for all individual sen-
tences in P so as to minimize the weighted sum of
violations. If the truth of any sentence has changed,
the BeliefBank is correspondingly updated.

4.2.2 Feedback
Feedback involves asking the model a question, but
with the benefit of knowing answers to prior, re-
lated questions. To use these answers in the query,
selected beliefs are added to the query context be-
fore asking the model. (Note that the selected be-
liefs are not guaranteed to be correct, of course).
Our conjecture is that if the model is explicitly re-
minded of relevant beliefs when answering a new
question, it will answer the question more accu-

3In practice, strings are replaced with numeric identifiers
in SAT syntax, but for clarity we leave them as strings here.
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rately and consistently. For example, in Figure 1,
when asked "Do swallows have gills?", our model
M incorrectly answers "yes". But if reminded
that swallows are not fish, by asking: "CONTEXT
Swallows are not fish. QUERY Do swallows have
gills?" the model now correctly answers "no".

We evaluate two policies for choosing which
beliefs to feed back to M when asking question q
about entity e:

1. on topic beliefs, namely current beliefs about
entity e, randomly selected from the Belief-
Bank

2. most relevant on topic beliefs (i.e., again
about e), using the constraint graph to identify
relevance. As the constraint graph captures
potential clashes that the answer to q could
cause, we use the graph to identify beliefs
that would be most affected by that answer.
For example, if the current query is: "Is a
poodle an animal?", the constraint graph iden-
tifies potential clashes that would occur if the
model answered "yes", and also clashes if it
answered "no". Here, if the model answered
"no", the resulting belief ("a poodle is not an
animal") would strongly clash with other be-
liefs "A poodle is a dog." and "A poodle is a
mammal.", so these two are strong candidates
for the context. We select the three strongest
clashing beliefs found in this way, consider-
ing both "yes" and "no" answers to q. If no
relevant fact is present, we use a randomly
selected topic belief instead.

In both cases, three beliefs are selected, this number
was empirically found to be most effective.

5 Dataset

We create a dataset4 to test our approach in a con-
trolled way, allowing us to perform systematic ex-
periments to evaluate behavior. The dataset con-
tains two parts, constraints and facts, defined over
simple sentences such as “a swallow is a bird.”

5.1 Constraints

The dataset contains two kinds of constraints:
positive implications: conclusion truth value lj =

T (true), e.g.,
“X is a dog.T→ “X has a tail.”.T

mutual exclusivities: expressed as a pair of con-
straints with lj = F (false), e.g.,

4Dataset is available at https://allenai.org/data/beliefbank

“X is a dog".T→ "X is a bird.”.F
“X is a bird".T→ "X is a dog.”.F
expresses that an entity cannot be both a dog
and a bird at the same time.

Positive implications were manually gathered from
ConceptNet (Speer et al., 2017). First, we identi-
fied 121 general concepts of interest, e.g., “mam-
mal”, then converted selected triples about them to
constraints (Details of the selection process are in
Appendix A). For example, the ConceptNet triple
(dog,HasA,tail) becomes the constraint "X is a dog"
→ "X has a tail". We also add weaker, disjunctive
constraints in the backward direction, e.g., "X has
a tail"→ "X is a dog" OR "X is a cat" OR .... for all
entities with tails. Mutual exclusivities were gath-
ered from the “isa” taxonomies in ConceptNet and
WordNet (Fellbaum, 2005), using the approxima-
tion that siblings in the noun hierarchy are mutually
exclusive. Thus, for any pair of siblings, we add a
mutual exclusivity constraint (using two constraint
rules).

We collected 2612 constraints in this fashion
(1836 forward implications, 2*388 bidirectional
mutual exclusivities).

5.2 Constraint Weights
Constraint weights need to be set appropriately to
mix well with the model’s confidences inside the
weighted SAT solver. We use a development set of
1072 facts about seven entities to set one constraint
weight for the forward direction of the implications
and the mutual exclusivity rules and a second one
for the backward direction of the implications. To
do this we perform a grid search over these param-
eters, finding the values that result in the highest F1
(accuracy) after running the constraint solver over
the raw model’s beliefs about these facts.

