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Abstract

Contextualised word embeddings is a pow-
erful tool to detect contextual synonyms.
However, most of the current state-of-the-art
(SOTA) deep learning concept extraction meth-
ods remain supervised and underexploit the po-
tential of the context. In this paper, we propose
a self-supervised pre-training approach which
is able to detect contextual synonyms of con-
cepts being training on the data created by shal-
low matching. We apply our methodology in
the sparse multi-class setting (over 15,000 con-
cepts) to extract phenotype information from
electronic health records. We further investi-
gate data augmentation techniques to address
the problem of the class sparsity. Our ap-
proach achieves a new SOTA for the unsuper-
vised phenotype concept annotation on clinical
text on F1 and Recall outperforming the pre-
vious SOTA with a gain of up to 4.5 and 4.0
absolute points, respectively. After fine-tuning
with as little as 20% of the labelled data, we
also outperform BioBERT and ClinicalBERT.
The extrinsic evaluation on three ICU bench-
marks also shows the benefit of using the phe-
notypes annotated by our model as features.

1 Introduction

Supervised fine-tuning on the top of the BERT-
based models has recently become the standard
approach in Information Extraction delivering state-
of-the-art (SOTA) results across different tasks (De-
vlin et al., 2019). The dependence of these models
on the availability of the costly human-annotations
remains a serious obstacle towards a large scale
deployment of such models. This problem is es-
pecially actual in the clinical domain with limited
availability of experts.

In the self-supervised setting, automatic anno-
tations are cheap to produce. Some rule-based
automatic labelers, such as CheXpert (Irvin et al.,
2019), which is built on NegBio (Peng et al., 2018),
are often used to create training data for supervised
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BERT-based models (e.g., automatic annotators of
radiology reports (Smit et al., 2020)). Those mod-
els usually generalise over a small set of classes
(under 20).

Other automatic labelers exploit ontologies. For
example, the UMLS (Unified Medical Language
System) ontology (Bodenreider, 2004b) is almost
predominantly used to match linguistics patterns
in clinical text to medical concepts (e.g., using
the MetaMap tool (Aronson, 2006)). Due to the
complexity of the Information Extraction task in
this challenging setting (sparse multi-class), the ap-
proaches that use the data annotated (e.g., (Arbabi
et al., 2019; Kraljevic et al., 2019; Tiwari et al.,
2020)) mostly rely on non-contextualised embed-
dings focusing on the detection precision. However,
especially for clinical text, which is noisier and ex-
hibits a variety of clinical expressions requiring
disambiguation, relying on the context is essential.
We argue that recall is very important, especially
when automatic annotation results are used further
in the downstream tasks.

In this work, we propose a self-supervised ap-
proach for sparse multi-class classification that
fully relies on the context to detect contextual syn-
onyms of medical concepts in clinical text. To be
more precise, our model is based on the Clinical-
BERT (Alsentzer et al., 2019) model which was
pre-trained on the biomedical and clinical corpora
that are widely used, producing state-of-the-art re-
sults in a range of supervised biomedical tasks,
e.g. named entity recognition, relation extraction
and question answering (Peng et al., 2019; Hahn
and Oleynik, 2020). We separate the detection of
frequent and rare classes by introducing different
training objectives. The special training objective
for rare classes increases the proximity of the re-
spective textual embeddings and the ontology em-
beddings of concepts. Our work also exploits data
augmentation techniques, such as paraphrasing and
guided text generation to aid sparse class detection
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and diversify the training data.

We apply our methodology for the phenotype de-
tection task with more than 15,000 concepts from
the Human Phenotype Ontology (HPO) (Kohler
et al., 2017) !. The phenotyping task is an im-
portant Clinical NLP task that can improve the
understanding of disease diagnosis (Aerts et al.,
2006; Deisseroth et al., 2019; Liu et al., 2019a; Son
etal., 2018; Xu et al., 2020). It remains unexplored
due to the complexity of the classification into that
large amount of classes. We test our approach on
clinical data, namely on electronic health records
(EHRs) and radiology reports.

Our main contributions: (1) Self-supervised
methodology for contextual phenotype detection
in clinical records. (2) Methodology for sparse
class detection with the special training objective
that increases proximity of contextual synonyms
to ontology embeddings. (3) Data augmentation
methodology to further improve the detection of
sparse classes.

Our self-supervised models improve the current
SOTA on F1 up to 4.5 absolute points, while on
Recall up to 4.0 absolute points for the phenotype
detection task for clinical data, which demonstrates
how relying on the context is essential for this type
of data. Second, after fine-tuning, our model out-
performs the fine-tuned BERT-based models with
as little as 20% of labelled data, which confirms
efficiency of our self-supervised training objectives.
Moreover, the extrinsic evaluation shows the bene-
fits of using the phenotypes annotated by our model
as features to predict ICU patient outcomes.

We present related work in Section 2, our pheno-
typing methods in Section 3, and our experimental
setup in Section 4. Then, we present and discuss
key results in Section 5. Finally, we conclude this
work in Section 6.

2 Related Work

Most of the current methodologies for phe-
notype detection are supervised, BERT-based
(e.g., BioBERT (Lee et al.,, 2019) or Clinical-
BERT (Alsentzer et al., 2019)) and dedicated to
the detection of certain rather limited phenotypes

'n the medical text, the word “phenotype” refers to de-
viations from normal morphology, physiology, or behaviour,
such as skin rash, hypoxemia, neoplasm, etc. (Robinson, 2012).
Note the difference of the phenotypic information to the diag-
nosis information expressed in ICD-10 codes (Organization,
2004). These codes record patient health states mainly for
billing purposes. The former contributes to the latter.

or their groups (Liu et al., 2019b; Zhang et al.,
2019; Yang et al., 2020; Franz et al., 2020; Li et al.,
2020).

Unsupervised methods in the clinical NLP do-
main traditionally rely on the usage of ontologies
and knowledge bases. Human Phenotype Ontol-
ogy (Kohler et al., 2017) is the most widely used
ontology of phenotypes. The use of HPO in an-
notating phenotypic information automatically re-
mains unexplored, mainly due to the complexity of
formalising the task with over 15,000 concepts.

Such methods as MetaMap (Aronson and Lang,
2010) (the Mayo Clinic tool (Shen et al., 2017)
based on it), cTAKES (Savova et al., 2010),
NCBO (Jonquet et al., 2009) and ClinPhen (Deis-
seroth et al., 2019) follow similar pipelines and use
linguistics patterns for shallow matching.

More recently, unsupervised deep learning meth-
ods have been applied to the problem, which al-
lowed to perform the semantic analysis and go be-
yond shallow matching (Arbabi et al., 2019; Kral-
jevic et al., 2019; Tiwari et al., 2020). These ap-
proaches use non-contextualised embeddings, fo-
cus on the precision of detection with limited con-
text exploitation. For example, the authors in (Kral-
jevic et al., 2019) propose a procedure to learn
vectors of words enriched with their averaged con-
text over the corpus to map them to correct medical
concepts. We use contextualised word representa-
tions in contrast to all the related approaches and
focus on recall.

