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Abstract
In low-resource settings, model transfer can
help to overcome a lack of labeled data for
many tasks and domains. However, predicting
useful transfer sources is a challenging prob-
lem, as even the most similar sources might
lead to unexpected negative transfer results.
Thus, ranking methods based on task and text
similarity — as suggested in prior work —
may not be sufficient to identify promising
sources. To tackle this problem, we propose
a new approach to automatically determine
which and how many sources should be ex-
ploited. For this, we study the effects of model
transfer on sequence labeling across various
domains and tasks and show that our meth-
ods based on model similarity and support
vector machines are able to predict promising
sources, resulting in performance increases of
up to 24 F1 points.

1 Introduction

For many natural language processing applications
in non-standard domains, only little labeled data is
available. This even holds for high-resource lan-
guages like English (Klie et al., 2020). The most
popular method to overcome this lack of supervi-
sion is transfer learning from high-resource tasks or
domains. This includes the usage of resources from
similar domains (Ruder and Plank, 2017), domain-
specific pretraining on unlabeled text (Gururangan
et al., 2020), and the transfer of trained models to
a new domain (Bingel and Søgaard, 2017). While
having the choice among various transfer sources
can be advantageous, it becomes more challenging
to identify the most valuable ones as many sources
might lead to negative transfer results, i.e., actually
reduce performance (Pruksachatkun et al., 2020).

Current methods to select transfer sources are
based on text or task similarity measures (Dai et al.,
2019; Schröder and Biemann, 2020). The under-
lying assumption is that similar texts and tasks
can support each other. An example for similarity
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Figure 1: Observed transfer gains by transferring mod-
els from a source corpus to SMS texts. The domains
are sorted by their vocabulary overlap to the target.

based on vocabulary overlap is shown in Figure 1.
However, current methods typically consider text
and task similarity in isolation, which limits their
application in transfer settings where both the task
and the text domain change.

Thus, as a first major contribution, this paper
proposes a new model similarity measure that rep-
resents text and task similarity jointly. By learning
a mapping between two neural models, it captures
similarity between domain-specific models across
tasks. We perform experiments for different trans-
fer settings, namely zero-shot model transfer, su-
pervised domain adaptation and cross-task transfer
across a large set of domains and tasks. Our newly
proposed similarity measure successfully predicts
the best transfer sources and outperforms existing
text and task similarity measures.

As a second major contribution, we introduce a
new method to automatically determine which and
how many sources should be used in the transfer
process, as the transfer can benefit from multiple
sources. Our selection method overcomes the lim-
itations of current transfer methods, which solely
predict single sources based on rankings. We show
the benefits of transfer from sets of sources and
demonstrate that support vector machines are able
to predict the best sources across domains and tasks.
This improves performance with absolute gains of
up to 24 F1 points and effectively prevents negative
transfer.
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The code for our sequence taggers, prediction
methods and the results are publicly available.1

2 Related Work

Domain adaptation & transfer learning are typ-
ically performed by transferring information and
knowledge from a high-resource to a low-resource
domain or task (Daumé III, 2007; Ruder, 2019;
Hedderich et al., 2021). Recent approaches can be
divided into two groups: (i) model transfer (Ruder
and Plank, 2017) by reusing trained task-specific
weights (Vu et al., 2020; Lange et al., 2021) or by
first adapting models on the target domain before
training the downstream task (Gururangan et al.,
2020; Rietzler et al., 2020) and (ii) multi-task train-
ing (Collobert and Weston, 2008) where multiple
tasks are trained jointly by learning shared repre-
sentations (Peng and Dredze, 2017; Meftah et al.,
2020). We follow the first approach in this paper.

