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Abstract

Large-Scale Multi-Label Text Classification
(LMTC) includes tasks with hierarchical label
spaces, such as automatic assignment of ICD-
9 codes to discharge summaries. Performance
of models in prior art is evaluated with stan-
dard precision, recall, and F1 measures with-
out regard for the rich hierarchical structure.
In this work we argue for hierarchical evalua-
tion of the predictions of neural LMTC models.
With the example of the ICD-9 ontology we de-
scribe a structural issue in the representation of
the structured label space in prior art, and pro-
pose an alternative representation based on the
depth of the ontology. We propose a set of met-
rics for hierarchical evaluation using the depth-
based representation. We compare the evalua-
tion scores from the proposed metrics with pre-
viously used metrics on prior art LMTC mod-
els for ICD-9 coding in MIMIC-III. We also
propose further avenues of research involving
the proposed ontological representation.

1 Introduction

The Large-Scale Multi-Label Text Classification
(LMTC) is a multi-label document classification
task with a large (in the order of thousands) and po-
tentially structured label space. LMTC tasks with
structured label spaces can be found in the domain
of medicine, legislation, product categorisation, etc.
Individual label spaces may follow different la-
belling rules, e.g., the EURLEX (Chalkidis et al.,
2019) dataset’s labels can be any node from the
EUROVOC tree of concepts, while AMAZON13K
(McAuley and Leskovec, 2013) assumes a dense
assignment, where if a predicted (leaf) node’s truth
value is positive, so is the truth value of all its an-
cestors – also known as the true path rule. A repre-
sentative dataset for medical LMTC are MIMIC-III
(Johnson et al., 2016) discharge summaries. These
are weakly labelled with leaf nodes of the ICD-9

ontology1. ICD-9 is a tree-structured ontology of
medical conditions and procedures.

Since the release of the MIMIC-III dataset there
have been several attempts at training neural mod-
els for automated coding of medical documents
(Mullenbach et al., 2018; Rios and Kavuluru, 2018;
Falis et al., 2019; Chalkidis et al., 2020; Dong et al.,
2021). While some prior art has made use of onto-
logical structure (Rios and Kavuluru, 2018; Falis
et al., 2019; Manginas et al., 2020), the task has
mostly been treated as a flat prediction of the as-
signed leaves. This is reflected in the evaluation
metrics that are used across previous work – preci-
sion, recall and F1 score on flat predictions. These
metrics applied to flat vectors disregard the rich
ontological structure. A notable exception is Mang-
inas et al. (2020) – they fine-tune a BERT (Devlin
et al., 2018) model, such that different layers within
the model learn to represent the different depths of
the target label space. Each layer undergoes flat
evaluation with respect to labels on its depth.

The aim of this study is to review the use of onto-
logical structure within the prior LMTC art with a
focus on automated ICD-9 coding, point out issues
in hierarchy representation in prior approaches, de-
scribe methods more suited for addressing the struc-
tured label space including a hierarchical evalua-
tion metric, and propose further avenues of research
utilising structured label spaces. Our implementa-
tion of evaluation and the representation of ICD-9’s
graph are available to the community2.

2 Background

Within a structured label space some labels are in-
herently closer to one another than to others - e.g.,
in ICD-9 425.0 Endomyocardial fibrosis is closer
to 425.3 Endocardial fibroelastosis than to 305.1
Tobacco use disorder. Flat prediction and standard

1https://www.cdc.gov/nchs/icd/icd9cm.
htm

2https://github.com/modr00cka/CoPHE

https://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://github.com/modr00cka/CoPHE
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precision/recall/F1 score (from hereon referred to
as standard metrics) of individual prediction level
(leaf) codes treat all mispredictions equally – e.g.,
having 425.0 be mispredicted as 425.3 is penalised
the same way as mispredicting it as 305.1. This
phenomenon has been addressed in information
extraction (IE) by Maynard et al. (2008) through
the use of distance metrics. The IE setting assumes
both the gold standard and predictions to be asso-
ciated with specified spans within the input text.
This means an individual prediction can be associ-
ated with a true label, allowing direct comparison
between them.

The LMTC setting uses weak labels – predic-
tions and true labels appear on the document level,
without exact association to spans within the text.
Due to the absence of information regarding asso-
ciated spans, direct links between individual pre-
dictions and true labels do not exist. Label com-
parison is performed on full vectors representing
multiple labels, hence the IE approach is not di-
rectly usable. Kosmopoulos et al. (2015) address
hierarchical label spaces in document classification
with set-based measures. The gold standard and
prediction vectors are extended to include ancestor
nodes within the hierarchical label-space and aug-
mented according to its structure, and the true-path
rule.

