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Abstract

In this paper, we show how a multi-class gram-
matical error detection (GED) system can be
used to improve grammatical error correction
(GEC) for English. Specifically, we first de-
velop a new state-of-the-art binary detection
system based on pre-trained ELECTRA, and
then extend it to multi-class detection using
different error type tagsets derived from the
ERRANT framework. Output from this detec-
tion system is used as auxiliary input to fine-
tune a novel encoder-decoder GEC model, and
we subsequently re-rank the N -best GEC out-
put to find the hypothesis that most agrees with
the GED output. Results show that fine-tuning
the GEC system using 4-class GED produces
the best model, but re-ranking using 55-class
GED leads to the best performance overall.
This suggests that different multi-class GED
systems benefit GEC in different ways. Ulti-
mately, our system outperforms all other pre-
vious work that combines GED and GEC, and
achieves a new single-model NMT-based state
of the art on the BEA-test benchmark.

1 Introduction

Grammatical error detection (GED) is the task of
automatically detecting grammatical errors in text,
while grammatical error correction (GEC) is the
task of also correcting these errors. Both tasks have
obvious pedagogical applications that can benefit
both teachers and students in online language learn-
ing. GED is typically cast as a binary sequence la-
belling task, where each token is classified as either
correct or incorrect (Rei and Yannakoudakis, 2016;
Bell et al., 2019), while GEC is often considered a
sequence-to-sequence translation task, where sys-
tems learn to “translate” an ungrammatical input
sentence to a grammatical output sentence (Yuan
and Briscoe, 2016; Junczys-Dowmunt et al., 2018;
Kiyono et al., 2019; Lichtarge et al., 2020). Recent
work has also begun to treat GEC as a sequence la-
belling task, where tokens are classified in terms of

edit operations (Awasthi et al., 2019; Omelianchuk
et al., 2020). We similarly treat GED as a sequence
labelling task and GEC as a sequence-to-sequence
task, but additionally investigate different ways to
combine and extend both approaches.

In particular, we first experiment with pre-
trained language models, and show that simply fine-
tuning ELECTRA (Clark et al., 2020) leads to sig-
nificant improvements in binary GED and achieves
a new state of the art. Given that binary detection is
limited in terms of the specific error type informa-
tion it can provide to downstream tasks however,
we also extend our GED system to 4-class, 25-class
and 55-class error detection using different error
type tagsets derived from the ERRANT framework
(Bryant et al., 2017).

To illustrate the value of multi-class GED for
downstream GEC, we extend the Transformer
encoder-decoder model (Vaswani et al., 2017) and
employ a multi-encoder GEC model (Yuan and
Bryant, 2021). We also introduce a two-step train-
ing strategy which only requires additional input
information from a small dataset for fine-tuning.
Specifically, we experiment with two methods that
use GED to inform GEC: i) we use GED predic-
tions as auxiliary input to fine-tune a model; and
ii) we use GED predictions as a means to re-rank
system output during post-processing.

To summarise, we present the first study using
multi-class GED to improve GEC for English. Our
main contributions are:

• We obtain a new state of the art in binary GED
on three benchmark datasets.

• We empirically show that current Transformer-
based language models are capable of much
more fine-grained error detection, with mini-
mal impact to overall binary F0.5.

• We propose a novel multi-encoder GEC
model and two-step training strategy, which
has proven to be effective at incorporating an
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additional GED signal.

• We demonstrate how multi-class GED can
improve a GEC model by i) using GED pre-
dictions during fine-tuning; and ii) using GED
predictions as a basis for re-ranking.

• We report competitive performance with the
state of the art using a single model without
task-specific adaptation.