5.3 Facts
We also collect a set of truth-labeled facts about
different entities, relevant to the constraints. To
do this, we select a new entity, e.g., "poodle", that
is a member of one of our general concepts, e.g.,
"dog", then instantiate the constraint graph with
that entity (i.e., set X = "poodle"). We then identify
the leaf (source) nodes of that graph, just consider-
ing forward implication rules, i.e., finding facts not
implied by other facts in the graph, and manually
annotate their True/False labels. We then use the
implications and mutual exclusivities to infer other
True/False labels for other sentences, i.e., we prop-
agate the annotated labels through the graph. This
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provides “silver” labels for sentences reachable in
this way (a subset of all the sentences in the graph)
– silver because the implications are soft, hence not
guaranteed to hold for all entities.

We repeat this for 85 entities (animals and
plants), resulting in a final dataset containing
12,525 “silver” facts (sentences + True/False la-
bels). Note that this data is purely for evaluation.
There is no training phase or training data. The
system does not have access to any labeled data
besides the constraint rules.

6 Model

The fixed modelM that we use for our experiments
is Macaw (Tafjord and Clark, 2021), a state-of-the-
art T5 QA model fine-tuned on ≈400k QA pairs.
To query the model, we pose the query (optionally
with a textual context), and let the model choose
between the two answer options "yes" and "no".
The model also outputs an answer confidence, used
as the belief weight.

We use the T5-large version of this model. Note
that we do not retrain the model for this work;
rather, it is used as a black-box QA module in the
broader system (Figure 1). Other models could
equally have been used.

7 Experiments

We evaluate our system in a dynamic setting in
which it receives a stream of questions, building up
and revising a BeliefBank. To simplify the evalu-
ation, we consider questions to arrive in batches,
and evaluate the BeliefBank after each batch, mea-
suring accuracy (F1)5 and consistency (1-τ , Sec-
tion 4.1) of the BeliefBank so far, comparing with
the gold labels. We evaluate four configurations:
Raw model: The BeliefBank simply records the

raw model’s answers 6

Constraint-Solving: After each batch, the con-
straint solver is run over all the (raw) model
answers so far, and the BeliefBank updated
accordingly.

Feedback: Questions in batch n are posed to the
model using a context selected from the be-

5We measure accuracy with F1 (on the True class) rather
than % correct because the True/False distribution in our
dataset is unbalanced, with significantly fewer True than False
answers. F1 avoids scores being dominated by negative an-
swers.

6To the best of our knowledge there are no other baseline
models to compare to as consistency based Q&A does not
go beyond paraphrases and relies on finetuning (Elazar et al.,
2021).

Figure 2: The four configurations we evaluate. In (B),
the contraint-solver (SAT solver) is run over all model
M answers so far. In (C), current beliefs are fed back
as context for new questions. (D) combines the two.

liefs already in the BeliefBank (batches 1 to
n− 1). We evaluate two selection strategies:
Feedback (on-topic): Random beliefs about

the entity e being queried about
Feedback (relevant): On-topic beliefs (i.e.,

again about e) that are most relevant to
the query, as defined in Section 4.2.2

Feedback + Constraint-Solving: A combination
of the two.

These configurations are illustrated in Figure 2.

7.1 Results

The results are shown in Figure 3, showing the
changing accuracy and consistency of the grow-
ing BeliefBank with time, for different configura-
tions. Each time-step (batch) represents another
10% of the test questions being posed to the sys-
tem. (The same data is presented in tabular form in
Appendix B). Several conclusions can be drawn:
• Use of feedback, constraint-checking, or both,

all result in a continually improving accuracy
over time. This is a significant result, showing
a larger system can continually improve even if its
internal PTLM component is fixed. (The raw accu-
racy of the PTLM itself is necessarily constant).
• Use of the constraint-solver results in very

high (~95%) consistency, indicating that it is do-
ing its job well, and also improving accuracy
substantially (+17% over the raw model). The
constraint-solver has a global view of the Belief-
Bank, and thus can balance all beliefs seen so far
with the provided constraints to make a decision.
• Relevant feedback results in significant

consistency gains compared with just on-topic
feedback. As relevant beliefs are exactly those
that may clash with the answer to the current ques-
tion (Section 4.2.2), this encourages the model to
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OnTopic-FB = using (randomly selected) on-topic feedback from old answers for new queries.
Relevant-FB = using most relevant on-topic feedback for new queries.
Constraints = running the constraint-solver after each batch.