For transfer learning, the selection of sources
is utterly important. Text and task similarity mea-
sures (Ruder and Plank, 2017; Bingel and Søgaard,
2017) are used to select the best sources for cross-
task transfer (Jiang et al., 2020), multi-task transfer
(Schröder and Biemann, 2020), cross-lingual trans-
fer (Chen et al., 2019) and language modeling (Dai
et al., 2019). Alternatively, neural embeddings for
corpora can be compared (Vu et al., 2020). In prior
work, the set of domains is usually limited and the
focus is on the single-best source. In contrast, we
exploit sources from a larger set of domains and
also explore the prediction of sets of sources, as
using multiple sources is likely to be beneficial, as
also shown by Parvez and Chang (2021) contempo-
raneously to this work.

3 Similarity Measures and Predictors

In this section, we describe the sequencer tagger
model and similarity measures along with metrics
for the evaluation. Finally, we introduce our new
prediction method for sets of transfer sources.

3.1 Terminology

We consider two dimensions of datasets: the task
T , which defines the label set, and the input text
coming from a specific domainD. We thus define a
dataset as a tuple 〈T,D〉, and specify in our experi-
ments which of the two dimensions are changed.

1https://github.com/boschresearch/
predicting_sets_of_sources

3.2 Similarity Measures

We apply the following measures to rank sources
according to their similarity with the target data.

Baselines. We use the most promising domain
similarity measures reported by Dai et al. (2020):
Vocabulary and Annotation overlap, Language
model perplexity (Baldwin et al., 2013), Dataset
size (Bingel and Søgaard, 2017) and Term distri-
bution (Ruder and Plank, 2017). We also compare
to domain similarity via Text embeddings and task
similarity using Task embeddings (Vu et al., 2020).

Model similarity. As a new strong method, we
propose Model similarity that is able to combine do-
main and task similarity. For this, feature vectors f
for a target dataset t are extracted from the last layer
of two models ms,mt which have been trained on
the source and target datasets, respectively. The
features are then aligned by a linear transformation
W , a learned mapping, between the feature spaces
using the Procrustes method (Schönemann, 1966)
to minimize their pointwise differences:

arg minW |W (f(ms, t))− f(mt, t)| (1)

The resulting transformation W is the optimal
mapping between the features f(ms, t) to f(mt, t).
If both feature spaces are the same, W would be
the identity matrix I , i.e., no change is required
for the transformation. Larger changes indicate
dissimilarity, thus the distance between the two
models is the difference of the mapping W and the
identity matrix I: diff(ms,mt) := |W − I|.

Similar mappings have been used for the align-
ment of different embedding spaces (Mikolov et al.,
2013; Artetxe et al., 2018) as they inherently carry
information on the relatedness between models.

3.3 Prediction Methods for Sets of Sources

While these similarity measures can be applied to
create rankings and select similar datasets, they
still have a major shortcoming in practice: None
of them provides explicit insights when positive or
negative transfer can be expected.

Typically, the most similar source is selected for
training based on a given similarity measure. We
call this method Top-1. This might introduce only a
low risk of selecting a negative transfer source, but
it also cannot benefit from further positive transfer
sources. Thus, we also test its extension to an
arbitrary selection of the n best sources denoted
by Top-n. However, it is unclear how to choose n,

https://github.com/boschresearch/predicting_sets_of_sources
https://github.com/boschresearch/predicting_sets_of_sources
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and increasing n comes with the risk of including
sources that lead to negative transfer results.

As a solution, we propose two methods that pre-
dict whether positive transfer is likely for a given
distance between datasets: The first method models
the prediction as a 3-class classification task, and
the second one as a regression task predicting the
transfer gain. For classification, we split the trans-
fer gain g into the three classes positive (g ≥ θ),
neutral (|g| < θ) and negative (g ≤ −θ) based
on a predefined threshold θ. (In our experiments,
we set θ = 0.5.) We introduce the neutral class
for classification to cope with small transfer gains
|g| < θ that do not provide additional information,
but would increase the training time.