3 Methodology

This section introduces the problem of phenotype
detection along with our self-supervised method.
It elaborates our data augmentation strategies, se-
lective supervision in low-resource conditions, and
finally explains our inference algorithm.

Problem Definition While annotating clinical
text, clinicians usually relate HPOs to short spans,
which usually have around 2-3 words depending on
the corpus. 3 Following this rationale, we define the
phenotype annotation as a two-step process: (1) de-
tect HPO-relevant text spans, and (2) assign respec-
tive HPO concepts to those spans. More formally,
given a textual document X = {t1,...,tx} repre-
sented by a sequence of tokens, and a full set of

EMBL-EBI  OLS:
ols/ontologies/hp

3This general observation is confirmed in our internal an-
notation procedure (see Section 4.2)

https://www.ebi.ac.uk/
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Figure 1: Left: Proposed model for phenotype annotation includes one Transformer encoder and two additional
classifiers. The model is trained using the three self-supervised objectives (1, 2 and 3). Middle and right: Prior to
the training of the phenotyping model, the other model for HPO embeddings is trained with relational and semantic
losses (4, 5). Both Transformer encoders are initialised with Clinical BERT but trained separately. The sub-figure

of the HPO branch is taken from EMBL-EBI OLS 2.

HPO concepts H = {H1, ..., Hs } under the root
node Phenotypic Abnormality (HP:0000118) (ex-
clusive) of the HPO ontology, our goal is to model:
(1) p(1g7]t,,), which is the conditional probability
of the token ¢,, being HPO-relevant; (2) p(H.,|ty),
which is the conditional probability if the HPO
concept H,,, should be assigned to the token ¢,,.

In the self-supervised setting, we consider only
the training examples with textual spans matched
with exact match to the HPO concepts as defined
by the ontology. The main assumption here is that
by capturing context of those term spans, the model
will be able to generalise and detect formally dif-
ferent HPO spans seen in the similar contexts as
the HPO concepts (a.k.a. contextual synonyms, for
example, Fever (HP:0001945) will be matched to
“feverish”). To support this challenging setting, we
have designed a series of relevant training objec-
tives described below.

Training Objectives As shown in Figure 1 (left),
the proposed model for phenotype annotation con-
sists of a Transformer encoder which is identical to
and initialised with Clinical BERT (Alsentzer et al.,
2019). Besides, there are two additional classifiers
on the top of the Transformer encoder which pre-
dict if a token is HPO-relevant and assign HPO
concepts to those HPO-relevant tokens.

We enrich the model with the following three
training objectives. (1) A binary cross-entropy
loss £ to predict p(1y|t,), where 1 is 1 if ,, is
HPO-relevant, otherwise 0. (2) A cross-entropy

loss Lo with softmax to predict p(H,,|t, ), which
is defined over the most frequent HPO concepts
found in the training data. The intuition behind this
objective is to increase precision of prediction in
the resulting performance. (3) The Euclidean dis-
tance L3 between the token embedding v;,, and the
respective HPO concept embedding vy, , which is
defined to increase recall of the model and targets
the detection of the rare HPO concepts.

Note that the objectives above can be used for
pre-training and further fine-tuning of the models
in a way similar to BERT.

HPO Embeddings Prior to the training of the
phenotyping model, we build the knowledge graph
(KG) embeddings for HPO concepts. Figure 1
(middle and right) shows that this KG model has a
Transformer encoder which learns the embeddings
of HPO concepts given their definitions. It is de-
signed to encode both the hierarchical connections
between HPO concepts and the semantics in defi-
nitions of HPO concepts, so that the similar HPO
concepts have similar embeddings. Therefore, we
consider two learning objectives.

The first learning objective, namely relational
loss L4, is to encourage the neighbouring HPO
concepts to have similar embeddings and non-
neighbouring HPO concepts to have different em-
beddings. The objective is implemented based on
the distance of embeddings between neighbouring
HPO concepts and non-neighbouring HPO con-
cepts with softmax.

8756



Second, the semantic loss £5 encourages the
HPO embeddings to encode the semantics of in-
put definitions and, more specifically, we adopt
the skip-gram negative sampling (Mikolov et al.,
2013).

3.1 Data Augmentation

There are two issues related to the creation of the
training data by shallow matching: (1) this data
can be too limited to help the model capture con-
textual phenotypes; (2) rare HPO concepts will
not be found in the clinical text used for training
and the model will not be able to detect them at
the inference time. We are addressing those two
problems by creating textual variants for existing
HPO-relevant spans and generating context around
rare HPO concepts.

HPO-relevant span variants with paraphrasing
are used to replace the original spans in the training
sentences. We create the variants by using the
standard lexical pivoting paraphrasing technique
where equivalent phrases in one language are found
by “pivoting” over a shared translation into another
language (Mallinson et al., 2017). We build the
English-French-English pivot Seq2seq model.

Phenotypes are also often inferred from ranges
of numerical values. E.g., anemia (HP:0001903)
can be inferred from “Hgb 5 g/dI”. We take the
advantage of a series of reference laboratory val-
ues (from MIMIC (Johnson et al., 2016)) to create
surrogates for the original names with numerical
values. The named entities for which abnormal
results are available are mapped to HPO concepts
by an expert.

HPO context variants with synthetic text are
created with a Seq2Seq model, which is trained to
generate the textual context conditioned on HPO-
relevant spans. For example, the sentence “pa-
tient was admitted with Angelman Syndrome to
the ER” is generated given the input “Angelman
Syndrome”.

3.2 Decision Strategy for Inference

At the phenotype annotation inference stage, we
assume that the HPO-relevant spans of frequent
HPO concepts can be detected by p(1z|t,) and
p(Hyy|ty) with high precision, while the Euclidean
distance between contextualised token embedding
vt,, and HPO embedding vg,, should be able to
find those of rare HPO concepts with good recall.

More precisely, we formalise the decision strategy
as Algorithm 1.

Algorithm 1: The decision strategy of in-
ferring phenotype annotation.

X is the input sequence;

JH stands for the full set of HPO concepts,
Hireq C H includes most frequent HPO
concepts;

Initialise thresholds 7,, 74 for p(1x|t,) and
distance function D (v, u) respectively
with pre-defined values;

for tn in X = {tl,tg, .. .tN} do

if p(15|t,,) > 7 then
Ty, = argmaxp,, p(Hpm|tn) Where
Hy, € f]-Cfreq 5

else if ming, D(v,,vmH,,) < 74 then
| rn =argming,, D(v,,vn,,);

return {ry,7o,..., N}

4 Experimental Setup

This section will introduce the datasets, implemen-
tation details, baselines and evaluation metrics.