Let X = {xi|1, ...,M} and let Y =
{yi|1, ..., N} represent the set of predicted and
true codes for a certain document respectively. As-
sume we have access to an augmentation function
Anj(x) which returns the ancestors of x up to the
jth order.

Let Xaug = X ∪ {Anj(xi)|1, ...,M} and let
Yaug = Y ∪ {Anj(yi)|1, ..., N} represent the set
of predicted and gold ancestor codes for X and Y
respectively. Standard metrics can then be applied
to the Xaug and Yaug sets. A correct assignment
of predicted lower-level (leaf) codes results in cor-
rect assignment of their ancestors. In the case of
incorrect prediction-level assignments, the closer a
mismatched predicted code is to the gold standard
leaf within the ontology, the more matches will
occur across the levels of the hierarchy.

On the leaf level each code appears at most once
per document. Duplicates can occur when Anj(x)
produces the same ancestor for multiple codes. As
Xaug is a set, duplicates are removed. Hence, the
set-based approach captures whether an ancestor
is present, but not how many of its descendants

were predicted. This results in loss of information
regarding over-/under- predictions of classes on the
ancestral level. Over- and under-prediction is a
valuable phenomenon to track, particularly if the
label-space includes inexplicit rules – for instance,
for some nodes only a single descendant can be
predicted at a time, as individual siblings are mu-
tually exclusive (e.g., a patient can be assigned at
most one of codes 401.0, 401.1, and 401.9, which
represent malignant, benign, and unspecified hyper-
tension respectively – concepts that are mutually
exclusive). Furthermore, retaining this numeric
data on ancestral levels enables analyses on higher
levels, e.g., performance of a family of codes in the
case of a semi-automated code-assignment applica-
tion. For this reason we propose using a metric that
retains the descendant counts for these ancestor
codes.

To correctly define the augmentation function we
need to ensure our representation of the hierarchy
fits the setting. Previous work involving the ICD-9
hierarchy (Rios and Kavuluru, 2018; Falis et al.,
2019; Chalkidis et al., 2020) represents it through
the relation of direct ancestry considering parents
and grandparents of the leaf nodes. As the ICD-9
has leaves at different depths, this representation
results in structural issues, such as one code being
both in the position of a parent and a grandparent
for different leaves. For instance, code 364 has a
parent relation to the leaf 364.3 and grandparent
to leaf 364.11 (Figure 1). This poses an issue to
aggregation and evaluation. We aim to address this
issue by producing a representation of the hierarchy
through the levels of the label space with each level
representing all the nodes at a certain depth in the
tree structure.

3 Method

3.1 Augmentation

To implement level-based augmentation, we first
define the first three layers of the ICD-9 hierar-
chy on which leaves appear. An ICD-9 code (e.g.,
364.11) consists of a “category” (part of the code
appearing prior to the decimal point, e.g., 364) and
“etiology” (appearing after the decimal point, e.g.,
11). The etiology can be represented with up to
two digits. We define the basic levels of the hier-
archy (encapsulating all the labels in MIMIC-III)
as follows: codes with double digit etiology (e2);
codes of single digit etiology (e1); codes described
only with “category” (no etiology, e0). Augmenta-
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tion can be performed up to a higher user-defined
level within the hierarchy by adding further layers
representing chapters within the ontology.

The originally flat predicted and true labels are
divided into their respective layers in the hierarchy.
If a code appears in a level lower than the maxi-
mum level set by the user, the truth value of the
code is propagated to its direct ancestor through
augmentation. The propagation can be interpreted
either as a truth value (binary) or the number of
descendant leaves present (count-preserving). The
binary interpretation of the propagation results in
the ancestor holding the truth value of the logical
OR operation on its children. This mimics the set-
based approaches described by Kosmopoulos et al.
(2015). The count-preserving interpretation sets
the value of the ancestor to be the sum of the values
of its descendants. Through retaining the numeric
information, the count-preserving interpretation al-
lows us to track over- or under-prediction within a
family of codes.

3.2 Hierarchical Evaluation

To produce hierarchical precision, recall, and F1 up
to a certain level within the hierarchy, the vectors
from each layer are combined for the predictions
and true labels respectively. In the case of set-based
interpretation (Figure 2 B), standard metrics can be
directly applied to the augmented vectors.