To solve these tasks, we propose to use support-
vector machines (SVM) for classification (-C)
and regression (-R) and compare to k-nearest-
neighbour classifiers (k-NN) as well as logistic
and linear regression in our experiments.2 For each
method, the input to the model is a similarity value
between source and target. The training label is
either the observed transfer gain (for regression) or
the corresponding class (for classification) for the
source-target pair. Given a new similarity value, a
trained model can then be used to predict which
kind of transfer can be expected.3 The predictions
for a target and a set of sources can then be used to
select the subset of sources with expected positive
transfer.

4 Experimental Setup

In this section, we introduce the tasks, datasets and
transfer settings used in our experiments.

4.1 Tasks and Evaluation Metrics
We perform experiments on 33 datasets for three
tasks: Named entity recognition (NER), part-of-
speech tagging (POS), and temporal expression
extraction (TIME).

For TIME tagging and for POS tagging, we
use the English corpora described by Strötgen and
Gertz (2016) and the four publicly available univer-
sal dependencies corpora with the UPOS tag (Nivre
et al., 2016), respectively. Following Lange et al.
(2020), we convert the TIMEX corpora into the
BIO format for sequence tagging. For NER with
different label sets, we collected several datasets

2We use sklearn implementations (Pedregosa et al., 2011).
3Other similarity measures can be included by modeling

each value as a different input dimension. However, we found
no significant improvements by including multiple measures.

from a wide range of domains, including clinical
(I2B2, Stubbs and Uzuner, 2015), social media
(WNUT, Strauss et al., 2016a) and materials sci-
ence corpora (SOFC, Friedrich et al., 2020). The
GUM (Zeldes, 2017) and ACE’05 (Walker et al.,
2006) can be split easily into multiple domains.
Thus, we perform experiments for all subcorpora.
The GUM corpus has multi-layer annotations and
includes named entity annotations as well. We use
this to study the effects of NER transfer when the
label set is shared. All datasets are listed in the
appendix with information on their domain and
size with respect to the label set and number of
sentences in the training, development, and test
splits.

The metric for all experiments is micro F1. We
use the difference in F1 to measure transfer effects
and also report transfer gain (Vu et al., 2020), i.e.,
the relative improvement of a transferred model
compared to the single-task performance.

In Section 5.2, we rank sources according to their
similarity to the target. These rankings are evalu-
ated with two metrics, following Vu et al. (2020):
(1) the average rank of the best performing model
in the predicted ranking denoted by ρ and (2) the
normalized discounted cumulative gain (NDCG,
Järvelin and Kekäläinen, 2002). The latter is a
ranking measure commonly used in information re-
trieval, which evaluates the complete ranking while
ρ only considers the top.

4.2 Sequence Tagger Model

For sequence tagging, we follow Devlin et al.
(2019) and use BERT-base-cased as the feature
extractor and a linear mapping to the label space
followed by a softmax as the classifier.

Models are trained using the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 2e − 5. The training is performed for a maxi-
mum of 100 epochs. We apply early stopping after
5 epochs without change of the F1-score on the de-
velopment set. We use the same hyperparameters
across all settings.4

4.3 Transfer Settings

Zero-shot model transfer. We apply a model
trained on a source dataset to a target with the same
task but a different domain: 〈Ti, Di〉 → 〈Ti, Dj〉.

4All our experiments are run on a carbon-neutral GPU
cluster. The training of a single model takes between 5 minutes
and 8 hours depending on the dataset size on a single Nvidia
Tesla V100 GPU with 32GB VRAM.
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Task Min. Avg. Max.