4.1 Pre-training Corpora

EHR Corpus We use EHRs from the publicly
available MIMIC-III database (Johnson et al.,
2016). Diseases of the circulatory system are the
most common reasons for those ICU stays. We
collect the training samples from 38,772 notes of
brief hospital course in MIMIC-III’s discharge sum-
maries and 1.5M generated notes by using data
augmentation which is also trained on MIMIC-III.

Scientific Literature Corpus For the scientific
text model, we use 119,924 PubMed abstracts (Co-
han et al., 2018), ~ 180k lines from the Cochrane
data (Ive et al., 2016) and 1.5M generated notes by
using data augmentation given PubMed abstracts.

Ontologies In the self-supervised setting, we
consider HPO names, synonyms, abbreviations
from the HPO as well as Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004a) with
exact match in clinical text as training samples.

4.2 Datasets

The following datasets are used as test data in the
self-supervised setting, as well as train data in the
supervised fine-tuning experiments.
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MIMIC | COVID-I | COVID-II | PubMed
#, articles 242 67 100 228
avg #, tokens 701.3 208.9 157.8 220.3
avg #, annotations 27.6 9.1 8.5 7.0
avg #, tok. / ann. 4.1 4.3 5.1 5.6
avg HPO depth 4.4 4.4 4.4 4.8
#, unique HPO 946 91 201 422
avg # ann. / HPO 7.0 6.6 4.2 3.8

Table 1: Statistics over the gold phenotype annotations
of MIMIC, COVID-I, COVID-II, PubMed datasets. On
average, each HPO appears less than 7.0 times.

Annotation Procedure To collect supervised
datasets for evaluation and fine-tuning, we have
annotated EHRs with HPO concepts with the help
of three expert clinicians. The EHRs were pre-
annotated with HPO concepts by keyword match-
ing, and then the annotations were corrected by
the three clinicians with consensus. The clinicians
were specifically asked to identify contextual syn-
onyms such as “drop in blood pressure” and “BP
of 79/48” for Hypotension (HP:0002615).

MIMIC We have created our own sub-corpus of
242 discharge summaries from MIMIC-III with
gold annotations. We used 146 EHRs for fine-
tuning in the low-resource setting. 48 and 48 EHRs
are reserved respectively for validation and testing
in both self-supervised and supervised settings.

COVID We have collected and annotated two
COVID datasets of short radiology reports: (1)
COVID-I has 67 radiology reports from the Ital-
ian Society of Medical and Interventional Radiol-
ogy * and (2) COVID-II is the International dataset
with 100 radiology reports presented by (Cohen
et al., 2020). From COVID-II, we have selected
the patients with the diagnosis of the COVID-19
viral pneumonia. We take all the unique patients
and extracted the longest (in terms of the tokens
count) records for those patients. Reports from
both datasets often contain not only the findings,
but also the brief patient history. Both datasets are
used as test sets for the self-supervised model. In
the experiments with supervision, COVID-I was
used to fine-tune and COVID-II to test.

PubMed To ensure comparison to the previous
work, we also present our results for the PubMed
dataset provided by (Groza et al., 2015) which con-
tains 228 abstracts annotated by the creators of

*https://www.sirm.org/category/
senza-categoria/covid-19

HPO. The common HPOs in this dataset are neu-
rodevelopmental and skeletal disorders (e.g. Angel-
man syndrome), which is a quite different group of
phenotypes as compared to the groups represented
in the MIMIC and COVID data. An important
difference between our annotation procedure as de-
scribed above and the human annotation for the
PubMed data is that the latter instructed annotating
HPO-relevant spans only if they were presented in
a canonical form close to HPO names: for example,
“hypoplastic nails” and “nail hypoplasia” were in-
cluded, but not “nails were hypoplastic”. We re-use
the random split: 40 abstracts for training and 188
for testing following NCR’s setting (Arbabi et al.,
2019). The statistics over the dataset is in Table 1.

4.3 Implementation Details °

The Transformer encoders in Figure 1 are ini-
tialised by Clinical BERT, the two classifiers are
two dense layers and the pooling layer concate-
nates max and average pooling. The maximum
input length is 64 tokens. The proposed mod-
els are pre-trained for 100k steps and fine-tuned
for 5k steps with batch size 64. The set of fre-
quent HPO concepts | Hireq |= 400 is decided
by keyword matches. For data augmentation, we
train a Seq2Seq Transformer model on a range of
parallel English-French corpora in the biomedical
field, namely the European Medicines Agency, Cor-
pus of Parallel Patent Applications and the PatTR
corpora.® The Seq2Seq model is based on Open-
NMT (Klein et al., 2017). More details are given
in Appendix C.

4.4 Setups

In the self-supervised setting, we train our models
using either EHRs corpus for MIMIC and COVID
(E) or scientific literature corpus for PubMed (S).
We experiment with two setups with and without
data augmentation.

We also evaluate the efficiency of our training
objectives for pre-training and fine-tune our models
with all the available supervised data.

However, in the real-life clinical setting, human
annotations are very costly thus particular attention
should be paid to the learning efficiency with a
very small amount of data. We simulate this low-
resource scenario and analyse the annotation cost /
performance benefit trade-offs for our model. To

SDue to the proprietary nature, the source code and gold
annotations will not be shared publicly.
*http://statmt.org/wnt1l4/medical-task/
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be more precise, we run a set of experiments where
each time we pick a certain percentage of train-
ing examples according to one of the following
strategies: (1) Random sampling: the samples are
selected at random; (2) Uncertainty-based sam-
pling: the entropy score based on p(H,,|t,), m €
{1,2,..., M} is computed to measure the uncer-
tainty of the self-supervised model for each sample,
and then the samples with the highest uncertainty
score are selected; (3) Oracle: we also count the
number of mismatched phenotypes between the
keyword-based and gold annotations, and the sam-
ples with the most mismatches are selected.

4.5 Baselines

As baselines in the self-supervised setting, we
report (1) Keyword: a naive method that sim-
ply matches HPO names, synonyms and abbre-
viations to text spans, (2) a range of text min-
ing baselines (Clinphen (Deisseroth et al., 2019),
NCBO (Jonquet et al., 2009), cTAKES (Savova
et al., 2010), MetaMap (Aronson and Lang, 2010),
MetaMapLite (Demner-Fushman et al., 2017)), and
(3) two deep learning models (NCR (Arbabi et al.,
2019), MedCAT (Kraljevic et al., 2019)) which are
trained without supervision.

In the selective supervision setting, we use pre-
trained models and fine-tune them on the datasets.
More specifically, we use (1) BERT-Base (Devlin
et al., 2019), (2) BioBERT-Base v1.0 (Lee et al.,
2019) pre-trained on PubMed and PMC, (3) Clini-
cal BERT (Alsentzer et al., 2019) pre-trained based
on BioBERT and MIMIC-III discharge summaries,
(4) SciBERT (Beltagy et al., 2019) pre-trained for
scientific literature.