Since the notions of true positive (TP ), false
negative (FN ), and false positive (FP ) needed for
calculation of precision, recall, and F1 are defined
for binary input, to produce the count-preserving
interpretation of the hierarchical measures, we need
to use a count-preserving version of TP , FP , and
FN . When comparing the number of predictions
and true labels mapped to an ancestor:

TPc,d = min(xc,d, yc,d) (1)

FPc,d = max(xc,d − yc,d, 0) (2)

FNc,d = max(yc,d − xc,d, 0) (3)

Where c represents a particular (ancestor) label, d
a specific document, xc,d and yc,d are the numbers
of predicted and true prediction-level descendant
labels of c in d. The functionsmin andmax return
the minimum and maximum of two real numbers re-
spectively. TP (Equation 1) represents the overlap
between the expected and predicted count of de-
scendant codes of the ancestor c. FP (Equation 2)
and FN (Equation 3) represent the over-prediction

Figure 1: An example of hierarchical evaluation. Cir-
cular nodes represent leaf nodes (for non-hierarchical
evaluation), borders of nodes represent set-based hier-
archical evaluation, edges represent count-preserving
hierarchical evaluation. Solid lines represent TP ,
dashed-lines represent FP , dotted lines represent FN .
Levels of depth in the ontology (e0, e1, and e2) are in-
dicated with horizontal lines.

and under-prediction of these descendants, respec-
tively.

Remark: Note that if xc,d and yc,d are binary,
the results of these calculations are equivalent to
those of standard TP , FP , FN .

TP FP FN P R F1

Leaf-Only 1 3 2 25.0 33.3 28.4
Set-Based
e2 1 2 1 33.3 50 40
e1 2 2 1 50 66.7 57.1
e0 1 0 0 100 100 100
Overall 4 4 2 50 66.7 57.1
CoPHE
e2 1 2 1 33.3 50 40
e1 2 2 1 50 66.7 57.1
e0 3 1 0 75 100 86
Overall 6 5 2 54.5 75 63.1

Table 1: Evaluation of the three representations pre-
sented in Figure 2. In the case of Set-Based evaluation
and CoPHE we present both the evaluation at each level
of the ontology, and overall evaluation across levels.

Suppose 4 descendants of code 364 – 364.11,
364.21, 364.3, and 364.41 – are predicted and 3 de-
scendants of 364 are true for document δ – 364.11,
364.24, and 364.9 (as seen in Figure 1). In the
count-preserving approach, according to our def-
initions, this results in TP = 3, FP = 1, FN =
0 for the highest level (364). The set-based ver-
sion of hierarchical evaluation would only track if
a prediction or gold standard path passes through a
node, rather than their count (losing data on over-
and under-prediction of each node’s descendants).
Here in the highest level (code 364), however, the
four prediction paths and three gold standard paths
are reduced to boolean True for both prediction and
gold standard. Hence the values for 364 become
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Figure 2: A comparison between three styles of eval-
uation: (A) Evaluation performed only on leaf nodes
(no use of hierarchical relations); (B) Set-Based Hier-
archical Evaluation (Kosmopoulos et al., 2015). Four
descendants of the node 364 are predicted, and three
appear in the gold standard. This is reflected in the
middle-level vector, but the information is lost in the
top level; (C) Count-Preserving Hierarchical Evalua-
tion. The numeric information of predictions and gold
labels are preserved on higher levels.

TP = 1, FP = 0, FN = 0. Note that due to this
representation the over-prediction of descendants
of 364 is not captured (Figure 2 B). The binary
and count-preserving evaluation can be produced
for each individual code, aggregated over individ-
ual levels of depth of the label space or multiple
consecutive layers of depth starting from the low-
est. We refer to the latter aggregation in conjunc-
tion the with count-preserving approach as Count-
Preserving Hierarchical Evaluation (CoPHE; Fig-
ure 2 C). The micro-averaged precision, recall and
F1 scores (both overall and per-level) of the exam-
ple in Figure 2 are presented in Table 1.

4 Metric Analysis

We produced evaluation results with CoPHE on
three prior art models on MIMIC-III.3 CAML (Mul-
lenbach et al., 2018) is the first notable LMTC
model developed on MIMIC-III whose contribu-
tion to the task was the introduction of label-wise
attention. Chalkidis et al. (2019) proposed an al-
teration on CAML called BIGRU-LWAN, (here re-

3Since BERT based models are yet to be well adapted to
MIMIC-III ICD coding (Gao et al., 2021; Ji et al., 2021), we
leave BERT models for a future study.

ferred to as BGLWAN) swapping CAML’s CNN en-
coder with a bidirectional GRU, and making use of
zero-shot-motivated label description embeddings
proposed by Rios and Kavuluru (2018). Dong
et al. (2021) further added label-wise word- and
sentence-level attention and incorporated label em-
beddings pre-trained from the training labelsets (in-
stead of the label descriptions) into the prediction
and attention layers producing the HLAN model.