Zero-shot Model Transfer
NER -57.3 (-37.9) -17.7 (-10.1) 18.1 (8.0)
POS -8.7 (-8.4) -2.8 (-2.7) 1.6 (1.5)
TIME -100.0 (-83.2) -42.7 (-29.6) 38.6 (13.7)

Supervised Domain Adaptation
NER -5.2 (-2.7) 3.8 (1.9) 14.5 (6.3)
POS -0.3 (-0.3) 0.4 (0.4) 1.8 (1.7)
TIME -15.3 (-10.1) 3.4 (2.0) 32.7 (15.1)

Cross-Task Transfer
NER→NER -9.1 (-4.1) -0.2 (-0.2) 6.8 (3.1)
POS→NER -5.9 (-4.8) -0.5 (-0.3) 2.6 (1.2)
TIME→NER -7.2 (-3.3) -0.9 (-0.5) 0.9 (0.6)

Table 1: Statistics on transfer gains (F1 differences) for
the three transfer settings. The average is aggregated
over all domains and the 5 random seeds resulting in
210 task-specific experiments for NER and up to 780
for TIME.

Supervised domain adaptation. A model
trained on a source domain is adapted to a target
domain by finetuning its weights on target training
data: 〈Ti, Di〉 → 〈Ti, Dj〉.

Cross-task transfer. For applying a model to a
different task, we replace the classification layer
with a randomly initialized layer and adapt it to the
new target task: 〈Ti, Di〉 → 〈Tj , Dj〉.5

5 Results

This section presents the results of the different
transfer settings and analyzes how similarity mea-
sures can be used to predict transfer sources.

5.1 Analysis of Transfer Performance

Table 1 shows the observed performance gains com-
pared to the single-task performance. For zero-shot
model transfer, we observe severe performance
drops. In addition to domain-specific challenges,
this setting is impaired by differences in the under-
lying annotation schemes.6

Supervised domain adaptation, i.e., adapting a
model to the target domain, improves performance
across all settings independent of the source do-
main. Table 1 shows that the average transfer gains
are positive for all tasks and that the maximum
transfer gain is 32.7 points for TIME.

5We restrict the cross-task transfer to NER targets with
different label sets, as the combination of all tasks quickly
becomes computationally infeasible given the large number
of different settings.

6For example, the TIMEX2 (Ferro et al., 2005) and
TIMEX3 (Pustejovsky et al., 2005) guidelines disagree about
including preceding words in the annotated mentions as "in".

Model
Transfer

Domain
Adapt.

Cross
-Task Avg.

Distance ρ N ρ N ρ N ρ N

Vocabulary 2.4 92.1 2.8 88.9 6.4 84.9 3.9 88.7
Annotation 2.4 91.7 3.1 89.3 6.1 85.3 3.9 89.1
Dataset size 3.6 86.4 3.8 85.9 7.2 82.3 4.9 84.9
Term Dist 2.8 90.5 4.2 87.5 6.7 85.2 4.5 87.7

LM Perp. 3.9 85.6 3.4 88.2 5.9 84.4 4.4 86.1
Text Emb. 4.0 88.1 4.6 85.0 7.1 84.6 5.2 85.9
Task Emb. 4.1 88.5 4.7 84.8 6.6 84.5 5.1 85.6
Model Sim. 2.8 90.8 3.3 88.7 5.1 85.4 3.7 88.3

Table 2: Ranking results for different similarity mea-
sures in the three transfer settings. Corpus-based mea-
sures are listed first and model-based ones below. The
values displayed are the average rank of the best model
(ρ) and the NDCG-score (N).

The gains for cross-task transfer are smaller than
for supervised domain adaptation. While we still
observe some performance increases, the average
transfer gains are negative for all tasks. This shows
that it is likely that the adaptation of models from
other tasks will decrease performance. These re-
sults demonstrate the need for reliable similarity
measures and methods to predict the expected trans-
fer gains given the source task and domain. We will
explore them in Section 5.2 and Section 5.3.

5.2 Similarity-based Ranking

To evaluate the prospects of different sources for
model transfer, we compute the pairwise distances
between all datasets using the similarity measures
presented in Section 3.2 and rank them accordingly.