Figure 3: Accuracy (left) and consistency (right) of the growing BeliefBank, as the system answers incrementally
more questions (each batch = 10% of the queries). Relevant feedback, constraint-solving, and both, all help
improve both F1 and Consistency.

answer consistently with those beliefs, promoting
consistency. Of course, this could hurt accuracy
if those relevant beliefs were wrong, amplifying
the errors. In fact, the overall accuracy remains
about the same as with on-topic feedback, and sig-
nificantly better than the model’s raw answers.

• The greatest gains are for feedback and
constraint-solving combined, resulting in +18%
F1 (absolute) over the raw model accuracy. This
suggests that feedback and constraints can work
together in a positive way.

• As a sanity check we also tried using random
beliefs about other entities (off-topic) as feedback,
but (as expected) the results did not significantly
differ from no feedback (raw model), ending at
≈72% F1 and ≈74% consistency after batch 10.

We also evaluated a non-incremental, “omni-
scient” version of the BeliefBank: Given the raw
model answers to all questions, re-ask every ques-
tion using feedback selected (using relevance) from
all the other answers. The resulting accuracy was
74.5%, substantially lower than for the on-topic
incremental approaches. Interestingly, this ap-
proach’s built-in advantage (that every question
has access to answers for all other questions) does
not outweigh the built-in disadvantage (that those
are the raw, rather than incrementally corrected,
answers). This is a significant result demonstrat-
ing that the positive feedback loop of the incre-
mental approaches can be advantageous, where
feedback feeds more accurate beliefs into the Be-
liefBank, improving future feedback, etc.

7.2 Failure Analysis

We now provide some examples of good and bad
flips to better understand the behavior of the model.

First, as an illustration of desired behavior, the
raw model incorrectly believes that a pine is both
a plant (correct) and a vertebrate (incorrect), when
queried. However, this violates a mutual exclusiv-
ity rule, so the constraint-solver considers flipping
one of these. Flipping “pine is a plant” from T to
F would result in numerous other violations, e.g.,
“pine is a tree” (which the model also believes)
would be violated. As a result, it prefers to (cor-
rectly) disbelieve “pine is a vertebrate”, improving
both accuracy and consistency.

From an analysis of the data, we see that the
majority of the raw model errors are false posi-
tives – the raw model generally answers (almost)
all the positive facts correctly (recall is ≈98%),
but mistakenly thinks many negative facts are also
true (precision is ≈54%). These false positives can
be rather unusual facts, e.g., “A poodle is a bath-
room.” (model’s answer: True). It is unsurprising
that the model knows most of the positive facts,
as they are simple statements about common enti-
ties (“eagles can fly”), likely seen in pre-training.
However, the fact that the model makes (what a
person would view as) catastrophic errors when
asked more unusual questions, e.g., believing that
“a poodle is plant”, reveals that the PTLM’s grasp
of the world is still incomplete and problematic.
The constraint mechanism proposed here essen-
tially asks the model to think about its answers and
their consequences, so that it can spot problems
that the PTLM alone does not see, and repair them.
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The constraint reasoner can also make mistakes,
flipping things the wrong way so as to improve
consistency, at the expense of accuracy. For ex-
ample, the raw model correctly believes that “a rat
is not a cat”. However, the constraint solver then
(incorrectly) flips this to “a rat is a cat”, because
multiple constraints weakly suggest rats are cats
given other beliefs (”rats catch mice”, “rats have
tails”,...), which together add up, causing the (incor-
rect) flip, including overwhelming the strong (but
not infinitely strong) constraint that “a rat is not a
feline.” This illustrates that the constraint mech-
anism is sensitive to the number of and weights
on constraints, even with automatic hyperparame-
ter tuning (Section 5.2).

Similarly, the feedback mechanism is sensi-
tive to question order, especially if the model’s
early answers are wrong, as the feedback mecha-
nism causes the model to pay extra (sometime dis-
proportionate) attention to earlier context (Kassner
and Schütze, 2020). For example, the bad context
“A poodle is not a mammal” (from an earlier bad
answer) undesirably causes the model to change
its answer for "A poodle is a dog" from true (raw
model) to false.