4.6 Metrics

We report the scores of micro-averaged Precision,
Recall and F1-score at the document level. Fol-
lowing the best practices and to make our work
comparable with others, we adopt the evaluation
strategy of (Liu et al., 2019a). Thus, when we com-
pute the following scores: (1) Exact match: only
the exact same HPO annotations were counted as
correct. (2) Generalised match: both the predicted
and target HPO annotations are first extended to
include all ancestors in HPO up until Phenotypic
Abnormality (HP:00001 18) (exclusive). Then the
HPO annotations are de-duplicated for each docu-
ment and the scores are computed.

5 Results and Discussion

This section discusses the results for the self-
supervision and selective supervision settings.

Self-Supervised Setting We report results of the
self-supervised model for the MIMIC, COVID, and
PubMed datasets in Table 2. It compares the pro-
posed model to the previous SOTA for the pheno-
typing task. Our principal observation is that our
method outperforms all the baselines in terms of
F1 and recall across datasets for both the exact and
generalised matches. For example, for the exact
match, our best models obtain F1 gain of at least
0.02, 0.05, and 0.02 and Recall scores gain of at
least 0.04, 0.02, and 0.01 for MIMIC, COVID-I
and COVID-II, respectively. This confirms the ef-
ficiency of our methodology for the detection of
contextual synonyms in clinical text.

We note that our method does not give better
performance for the PubMed dataset. We hypothe-
sise that this happens due to the difference of gold
annotation standards, as well as the fact that this
dataset is oriented towards the detection of rare
phenotypes with less frequent context patterns that
are hence difficult to learn for our model.

Low-Resource Setting In this setting, we first
study the efficiency of our self-supervised objec-
tives for fine-tuning. Results are in Table 3 (more in
Appendix B). Naturally fine-tuning leads to better
automatic annotation accuracy on specific datasets.
Our pre-training procedure is efficient and outper-
forms BERT-based models with at least 0.09, 0.16,
0.35 absolute increase in F1 (exact match) for the
three datasets. Our analysis of the annotation cost
/ performance benefit trade-offs demonstrated that
with only 20% of the training samples selected us-
ing the uncertainty criteria our fine-tuned model is
able to achieve better F1 than ClinicalBERT which
are fine-tuned on full training sets (see Figure 2).

The HPOs are sparse (less than 7 annotations
on average) in the datasets as shown in Table 1.
We further evaluate the model accuracy on anno-
tating rare HPOs (any HPO excluding those from
Hfreq as defined in Section 4.3). Our fine-tuned
model achieves F1 0.43 (exact match) and 0.60
(generalised match) on annotating rare HPOs while
Clinical BERT has F1 0.27 and 0.39 respectively
and NCR achieves F1 0.34 and 0.47.

Qualitative Analysis To get better insights into
the model performance, we have manually eye
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Exact Match Generalised Match
Dataset Method .. ..
Precision  Recall F1 Precision  Recall F1
Keyword 0.7496  0.5223 0.6156 | 0.7883  0.6587 0.7177
NCR 0.7747  0.4851 0.5967 | 0.8778 0.5917 0.7069
MIMIC NCBO 09186 0.3901 0.5477 | 09632 0.4711 0.6328
Ours (E) 0.7334  0.5619 0.6363 | 0.7706  0.6972 0.7320
Ours (E) w. Augmented Data | 0.7235  0.5556 0.6285 | 0.7741  0.6997 0.7351
Keyword 0.6897  0.4710 0.5597 | 0.6750 0.5579 0.6109
NCR 0.7873  0.4493 0.5721 | 0.8814 0.5481 0.6758
COVID-1I NCBO 0.8876  0.4293 0.5788 | 0.8857 0.5070 0.6449
Ours (E) 0.8617 0.4855 0.6211 | 0.8442 0.5657 0.6774
Ours (E) w. Augmented Data | 0.8576  0.4909 0.6244 | 0.8800 0.5714 0.6929
Keyword 0.8743  0.4514 0.5954 | 09268 0.5577 0.6963
NCR 0.7220  0.4703 0.5696 | 09136  0.6059 0.7286
COVID-II NCBO 0.9006 0.4296 0.5817 | 09484 0.5128 0.6657
Ours (E) 0.8517 0.4811 0.6149 | 09113 0.5814 0.7099
Ours (E) w. Augmented Data | 0.8421  0.4757 0.6079 | 0.8859  0.5695 0.6933
Keyword 0.7221  0.5277 0.6098 | 0.8735 0.7175 0.7879
NCR 0.7334  0.6443 0.6860 | 09131 0.8183 0.8631
PubMed NCBO 0.7948 0.4441 0.5698 | 0.9645 0.6227 0.7568
Ours (S) 0.6756  0.5121 0.5826 | 0.8741  0.7035 0.7796
Ours (S) w. Augmented Data | 0.6772  0.5627 0.6146 | 0.8818 0.7631 0.8182

Table 2: The proposed models in the self-supervised setting (without fine-tuning) achieved the best recall and F1
on MIMIC and COVID clinical text datasets. On PubMed which is scientific literature, our model clearly benefited
from augmented data. Keyword, NCR and NCBO are reported as they achieve top F1 among the self-supervised
baselines (Section 4.5) and full results are reported in Appendix A. The notations “Ours (E)” and “Ours (S)” refer
to the models pre-trained on the EHR corpus and the scientific literature corpus, respectively.

Exact Match Generalised Match
Dataset Method . .
Precision Recall F1 Precision  Recall F1

MIMIC Fine-tuned Clinical BERT 0.6962  0.5630 0.6225 | 0.8429  0.6980 0.7637
Fine-tuned Ours (E) w. Augmented Data | 0.7141  0.7123 0.7132 | 0.8463  0.8380 0.8421
COVID-II Fine-tuned ClinicalBERT 0.6560  0.4138 0.5075 | 0.8063 0.5174 0.6303
Fine-tuned Ours (E) w. Augmented Data | 0.7027  0.6324 0.6657 | 0.8652  0.7980 0.8302
PubMed Fine-tuned Clinical BERT 0.5514  0.2449 0.3392 | 0.7715 0.4988 0.6059
Fine-tuned Ours (S) w. Augmented Data | 0.7138  0.6618 0.6868 | 0.8959  0.8311 0.8623

Table 3: The proposed model with fine-tuning in full achieved the best precision, recall and F1 scores on MIMIC,
COVID-II and PubMed. The COVID-I is not reported as it is used to fine-tune the corresponding model. Only fine-
tuned ClinicalBERT is reported as baseline because it achieves overall better F1 than fine-tuned BERT, BioBERT
and SciBERT. Full results are available in Appendix B. The notations “Ours (E)” and “Ours (S)” refer to the models
pre-trained on the EHR corpus and the scientific literature corpus, respectively.