Table 2 shows that the text-based methods vo-
cabulary and annotation overlap are most suited
for in-task transfer, i.e., model transfer and domain
adaptation, while our model similarity is most use-
ful for cross-task transfer. This shows that task
similarity alone is not the most decisive factor for
predicting promising transfer sources and domain
similarity is equally or even more important, in
particular, when more distant domains are consid-
ered. Our model similarity is able to capture both
properties. It is the best similarity measure on av-
erage across all transfer settings according to the
predicted rank of the top-performing source (ρ)
and the best neural method according to NDCG. A
more fine-grained analysis is given in Table 7 in
the appendix.

In general, we find that selecting only the top
source(s) based on a ranking from a distance mea-
sure, as done in current research, gives no informa-
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Target Method Sources F1 (increase)

T
IM

E
-

A
C

E
-U

N
Single-Task Performance No source corpora for pretraining 60.5 F1

Top-1 WWARS + 10.9
Top-2 WWARS, ACE-BN + 11.2
Top-3 WWARS, ACE-BN, TIMEBANK + 15.8
All WWARS, ACE-ALL, TIMEBANK, AQUAINT, I2B2-TIME, ANCIENT, TIME4SCI, TIME4SMS + 10.2
SVM (Classifier) WWARS, ACE-ALL, TIMEBANK, AQUAINT, TIME4SCI, TIME4SMS + 24.0
Logistic Regression WWARS, ACE-ALL, TIMEBANK, AQUAINT, ANCIENT, TIME4SCI, TIME4SMS + 18.2
k-Nearest-Neighbor WWARS, ACE-ALL, TIMEBANK, AQUAINT, I2B2-TIME, TIME4SCI, TIME4SMS + 17.1
SVM (Regression) WWARS, ACE-ALL, TIMEBANK, AQUAINT, TIME4SCI, TIME4SMS + 24.0
Linear Regression WWARS, ACE-ALL, TIMEBANK, AQUAINT, ANCIENT, TIME4SCI, TIME4SMS + 18.2

Table 3: Predicted transfer sources for TIME domain adaptation with target ACE-UN (usenet).
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Figure 2: Average transfer gains using different classi-
fiers for predicting the set of most promising sources.

tion on whether to expect positive transfer. Thus,
we now explore methods to automatically predict
sets of promising sources.

5.3 Prediction of Sets of Sources
We use the methods introduced in Section 3.3 to
predict the set of most promising sources. Then,
we train a model on the combination of the selected
sources and adapt it to the target.7

The results averaged across the different settings
are visualized in Figure 2. While NER and TIME
targets benefit from training on many sources, POS
tagging targets gain the most from using only one
or two of the most related source domains. We
find that our methods based on SVMs are able
to predict this behavior and assign fewer sources
for POS targets, and more sources for TIME and
NER settings. In particular, for TIME settings,
our methods SVM-C and -R result in much higher
transfer gains compared to the static ranking-based
methods and other classifiers or regression models.

For example, transferring multiple sources us-
ing our SVM classifier to the ACE-UN target (see

7We do not explore the NER to NER setting, as we restrict
the sources to have the same set of labels. For the other tasks,
we trained source combinations which were predicted by at
least one model (SVM-R/C, Log-/Lin-R, k-NN) or baseline
method (Top-1, 2, .., All). Training all possible combinations
would be be infeasible.

Table 3) increases performance from 60.5 F1 for
single-task training to 84.5 F1 (+24.0), which is
much higher than the 10.9 points increase when
using the single best source or 10.2 points using all
available sources.

For the cross-task experiments in the lower part
of Figure 2, we find that even the inclusion of the
single best-ranked model results in a transfer loss
of -0.9 points on average for TIME→NER. In this
setting, our models correctly adapt to this new chal-
lenge and predict an empty set of sources, indicat-
ing that no transfer should be performed.