In the context of MIMIC-III, results tend to be
presented on two label sets – the 50 most frequent
codes (top50) and the full codeset (full) – this stems
from the big-head long-tail distribution of labels in
MIMIC-III with many labels being infrequent, or
not appearing within the training set at all. We have
used the pre-processing and top50 codeset dataset
split of Mullenbach et al. (2018). Our results are
averaged across 10 runs and serve as a comparative
example for the evaluation metrics.

We have applied CoPHE up to the lowest chapter
levels (one above e0), which we simply refer here to
as the chapter level (c). This choice was made due
to the level above c already including the root of
the ontology for some codes, leading to structural
inconsistency.

We compared the flat metric results against the
results of the set-based and CoPHE hierarchical
measures on the three models (Table 2). The scores
of CoPHE are higher than that of flat evaluation,
showing that the measure is more lenient in its
interpretation of errors.

The scores of CoPHE are consistently lower than
that of set-based evaluation, showing that CoPHE
can capture more over- and/or under-prediction of
the labels, as the True Positives of the ancestor
codes are better manifested in CoPHE. If all (bi-
nary) True Positives within higher levels of the hier-
archy reported by the set-based measure were True
Positives in CoPHE (no over- or under-predictions),
this would result in a greater proportion of True
Positives for CoPHE than in the set-based mea-
sure, and hence higher scores (see Table 1 as an
example). In contrast, the consistent lower CoPHE
scores across the three methods imply the presence
of over- and/or under-prediction within families of
codes that is not captured by the set-based measure.

The change of evaluation measure has not af-
fected the ranking of the models on F1. This is
likely due to a lack of representation of the label
space structure within the explored models.

While hierarchical measures enrich the evalua-
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Standard Flat Set-Based CoPHE
Model P R F1 P R F1 P R F1

CAML 59.3 61.4 60.1 62.6 65.5 64.2 61.1 65.4 63.1
BGLWAN 68.4 57.6 62.5 71.8 61.2 66.0 70.5 61.4 65.1
HLAN 73.9 57.4 64.2 77.0 60.3 68.5 76.1 59.1 66.5

Table 2: A comparison between flat evaluation and hierarchical evaluation – Set-Based and CoPHE – on three
models from prior art using the top50 codeset. The results are micro-averaged across labels (and ancestors for hier-
archical measures). Levels of hierarchy up to and including the lowest chapter level (e2, e1, e0, c) are considered.
Hierarchical measures report higher F1 scores than the original flat measures. Furthermore, Set-Based evaluation
F1 scores are higher than those of CoPHE.

tion with structural information, they do not serve
as a replacement of the flat measures, but rather
should be viewed side-by-side. An approach may
not surpass the state-of-the-art on the flat measures,
whilst being better at modelling the structure of the
label space based on the hierarchical score. Indi-
cation of better modelling of the structure should
prompt further analysis of the model.

5 Conclusion

We have proposed the use of hierarchical evalu-
ation measures in the LMTC task involving hier-
archical label spaces and provided an example in
the task of automated ICD coding. Unlike the ap-
proaches in prior art of ICD coding, which penalise
all mispredictions equally, the proposed hierarchi-
cal evaluation measures adjust the penalty based
on the performance on the ancestral levels. We
have described a means to represent the hierarchy
according to depth within the ontology. Finally we
have proposed the use of count-preserving evalua-
tion which captures data on both over and under-
prediction in ancestral levels, as opposed to an ex-
isting set-based (binary) hierarchical evaluation ap-
proach.

6 Future Work

We intend to use the proposed hierarchical evalu-
ation metrics alongside the flat metrics from prior
art in our future experiments, particularly in the
ones incorporating ontological structure within the
model (similar to Rios and Kavuluru (2018)). The
code for the proposed metric along with the level-
based representation of the ontology have been
made public in order to aid future work. The hier-
archical evaluation can be applied to other LMTC
tasks using different hierarchical label spaces. Fi-
nally, not all structured label spaces follow a tree
structure – it is important to explore the possibil-

ity of similar measures for ontologies with more
generic graphs, e.g., SNOMED CT.4
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