. Structured Structured + Phenotypes
Task (Metric) (Harutyunyan et al., 2019) | STUCtred | vep | clinicalBERT  + Ours
Length-of-stay (Kappa) 0.395 0.380 0.406 0.388 0.430
In-hospital Mortality (AUROC) 0.825 0.826 0.841 0.826 0.845
Decompensation (AUROC) 0.809 0.824 0.834 0.833 0.839

Table 4: Extrinsic evaluation on three ICU public benchmarks (Harutyunyan et al., 2019) which are created based
on MIMIC-III. The results of (Harutyunyan et al., 2019) are reproduced by their code on the test set.

balled outputs of our MIMIC and COVID-I self-  cessful in capturing HPO-relevant contextual syn-
supervised model that achieves the best gain. onyms, which contributes to higher recall of

. ) our model. For example, “low pressure” and
Our first observation is that our model is suc- ’
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Figure 2: In the low resource setting with selective supervision, we pick subsets with 20%, 40%, 50%, 60%, 80%
labelled data to fine-tune. The uncertainty sampling strategy is consistently better than the other two strategies on
MIMIC and then applied on COVID-II and PubMed. The proposed models outperform fine-tuned BERT-based
models with as little as 20% of labelled data. Details in Table 9 in Appendix B. Best to view in colours.

“hypotensive” are associated with Hypotension
(HP:0002615) and “low platelets” with Thrombo-
cytopenia (HP:0001873). Errors in the prediction
mainly concern subtle distinctions between closely
related phenotypes: e.g. “shortness of breath” trig-
gers prediction Respiratory Distress (HP:0002098)
whereas the gold label Dyspnea (HP:0002094) is
the generalisation of Respiratory Distress.

For the more narrow-domain COVID-I dataset,
false negatives often concern missed radiographic
concepts: e.g. “perihilar infiltration” fails to trigger
Pulmonary Infiltrates (HP:0002113). In distinction
to above, errors of our selective supervision mod-
els are less coupled with radiographic observations,
e.g., false negatives for Ankylosis (HP:0031013),
Abnormal Ear Morphology (HP:0031703) and
Epileptic Spasm (HP:0011097).

Extrinsic Evaluation We evaluate the benefit
of using phenotypes extracted by our models as
features to enhance performance on downstream
tasks. Following the setting by (Harutyunyan et al.,
2019) with three public ICU benchmarks based on
MIMICH-III, we train LSTMs with different input
features: (1) 17 structured clinical features selected
by (Harutyunyan et al., 2019) like heart rate and
temperature or (2) structured clinical features plus
phenotypes annotated by NCR, Clinical BERT and
our fine-tuned model respectively. The patients
with both structured clinical features and textual
notes are collected, and as a result, there are 21,346
patients (25,106 admissions) for training (with 4-
fold cross validation) and 3,824 patients (4,497
admissions) for testing. Table 4 shows that the
LSTMs which are fed with structured clinical fea-
tures and phenotypes annotated by our model are

7 All examples hereinafter are paraphrased.

consistently better than others on all three bench-
marks. This demonstrates that increasing recall in
phenotyping is essential for downstream tasks.

6 Conclusion

In this paper, we have proposed a deep self-
supervised phenotype annotation approach relying
on contextualised word embeddings and data aug-
mentation techniques. Our experimental results in
a challenging sparse multi-class setting, with over
15,000 candidate HPO concepts, indicate that our
methodology is particularly efficient to detect con-
textual mentions of phenotype concepts in clinical
text. We demonstrate that increasing phenotyping
recall is essential for downstream tasks.

7 Ethics Considerations

The study has been carried out in accordance with
relevant guidelines and regulations for the MIMIC-
III data. Other data used in this study can be ac-
cessed without any preliminary requests. Clinical
experts received consulting fees for their work. The
purpose of the developed models is to extract phe-
notypic information from unstructured healthcare
data. This information is only to assist human med-
ical experts in their decisions. Before the deploy-
ment in the actual clinical setting our methodology
is subject to systematic debugging, extensive simu-
lation, testing and validation under the supervision
of expert clinicians.

8 Acknowledgement

We would like to thank Dr. Garima Gupta, Dr.
Deepa (M.R.S.H) and Dr. Ashok (M.S.) for helping
us create gold-standard phenotype annotation data.

8761



We would also like to thank the four anonymous
reviewers for the feedback.

References

Stein Aerts, Diether Lambrechts, Sunit Maity, Peter
Van Loo, Bert Coessens, Frederik De Smet, Leon-
Charles Tranchevent, Bart De Moor, Peter Marynen,
Bassem Hassan, et al. 2006. Gene prioritization
through genomic data fusion. Nature biotechnology,
24(5):537.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72-78, Minneapolis, Minnesota, USA. Asso-
ciation for Computational Linguistics.

Aryan Arbabi, David R Adams, Sanja Fidler, and
Michael Brudno. 2019. Identifying clinical terms in
medical text using ontology-guided machine learn-
ing. JMIR medical informatics, 7(2):e12596.

Alan R Aronson. 2006. Metamap: Mapping text to
the umls metathesaurus. Bethesda, MD: NLM, NIH,
DHHS, 1:26.

Alan R Aronson and Francois-Michel Lang. 2010. An
overview of MetaMap: historical perspective and re-
cent advances. Journal of the American Medical In-
formatics Association : JAMIA, 17(3):229-236.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615—
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Olivier Bodenreider. 2004a. The Unified Medical
Language System (UMLS): integrating biomedical
terminology. Nucleic acids research, 32(Database
issue):D267-70.

Olivier Bodenreider. 2004b. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32:267-270.

Thomas A Caswell, Michael Droettboom, Antony Lee,
John Hunter, Elliott Sales de Andrade, Eric Fir-
ing, Tim Hoffmann, Jody Klymak, David Stansby,
Nelle Varoquaux, Jens Hedegaard Nielsen, Ben-
jamin Root, Ryan May, Phil Elson, Jouni K. Sep-
pdnen, Darren Dale, Jae-Joon Lee, Damon Mc-
Dougall, Andrew Straw, Paul Hobson, Christoph
Gohlke, Tony S Yu, Eric Ma, Adrien F. Vincent,
Steven Silvester, Charlie Moad, hannah, Nikita Kni-
azev, Elan Ernest, and Paul Ivanov. 2020. mat-
plotlib/matplotlib: REL: v3.3.3.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615-621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Joseph Paul Cohen, Paul Morrison, Lan Dao, Karsten
Roth, Tim Q Duong, and Marzyeh Ghassemi. 2020.
Covid-19 image data collection: Prospective predic-
tions are the future. arXiv 2006.11988.