6 Conclusion

We explored different transfer settings across three
sequence-labeling tasks and various domains. Our
new model similarity measure based on feature
mappings outperforms currently used similarity
measures as it is able to capture both task and do-
main similarity at the same time. We further ad-
dressed the automatic selection of sets of sources as
well as the challenge of potential negative transfer
by proposing a selection method based on support
vector machines. Our method results in perfor-
mance gains of up to 24 F1 points.
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Task Corpus Domain # Labels # Train / Dev / Test
sentences

N
E

R

CONLL (Tjong Kim Sang and De Meulder, 2003) News 9 14,987 / 3,466 / 3,684
I2B2-CLIN (Uzuner et al., 2011) Clinical concepts 7 13,052 / 3,263 / 27,625
I2B2-ANON (Stubbs and Uzuner, 2015) Clinical anonymization 47 45,443 / 5,439 / 32,587
WNUT-16 (Strauss et al., 2016b) Twitter posts 21 2,394 / 1,000 / 3,850
WNUT-17 (Derczynski et al., 2017) Social media 13 3.394 / 1,009 / 1.287
WNUT-20 (Tabassum et al., 2020) Wetlab protocols 37 8.444 / 2,862 / 2,813
LITBANK (Bamman et al., 2019) Literature 13 5.549 / 1.388 / 2.973
SEC (Salinas Alvarado et al., 2015) Financial 9 825 / 207 / 443
SOFC (Friedrich et al., 2020) Materials science 9 490 / 123 / 263

N
E

R
&

PO
S

GUM-ALL (Zeldes, 2017) All (GUM) 23/17 3,883 / 960 / 2,060
GUM-ACAD Academic 23/17 321 / 81 / 173
GUM-BIO Biography 23/17 434 / 106 / 233
GUM-FICT Fiction 23/17 576 / 144 / 309
GUM-INT Interview 23/17 599 / 150 / 321
GUM-NEWS News 23/17 360 / 91 / 194
GUM-RED Reddit 23/17 500 / 126 / 269
GUM-TRAV Travel 23/17 431 / 108 / 232
GUM-WHOW Wikihow 23/17 612 / 154 / 329

PO
S EWT (Silveira et al., 2014) Blog. Email. Social 17 12,514 / 1,998 / 2.074

LINES (Ahrenberg, 2015) (non-)Fiction. spoken 17 2,738 / 912 / 914
PARTUT (Sanguinetti and Bosco, 2014) Legal. News. Wikipedia 17 1,781 / 156 / 153

Te
m

po
ra

lE
xp

re
ss

io
ns

TIMEBANK (UzZaman et al., 2013) News 9 2,557 / 640 / 303
AQUAINT (UzZaman et al., 2013) News 9 972 / 243 / 522
ANCIENT (Strötgen et al., 2014) Historical Wikipedia 9 456 / 114 / 245
WWARS (Mazur and Dale, 2010) Wikipedia 9 2,788 / 697 / 1,494
TIME4SMS (Strötgen and Gertz, 2013) SMS 9 1,674 / 419 / 898
TIME4SCI (Strötgen and Gertz, 2013) Clinical 9 461 / 116 / 248
I2B2-TIME (Sun et al., 2013) Clinical 9 5,943 / 1,486 / 5,665
ACE-ALL (Walker et al., 2006) All (ACE-05) 9 8,958 / 2,241 / 4,802
ACE-BC Broadcast conversations 9 1,655 / 414 / 887
ACE-BN Broadcast news 9 2,087 / 522 / 1,119
ACE-CTS Conversational telephony 9 1,756 / 440 / 942
ACE-NW Newswire 9 1,172 / 293 / 628
ACE-UN Usenet 9 1,168 / 292 / 626
ACE-WB Webblog 9 1,120 / 280 / 600

Table 4: Overview of dataset domains and their sizes used in the transfer experiments.