Finally, we can only speculate why feedback
improves results, in particular, since the feedback
consists of facts that came from the model itself
(i.e., that it already knows). One explanation is that
feedback may help the model focus attention on
important facts, e.g., reminding the model that “a
swallow is not a fish” should help it realize that “a
swallow has gills” is False (Figure 1). In addition,
feedback may possibly help resolve some ambi-
guities, e.g., the feedback “a swallow has wings”
helps identify the bird sense of “swallow”. Similar
advantageous use of feedback was observed in the
SelfTalk experiments (Shwartz et al., 2020).

In future work, the feedback mechanism can be
improved further by training it to respond more
systematically to feedback (similar to (Clark et al.,
2020)) and to better balance implicit and explicit
knowledge (Talmor et al., 2020), ideally incorpo-
rating different levels of confidence.

8 Future Work

8.1 Human in the Loop

Although our system is autonomous, its incremen-
tal setting combined with the explicit representa-
tion of beliefs makes it amenable to a human in the
loop. In this setting, a human might spot an egre-

gious bad belief in the BeliefBank, and forcibly
correct it. Then, ideally, this strong positive dat-
apoint would also improve the model’s accuracy
on other beliefs, both in the BeliefBank and for
future questions. As a brief test of this, we allowed
a human to correct all bad beliefs (average 6) in the
BeliefBank after just the first batch (10%) of ques-
tions, and then continued as before to completion,
using the constraint-solving approach. We find that
these limited interventions increased both the final
F1 and Consistency each by 2% (absolute) on top
of the gains produced by the corrected beliefs them-
selves. Although preliminary, this suggests that
our architecture may have value in an interactive
“machine teaching” setting, where the user is super-
vising and correcting the system, and it continually
improves as a result (Zhu, 2015).

8.2 Towards Deployment

Although our work has been in a constrained setting
(targeted set of relations, entities and constraints),
there is a clear development path to deployment
in real QA systems to reduce the kind of irrational
behavior we have described, such as in this (real)
transcript:

(1) Is oxygen colorless? yes
(2) What color is oxygen? blue
(3) What gas do plants produce? oxygen
(4) What color is the gas plants produce? green

The basic components of our architecture provide
a framework to help avoid such irrationality. First,
(declarative versions of) questions and model an-
swers would be persistently stored in a BeliefBank.
Second, on-topic feedback could be selected to
help answer new questions using information re-
trieval over the BeliefBank. Third, given a source
of constraints, e.g., a general rule of taxonomic
inheritance,7 constraint solving could be applied
to spot and reduce clashes. This would require
a mechanism to identify when a belief satisfies a
constraint’s condition or conclusion, e.g., a state-of-
the-art textual entailment engine such as CA-MTL
(Pilault et al., 2021). A variant of our system could
also work without the distinction of model beliefs
and constraints: Instead of providing constraints ex-
ternally we could treat them as beliefs, e.g., query
the model for mutual exclusivities "Can an entity
be an animal and a plant?" or implications: "Do
dogs have tails?" directly. This would run the risk

7I.e., that the properties of an entity type usually apply to
all its subtypes also.
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of adding extra noise, but would eliminate the man-
ual effort involved in generating the constraint set,
and therefore improve scalability. Together, such
developments would pave the way to real-world
QA systems that are more consistent and improve
over time, rather than remain static.

8.3 The Broader Research Agenda

This work only touches on a broader research
agenda, namely how to expand work on PTLMs
to encompass the cognitive skills of world model-
ing and deliberative reasoning (“thinking, fast and
slow” (Kahneman, 2011)). In this broader agenda,
intelligence is not just about opaque question-
answering, but also about constructing mental mod-
els that describe how (some aspect of) the world
works (Gentner and Stevens, 1983). Although men-
tal models are abstractions (hence are approximate),
they add a powerful, systematic component to un-
derstanding that should expand its capabilities.