Cole A Deisseroth, Johannes Birgmeier, Ethan E Bo-
dle, Jennefer N Kohler, Dena R Matalon, Yelena
Nazarenko, Casie A Genetti, Catherine A Brown-
stein, Klaus Schmitz-Abe, Kelly Schoch, et al. 2019.
Clinphen extracts and prioritizes patient phenotypes
directly from medical records to expedite genetic dis-
ease diagnosis. Genetics in Medicine, 21(7):1585-
1593.

Dina Demner-Fushman, Willie J Rogers, and Alan R
Aronson. 2017. Metamap lite: an evaluation of
a new java implementation of metamap. Journal
of the American Medical Informatics Association,
24(4):841-844.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Leopold Franz, Yash Raj Shrestha, and Bibek Paudel.
2020. A deep learning pipeline for patient diagno-
sis prediction using electronic health records. arXiv
preprint arXiv:2006.16926.

Tudor Groza, Sebastian Kohler, Sandra Doelken, Nigel
Collier, Anika Oellrich, Damian Smedley, Fran-
cisco M Couto, Gareth Baynam, Andreas Zankl, and
Peter N Robinson. 2015. Automatic concept recog-
nition using the human phenotype ontology refer-
ence and test suite corpora. Database, 2015.

Udo Hahn and Michel Oleynik. 2020. Medical In-
formation Extraction in the Age of Deep Learning.
Yearbook of medical informatics, 29(1):208-220.

Charles R. Harris, K. Jarrod Millman, St’efan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fern’andez del
R’10, Mark Wiebe, Pearu Peterson, Pierre G’erard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren

8762


https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.1136/jamia.2009.002733
https://doi.org/10.1136/jamia.2009.002733
https://doi.org/10.1136/jamia.2009.002733
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.5281/zenodo.4268928
https://doi.org/10.5281/zenodo.4268928
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1055/s-0040-1702001
https://doi.org/10.1055/s-0040-1702001

Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature, 585(7825):357-362.

Hrayr Harutyunyan, Hrant Khachatrian, David C Kale,
Greg Ver Steeg, and Aram Galstyan. 2019. Multi-
task learning and benchmarking with clinical time
series data. Scientific data, 6(1):1-18.

Irvin, Rajpurkar, Ko, Yu, Ciurea-Ilcus, Chute, Mark-
lund, Haghgoo, Ball, and Shpanskaya. 2019. Chex-
pert: A large chest radiograph dataset with uncer-
tainty labels and expert comparison. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 590-597.

Julia Ive, AurElien Max, Frangois Yvon, and Philippe
Ravaud. 2016. Diagnosing High-Quality Statistical
Machine Translation Using Traces of Post-Edition
Operations. In International Conference on Lan-
guage Resources and Evaluation - Workshop on
Translation Evaluation: From Fragmented Tools
and Data Sets to an Integrated Ecosystem (MT Eval
2016 2016), page 8, Portoroz, Slovenia.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-Wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,
Leo Anthony Celi, and Roger G Mark. 2016. Mimic-
iii, a freely accessible critical care database. Scien-
tific data, 3(1):1-9.

Clement Jonquet, Nigam Shah, Cherie Youn, Chris Cal-
lendar, Margaret-Anne Storey, and M Musen. 2009.
Ncbo annotator: semantic annotation of biomedical
data. In International Semantic Web Conference,
Poster and Demo session, volume 110.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67-72, Vancouver, Canada. Association for
Computational Linguistics.

Sebastian Kohler, Nicole A Vasilevsky, Mark En-
gelstad, Erin Foster, Julie McMurry, Ségoléne
Aymé, Gareth Baynam, Susan M Bello, Cornelius F
Boerkoel, Kym M Boycott, et al. 2017. The human
phenotype ontology in 2017. Nucleic acids research,
45(D1):D865-D876.

Zeljko Kraljevic, Daniel Bean, Aurelie Mascio, Lukasz
Roguski, Amos Folarin, Angus Roberts, Rebecca
Bendayan, and Richard Dobson. 2019. Medcat —
medical concept annotation tool.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics.

Yikuan Li, Shishir Rao, José Roberto Ayala Solares,
Abdelaali Hassaine, Rema Ramakrishnan, Dexter

Canoy, Yajie Zhu, Kazem Rahimi, and Gholamreza
Salimi-Khorshidi. 2020. Behrt: transformer for elec-
tronic health records. Scientific reports, 10(1):1-12.

Cong Liu, Casey N Ta, James R Rogers, Ziran Li,
Junghwan Lee, Alex M Butler, Ning Shang, Fabri-
cio Sampaio Peres Kury, Liwei Wang, Feichen Shen,
Hongfang Liu, Lyudmila Ena, Carol Friedman, and
Chunhua Weng. 2019a. Ensembles of natural lan-
guage processing systems for portable phenotyp-
ing solutions. Journal of Biomedical Informatics,
100:103318.

Dianbo Liu, Dmitriy Dligach, and Timothy Miller.
2019b. Two-stage federated phenotyping and pa-
tient representation learning. In Proceedings of the
18th BioNLP Workshop and Shared Task, pages 283—
291, Florence, Italy. Association for Computational
Linguistics.

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing revisited with neural ma-
chine translation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 881-893, Valencia, Spain. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111-3119.

World Health Organization. 2004. ICD-10 : interna-
tional statistical classification of diseases and related
health problems : tenth revision.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems, volume 32, pages 8026—8037. Cur-
ran Associates, Inc.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Peng, Wang, Lu, Bagheri, Summers, and Lu. 2018.
Negbio: a high-performance tool for negation and
uncertainty detection in radiology reports. AMIA
Summits on Translational Science Proceedings,

2018:188.

8763


https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://hal.archives-ouvertes.fr/hal-01388655
https://hal.archives-ouvertes.fr/hal-01388655
https://hal.archives-ouvertes.fr/hal-01388655
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
http://arxiv.org/abs/1912.10166
http://arxiv.org/abs/1912.10166
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/https://doi.org/10.1016/j.jbi.2019.103318
https://doi.org/https://doi.org/10.1016/j.jbi.2019.103318
https://doi.org/https://doi.org/10.1016/j.jbi.2019.103318
https://doi.org/10.18653/v1/W19-5030
https://doi.org/10.18653/v1/W19-5030
https://www.aclweb.org/anthology/E17-1083
https://www.aclweb.org/anthology/E17-1083
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019.
Transfer learning in biomedical natural language
processing: An evaluation of bert and elmo on ten
benchmarking datasets. In Proceedings of the 18th
BioNLP Workshop and Shared Task, pages 58—65.

Peter N Robinson. 2012. Deep phenotyping for preci-
sion medicine. Human mutation, 33(5):777-780.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical Text Analysis and Knowledge Extraction Sys-
tem (cTAKES): architecture, component evaluation
and applications. Journal of the American Medical
Informatics Association : JAMIA, 17(5):507-513.