Corpus BERT
Pre Rec F1

CONLL 90.5 91.9 91.2
WNUT-20 78.2 81.0 79.6
WNUT-17 60.1 35.9 44.9
WNUT-16 46.8 44.7 45.7
I2B2-CLIN 82.0 85.8 83.9
I2B2-ANON 94.7 93.2 94.0
SEC 76.7 87.9 81.9
LITBANK 66.1 74.5 70.0
SOFC 73.3 82.8 77.8
GUM-ACAD 46.3 58.8 51.8
GUM-BIO 61.0 72.1 66.1
GUM-FICT 62.8 72.0 67.1
GUM-INT 48.9 58.7 53.4
GUM-NEWS 43.7 52.7 47.8
GUM-RED 50.5 61.9 55.6
GUM-TRAV 37.7 51.0 43.3
GUM-WHOW 40.0 49.0 44.0
GUM-ALL 55.1 64.3 59.4

(a) Named Entity Recognition

Corpus BERT
Pre Rec F1

TIMEBANK 75.2 76.3 75.7
AQUAINT 77.6 77.6 77.6
ANCIENT 71.8 79.6 75.5
WWARS 87.1 90.7 88.9
TIME4SMS 63.8 68.4 66.0
TIME4SCI 55.9 51.6 53.7
I2B2-TIME 72.2 76.7 74.4
ACE-BC 60.5 64.0 62.2
ACE-BN 60.3 71.5 65.4
ACE-CTS 39.0 55.6 45.8
ACE-NW 76.8 81.9 79.2
ACE-UN 56.5 65.2 60.5
ACE-WB 65.6 69.4 67.5
ACE-ALL 66.9 77.6 71.8

(b) Temporal Expression Extraction

Corpus BERT
F1 =Acc.

PARTUT 96.9
EWT 97.0
LINES 97.5
GUM-ACAD 95.1
GUM-BIO 96.3
GUM-FICT 96.8
GUM-INT 95.5
GUM-NEWS 95.9
GUM-RED 94.6
GUM-TRAV 94.5
GUM-WHOW 94.9
GUM-ALL 96.5

(c) POS Tagging

Table 5: Single task learning performance.
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Task Min. Avg. Max. # Pos. Pos. Avg. # Neg. Neg. Avg.

Zero-Shot Model Transfer
NER -57.3 (-37.9) -17.7 (-10.1) 18.1 (8.0) 7 /64 8.6 (3.8) 56 /64 -21.3 (-12.0)
POS -8.7 (-8.4) -2.8 (-2.7) 1.6 (1.5) 13 /144 0.9 (0.8) 127 /144 -3.3 (-3.2)
TIME -100.0 (-83.2) -42.7 (-29.6) 38.6 (17.7) 13 /196 10.3 (5.6) 183 /196 -46.5 (-31.7)

Supervised Domain Adaptation
NER -5.2 (-2.7) 3.8 (1.9) 14.5 (6.3) 55 /64 4.7 (2.3) 8 /64 -1.7 (-0.9)
POS -0.3 (-0.3) 0.4 (0.4) 1.8 (1.7) 116 /144 0.5 (0.5) 9 /144 -0.1 (0.1)
TIME -15.3 (-10.1) 3.4 (2.0) 32.7 (15.1) 133 /196 6.0 (3.7) 62 /196 -2.1 (-1.4)

Cross-Task Transfer
NER→NER -9.1 (-4.1) -0.2 (-0.2) 6.8 (3.1) 39 /90 1.1 (0.6) 46 /90 -1.4 (-0.9)
POS→NER -5.9 (-4.8) -0.5 (-0.3) 2.6 (1.2) 42 /120 2.6 (1.2) 65 /120 -1.3 (-0.9)
TIME→NER -7.2 (-3.3) -0.9 (-0.5) 0.9 (0.6) 35 /150 0.4 (0.3) 100 /150 -1.5 (-0.9)

Table 6: Transfer gains (F1 increase) and the number of positive and negative transfer scenarios for each setting.