The BeliefBank can be seen as a simple illus-
tration of this broader agenda. A wider pursuit
would include a richer notion of a model, perhaps
with more structure to model elements than just
sentences; more sophisticated means of model con-
struction than just accumulating and resolving an-
swers; and the generation of explanations to convey
the deliberative component’s behavior, and ulti-
mately interact with a user. Such mechanisms may
be symbolic or neural in nature, e.g., (Talmor et al.,
2020). Although these issues are beyond the scope
of this paper, our work points to this interesting,
larger goal for PTLM research, as well as offering
a specific mechanism for belief consistency.

9 Conclusion

PTLMs can be inconsistent in their answers to prob-
ing questions, and can still give (what to a person
appear as) naively wrong answers. This work is a
first step towards alleviating these problems. By
embedding a PTLM within a larger system with
a persistent, global memory – the BeliefBank –,
a constraint-solver and feedback mechanism, we
have shown that the overall system’s behavior is
more coherent, both in terms of consistency and
accuracy. The additional memory layer can loosely
be seen as the system’s “mental model”, a represen-
tation constructed from the PTLM’s raw answers.

Our experiments were conducted in a restricted
(small set of relations, entities and constraints), con-
trolled setting, and further development is needed

to scale to larger and more complex tasks. Nev-
ertheless, the work here is significant as it is a
first step towards PTLM-based architectures with a
globally consistent notion of belief, allowing them
to construct a more coherent picture of the world,
and continually improve with time.
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Appendix: BeliefBank: Adding Memory to a Pre-Trained Language
Model for a Systematic Notion of Belief

A Selecting Constraint Rules from
ConceptNet

As described in Section 5.1, positive implication
(constraint) rules were manually gathered from
ConceptNet (Speer et al., 2017). First, we iden-
tified 121 general concepts of interest, e.g., “mam-
mal”, choosing concepts with high occurrence (>
100 times) in ConceptNet, avoiding significantly
ambiguous terms (e.g., “bat”), and filtering out
plurals and obscure concepts. For these entities,
we then collected all ConceptNet facts involving
6 relations: IsA, HasA, MadeOf, PartOf, HasProp-
erty, and CapableOf, and re-expressed them as con-
straints. For example, the ConceptNet triple (dog,
HasA, tail) gives rise to the constraint "X is a dog"
→ "X has a tail." (Triples are converted into En-
glish sentences using simple templates). We then
manually filter theses constraints for factual correct-
ness. We also add weaker, disjunctive constraints
in the backwards direction, e.g., "X has a tail"→
"X is a dog" OR "X is a cat" OR .... for all entities
with tails. (These backwards rules discourage the
trivial solution that everything is false.) Finally,
two hyperparameters for weights on forward and
backwards rules are set by automatic calibration
(Section 5.2).

B Experimental results in table form

Tables 1 and 2 contain the numerical data for the
experimental results plotted in Figure 3.
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Accuracy (F1) after batch→ 1 2 3 4 5 6 7 8 9 10
Raw model 69.2 70.0 70.0 69.3 69.3 69.5 69.2 69.0 69.1 69.3
OnTopic-FB 69.2 74.3 76.0 76.4 77.0 77.3 77.5 77.5 77.8 77.8
Relevant-FB 69.2 73.8 75.1 75.8 76.8 77.2 77.7 78.4 78.9 79.5
Constraints 72.3 75.2 76.8 78.3 80.1 81.6 82.4 83.3 84.9 85.8
Relevant-FB + Constraints 72.4 78.5 80.5 82.1 83.6 84.2 85.1 86.1 86.7 86.6

Table 1: Experimental results for accuracy (F1), as plotted in Figure 3, here shown in tabular form.

Consistency (1− τ ) after batch→ 1 2 3 4 5 6 7 8 9 10
Raw model 73.2 73.7 74.0 72.8 72.4 72.3 72.3 72.2 72.4 72.5
OnTopic-FB 73.2 72.9 73.6 73.3 73.5 72.6 72.5 72.6 72.5 72.3
Relevant-FB 73.2 77.8 79.3 80.1 80.6 79.7 80.1 80.5 80.8 81.0
Constraints 98.2 97.1 96.5 96.2 96.3 96.4 96.1 96.1 96.0 96.0
Relevant-FB + Constraints 98.8 98.2 97.6 97.8 97.9 97.7 97.3 97.2 97.1 97.0

Table 2: Experimental results for consistency (1− τ ), as plotted in Figure 3, here shown in tabular form.