Feichen Shen, Liwei Wang, and Hongfang Liu. 2017.
Phenotypic Analysis of Clinical Narratives Using
Human Phenotype Ontology. Studies in health tech-
nology and informatics, 245:581-585.

Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuyj
Pareek, Andrew Ng, and Matthew Lungren. 2020.
Combining automatic labelers and expert annota-
tions for accurate radiology report labeling using
BERT. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1500-1519, Online. Associa-
tion for Computational Linguistics.

Jung Hoon Son, Gangcai Xie, Chi Yuan, Lyudmila
Ena, Ziran Li, Andrew Goldstein, Lulin Huang, Li-
wei Wang, Feichen Shen, Hongfang Liu, et al. 2018.
Deep phenotyping on electronic health records fa-
cilitates genetic diagnosis by clinical exomes. The
American Journal of Human Genetics, 103(1):58—
73.

Prayag Tiwari, Sagar Uprety, Shahram Dehdashti, and
M Shamim Hossain. 2020. TermInformer: unsuper-
vised term mining and analysis in biomedical litera-
ture. Neural Computing and Applications.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Zhenxing Xu, Jingyuan Chou, Xi Sheryl Zhang, Yuan
Luo, Tamara Isakova, Prakash Adekkanattu, Jes-
sica S Ancker, Guogian Jiang, Richard C Kiefer,
Jennifer A Pacheco, Luke V Rasmussen, Jyotish-
man Pathak, and Fei Wang. 2020. Identifying sub-
phenotypes of acute kidney injury using structured
and unstructured electronic health record data with
memory networks. Journal of biomedical informat-

ics, 102:103361.

Zhen Yang, Matthias Dehmer, Olli Yli-Harja, and
Frank Emmert-Streib. 2020. Combining deep learn-
ing with token selection for patient phenotyping
from electronic health records. Scientific Reports,
10(1):1432.

Jingqing Zhang, Xiaoyu Zhang, Kai Sun, Xian Yang,
Chengliang Dai, and Yike Guo. 2019. Unsupervised
annotation of phenotypic abnormalities via semantic
latent representations on electronic health records.
In 2019 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), pages 598—603.
IEEE.

8764


https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.18653/v1/2020.emnlp-main.117
https://doi.org/10.18653/v1/2020.emnlp-main.117
https://doi.org/10.18653/v1/2020.emnlp-main.117
https://doi.org/10.1007/s00521-020-05335-2
https://doi.org/10.1007/s00521-020-05335-2
https://doi.org/10.1007/s00521-020-05335-2
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1016/j.jbi.2019.103361
https://doi.org/10.1016/j.jbi.2019.103361
https://doi.org/10.1016/j.jbi.2019.103361
https://doi.org/10.1016/j.jbi.2019.103361
https://doi.org/10.1038/s41598-020-58178-1
https://doi.org/10.1038/s41598-020-58178-1
https://doi.org/10.1038/s41598-020-58178-1

A Results of the Self-Supervised Models

MIMIC
Method Exact Match Generalised Match
Precision  Recall F1 Precision  Recall F1

Keyword 0.7496  0.5223 0.6156 | 0.7883  0.6587 0.7177
NCR 0.7747  0.4851 0.5967 | 0.8778  0.5917 0.7069
Clinphen 0.8147  0.3148 0.4541 0.9337  0.4066 0.5665
NCBO 0.9186  0.3901 0.5477 | 09632 0.4711 0.6328
cTAKES 0.8250  0.3259 0.4673 | 0.9321 0.4287 0.5872
MetaMap 0.7909  0.4062 0.5367 | 0.8835 0.5384 0.6691
MetaMapLite 0.7968  0.4358 0.5634 | 0.8766  0.5720 0.6923
MedCAT (Medmentions) 0.7290  0.3321 0.4563 | 0.8305 0.4711 0.6012
MedCAT (UMLS) 0.8630  0.3889 0.5362 | 0.9311 0.5231 0.6699
Ours (E) 0.7334  0.5619 0.6363 | 0.7706  0.6972 0.7320
Ours (E) w. Augmented Data | 0.7235  0.5556 0.6285 | 0.7741  0.6997 0.7351

Table 5: Results on MIMIC in the self-supervised setting.

COVID-I
Method Exact Match Generalised Match
Precision  Recall F1 Precision  Recall F1
Keyword 0.6897 04710 0.5597 | 0.6750  0.5579 0.6109
NCR 0.7873  0.4493 0.5721 0.8814  0.5481 0.6758
Clinphen 0.8259  0.3351 04768 | 0.8693  0.4042 0.5518
NCBO 0.8876  0.4293 0.5788 | 0.8857 0.5070 0.6449
cTAKES 0.7305 0.1866 0.2973 | 0.8285 0.3112 0.4524
MetaMap 0.8023  0.3750 0.5111 0.8990 0.5039 0.6458
MetaMapLite 0.7765  0.3587 0.4907 | 0.8992  0.4914 0.6355
MedCAT (Medmentions) 0.7519  0.3514 0.4790 | 0.8284  0.4940 0.6189
MedCAT (UMLS) 0.6293  0.2645 0.3724 | 0.8295 0.4171 0.5551
Ours (E) 0.8617  0.4855 0.6211 0.8442  0.5657 0.6774
Ours (E) w. Augmented Data | 0.8576  0.4909 0.6244 | 0.8800 0.5714 0.6929
COVID-II
Method Exact Match Generalised Match
Precision  Recall F1 Precision  Recall F1

Keyword 0.8743  0.4514 0.5954 | 0.9268 0.5577 0.6963
NCR 0.7220  0.4703 0.5696 | 09136  0.6059 0.7286
Clinphen 0.7789  0.3290 0.4626 | 0.9038 0.4256 0.5787
NCBO 0.9006 0.4296 0.5817 | 0.9484 0.5128 0.6657
cTAKES 0.7684  0.2098 0.3296 | 09158  0.3327 0.4881
MetaMap 0.8517  0.3218 0.4672 | 0.9437 0.4152 0.5767
MetaMapLite 0.7828  0.3261 0.4604 | 0.9494 0.4431 0.6042
MedCAT (Medmentions) 0.7599  0.3046 0.4349 | 0.8757 0.4284 0.5753
MedCAT (UMLS) 0.8333  0.2586 0.3947 | 0.9368 0.3675 0.5280
Ours (E) 0.8517 0.4811 0.6149 | 09113 0.5814 0.7099
Ours (E) w. Augmented Data | 0.8421 0.4757 0.6079 | 0.8859  0.5695 0.6933

Table 6: Results on COVID-I and COVID-II in the self-supervised setting.
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PubMed

Method

Exact Match
Precision  Recall F1

Generalised Match
Precision  Recall F1

Keyword
NCR
Clinphen
NCBO
cTAKES
MetaMap
MetaMapLite
MedCAT (Medmentions)
MedCAT (UMLS)