Zero-Shot Model Transfer Supervised Domain Adaptation Cross-Task Transfer Average

NER POS TIME NER POS TIME NER
→NER

POS
→NER

TIME
→NER

Distance ρ N ρ N ρ N ρ N ρ N ρ N ρ N ρ N ρ N ρ N

Vocabulary 3.1 90.8 1.3 91.7 2.9 93.9 3.6 83.7 2.3 92.4 2.6 90.7 5.3 82.8 5.4 87.7 8.4 84.3 3.9 88.7
Annotation 3.5 89.7 1.3 91.7 2.4 93.8 3.9 85.1 2.3 92.4 3.1 90.5 5.3 86.2 5.2 87.7 7.9 84.0 3.9 89.1
Datasize 5.0 81.0 2.1 88.3 3.6 90.0 4.6 81.2 2.8 89.9 4.1 86.7 6.9 75.0 5.5 87.3 9.1 84.6 4.9 84.9
Term Dist. 4.4 86.1 1.0 92.8 2.9 92.5 5.0 83.4 3.5 90.4 4.1 88.6 4.9 87.1 6.3 85.0 8.8 83.5 4.5 87.7
LM Perp. 4.9 83.8 2.1 91.2 4.6 81.8 3.9 86.8 1.8 93.5 4.6 84.4 4.8 84.8 6.8 86.5 6.1 81.9 4.4 86.1
Text Emb. 3.5 88.8 4.0 86.1 4.4 89.4 4.0 84.3 5.0 84.1 4.9 86.5 4.7 84.3 9.6 84.7 7.0 84.8 5.2 85.9
Task Emb. 3.4 89.4 4.0 86.3 5.0 89.8 3.8 83.7 5.0 84.3 5.2 86.3 4.9 84.5 7.2 82.8 7.8 83.3 5.1 85.6
Model Sim. 2.6 91.8 2.7 88.7 3.2 91.9 3.5 85.9 3.3 88.4 3.1 91.8 3.0 87.2 6.6 84.5 5.7 84.6 3.7 88.3

Table 7: Ranking results for different similarity measures in the three transfer settings. The values displayed are
the average rank of the best model (ρ) and the NDCG-score (N) compared to the observed performance.

B Model Performance

We list the performance for all single-task models
in Table 5 with precision, recall and micro-F1 for
NER and TIME corpora and accuracy for POS.

C Fine-grained Results

In addition to Table 1 and Table 2 that display task-
wise averages, we report more fine-grained results
in Table 6 and Table 7.

D Similarity Measures

This section provides a more detailed overview of
the similarity measures introduced in Section 3.2.

Target vocabulary overlap is the percentage of
unique words from the target corpus covered in the
source corpus. In contrast to vocabulary overlap,
this is an asymmetric measure. Annotation overlap
is a special case considering only annotated words.

We also experiment with the Language model
perplexity (Baldwin et al., 2013) between two
datasets. For this, a language model, in our case a
5-gram LM with Kneser–Ney smoothing (Heafield,
2011) as used by Dai et al. (2019), is trained for
each source domain and tested against the target

domain. The resulting perplexity gives hints how
similar these domains are, i.e., a lower perplexity
indicates similarity between domains.

Jensen-Shannon divergence (Ruder and Plank,
2017) compares the term distributions between two
texts, which are probability distributions that cap-
ture the frequency of words. It is similar to vocabu-
lary overlap, as it describes the textual overlap, but
based on distributions instead of sets of terms.

A Text embedding (Vu et al., 2020) can be com-
puted by extracting the feature vectors of a neural
model. For this, the output of the last layer is aver-
aged over all words in the dataset. This vector then
represents the text domain. The distance between
two vectors is computed by using cosine similarity.

The Task embedding (Vu et al., 2020) takes a
labeled source dataset and computes a representa-
tion based on the Fisher Information Matrix, which
captures the change of model parameters w.r.t. the
computed loss. This method assumes that similar
tasks require similar parameters changes. We use
the code released by Vu et al. (2020) to compute
task embeddings from the different components of
our BERT models and similarly use reciprocal rank
fusion (Cormack et al., 2009) to combine these.