0.7221  0.5277 0.6098
0.7334  0.6443 0.6860
0.6352  0.3926 0.4853
0.7948  0.4441 0.5698
0.5602  0.2216 0.3175
0.7167  0.4966 0.5867
0.7057  0.4334 0.5370
0.5362  0.2089 0.3007
0.7636  0.4237 0.5450

0.8735  0.7175 0.7879
09131  0.8183 0.8631
0.9240  0.5095 0.6568
0.9645  0.6227 0.7568
0.8953  0.3479 0.5011
0.9076  0.6671 0.7690
0.8978  0.5934 0.7146
0.7387  0.3066 0.4333
0.9376  0.5903 0.7245

Ours (S)
Ours (S) w. Augmented Data

0.6756  0.5121 0.5826
0.6772  0.5627 0.6146

0.8741  0.7035 0.7796
0.8818  0.7631 0.8182

Table 7: Results on PubMed in the self-supervised setting.
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B Selective Supervision Results in Low-Resource Setting

MIMIC
Method Exact Match Generalised Match
Precision  Recall F1 Precision  Recall F1
BERT 0.7132  0.5617 0.6285 | 0.8434  0.6844 0.7557
BioBERT 0.6864  0.5728 0.6245 | 0.8335 0.7021 0.7622
Clinical BERT 0.6962  0.5630 0.6225 | 0.8429  0.6980 0.7637
SciBERT 0.6898  0.5407 0.6062 | 0.8269 0.6671 0.7385
Ours (E) w. Augmented Data | 0.7141  0.7123 0.7132 | 0.8463  0.8380 0.8421
COVID-II
Method Exact Match Generalised Match
Precision  Recall F1 Precision  Recall F1
BERT 0.6144  0.3549 0.4499 | 0.8193 0.4760 0.6022
BioBERT 0.5858  0.3922 0.4699 | 0.7781  0.5201 0.6235
Clinical BERT 0.5711  0.4095 0.4770 | 0.7680  0.5039 0.6085
SciBERT 0.6560  0.4138 0.5075 | 0.8063 0.5174 0.6303
Ours (E) w. Augmented Data | 0.7027  0.6324 0.6657 | 0.8652  0.7980 0.8302
PubMed
Method Exact Match Generalised Match
Precision  Recall F1 Precision  Recall F1
BERT 0.5103  0.2400 0.3265 | 0.7530 0.4795 0.5859
BioBERT 0.4828  0.2459 0.3258 | 0.7716  0.4911 0.6002
Clinical BERT 0.5514  0.2449 0.3392 | 0.7715 0.4988 0.6059
SciBERT 0.4967  0.2177 0.3027 | 0.7187 0.4638 0.5638
Ours (E) w. Augmented Data | 0.7138  0.6618 0.6868 | 0.8959  0.8311 0.8623

Table 8: Results on MIMIC, COVID-II and PubMed with supervision. All models are fine-tuned with full training
samples.
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MIMIC

Sampling Strategy | Ratio Exact Match Generalised Match
Precision  Recall F1 Precision  Recall F1
20% | 0.6496  0.6609 0.6552 | 0.7760  0.8074 0.7914
40% | 0.6441  0.6943 0.6683 | 0.7709  0.8408 0.8044
Random 50% | 0.6529  0.7030 0.6770 | 0.7755  0.8357 0.8045
60% | 0.6457 0.7104 0.6765 | 0.7744  0.8367 0.8044
80% | 0.6508 0.7129 0.6804 | 0.7765 0.8419 0.8078
20% | 0.6344  0.6894 0.6607 | 0.7521  0.8200 0.7846
40% | 0.6349 0.7166 0.6733 | 0.7631  0.8453 0.8021
Oracle 50% | 0.6422  0.7265 0.6818 | 0.7562  0.8575 0.8037
60% | 0.6530 0.7314 0.6900 | 0.7626  0.8582 0.8076
80% | 0.6370  0.7252 0.6782 | 0.7707 0.8524 0.8095
20% | 0.6707 0.6881 0.6793 | 0.7667 0.8142 0.7898
40% | 0.6592  0.6918 0.6751 | 0.7692  0.8269 0.7970
Uncertainty 50% | 0.6503  0.7228 0.6846 | 0.7659  0.8476 0.8047
60% | 0.6580 0.7240 0.6895 | 0.7737  0.8541 0.8119
80% | 0.6499  0.7215 0.6839 | 0.7722  0.8514 0.8099

COVID-II
Sampling Strategy | Ratio Exact Match Generalised Match
Precision Recall F1 Precision  Recall F1

20% | 0.6990 0.5838 0.6362 | 0.8680  0.7261 0.7907
40% | 0.7129  0.5973 0.6500 | 0.8796  0.7303 0.7980
Uncertainty 50% | 0.6978  0.6054 0.6483 | 0.8719 0.7610 0.8127
60% | 0.7220 0.6108 0.6618 | 0.8874  0.7603 0.8190
80% | 0.7573  0.6324 0.6892 | 0.8951  0.7750 0.8307

PubMed
Sampling Strategy | Ratio Exact Match Generalised Match
Precision  Recall Fl1 Precision  Recall Fl1

20% | 0.6899  0.5685 0.6233 | 0.8852  0.7766 0.8273
40% | 0.7156  0.6161 0.6621 | 0.8922  0.7949 0.8408
Uncertainty 50% | 0.6877 0.6463 0.6663 | 0.8798  0.8226 0.8502
60% | 0.7014 0.6414 0.6701 | 0.8883  0.8141 0.8496
80% | 0.7028  0.6550 0.6781 | 0.8867 0.8192 0.8516

Table 9: Results on MIMIC, COVID-II and PubMed in the selective supervision setting. The F1 scores of exact
match correspond to Figure 2.
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C Implementation Details

The data processing and model are developed by Python 3.6. Besides our own code, we use open-sourced
third-party libraries including Matplotlib (Caswell et al., 2020), Numpy (Harris et al., 2020), Pandas,
Pronto, Scikit-learn (Pedregosa et al., 2011), Transformers (Wolf et al., 2020), Tensorboard, Pytorch
(Paszke et al., 2019) (v1.7, CUDA 10.1), Tqdm, Xmltodict. The number of learnable parameters is close
to a BERT-base model. On two NVIDIA TITANX GPUs, it takes around 24 hours to pre-train and 1.2

hours to fine-tune.

Self-supervised training

Optimiser AdamW
Training steps 100k
Learning rate le-4

Batch size 64

Vocab size 28996

Maximum input length 64
Fine-tuning

Optimiser AdamW
Training steps Sk
Learning rate le-4

Batch size 64

Vocab size 28996

Maximum input length 64
HPO Embeddings

Optimiser AdamW
Training steps 30k
Learning rate 2e-5

Batch size 64

Vocab size 28996

Maximum input length 64

Table 10: Hyper-parameters for training are decided empirically on the validation set.
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