2 Previous work

Early approaches to GED focused on specific er-
ror types, and in particular article and preposition
errors, which are among the most frequent in non-
native English learner writing (Han et al., 2004;
Tetreault and Chodorow, 2008). More general
open-class GED systems were later developed us-
ing parse and text-based features (Gamon, 2011).
Rei and Yannakoudakis (2016) presented the first
work using a neural approach and framed GED
as a binary sequence labelling problem, classi-
fying each token in a sentence as either correct
or incorrect. Subsequent improvements were ob-
tained through auxiliary objectives (Rei and Yan-
nakoudakis, 2017; Rei, 2017), and incorporating
artificial training data (Rei et al., 2017; Kasewa
et al., 2018). Recent work takes advantage of
large scale pre-trained language models: Bell et al.
(2019) used pre-trained contextual embeddings
from BERT (Devlin et al., 2019) as input to a bi-
directional LSTM (Hochreiter and Schmidhuber,
1997), while Kaneko and Komachi (2019) utilised
information from intermediate layers via a multi-
head multi-layer attention architecture.

Beyond the development of machine learning
classifiers for specific error types (De Felice and
Pulman, 2008; Rozovskaya and Roth, 2011), GEC
has been formulated as a monolingual machine
translation task that corrects all error types si-
multaneously. Both statistical machine transla-
tion (SMT) and neural machine translation (NMT)
have been successfully applied to GEC with vari-
ous task-specific adaptations (Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2016; Yuan
and Briscoe, 2016; Junczys-Dowmunt et al., 2018;
Yuan et al., 2019). With recent advances in
sequence-to-sequence modelling and the introduc-
tion of the Transformer architecture, state-of-the-
art results have been reported (Kaneko et al., 2020;
Lichtarge et al., 2020). Meanwhile, sequence-
tagging approaches have been proposed for GEC,
where systems learn to predict a sequence of edit

operations (Awasthi et al., 2019; Omelianchuk
et al., 2020). In fact Omelianchuk et al. (2020)
achieved the current state of the art by incorporat-
ing pre-trained Transformer encoders and employ-
ing iterative tagging.

Previous work has attempted to combine these
two similar tasks and explore different ways of
using GED in GEC. Zhao et al. (2019) and Yuan
et al. (2019) employed multi-task learning and in-
troduced token-level and sentence-level GED as
auxiliary tasks when training for GEC. Kaneko et al.
(2020) fine-tuned BERT for binary GED and then
incorporated their model into an encoder-decoder
GEC framework. Similarly, Chen et al. (2020) fine-
tuned RoBERTa (Liu et al., 2019) for GED and
reformatted the input to include error span infor-
mation, which was used by their encoder-decoder
model. Our approach of using additional GED in-
put during GEC training differs from theirs in that
we only use a small set of training examples with
GED information for fine-tuning. The GED train-
ing and GEC training are not coupled together, so
GED predictions from any system can be used.

Binary GED has also been used in post-
processing to re-rank GEC system output (Yan-
nakoudakis et al., 2017; Yuan et al., 2019; Wang
et al., 2020) or filter out unnecessary correc-
tions (Kiyono et al., 2019). Similarly, Chollampatt
and Ng (2018) and Liu et al. (2021) applied quality
estimation approaches to re-rank GEC output. Ad-
ditional GED and/or GEC features are often used
in these systems however, which also require extra
tuning. In contrast, our simple re-ranking approach
only uses GED predictions and does not require
tuning. Our work differs most centrally in that we
treat GED as a multi-class problem and investigate
ways to use multi-class GED predictions to inform
GEC.

3 Data

Following previous studies, we use the public Lang-
8 Corpus (Mizumoto et al., 2011; Tajiri et al., 2012),
the First Certificate in English (FCE) corpus (Yan-
nakoudakis et al., 2011), the Cambridge Learner
Corpus (CLC) (Nicholls, 2003), the National Uni-
versity of Singapore Corpus of Learner English
(NUCLE) (Dahlmeier et al., 2013) and the Cam-
bridge English Write & Improve + LOCNESS
(W&I) corpus released in the Building Educational
Applications (BEA) shared task on GEC (Bryant
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Original I spend quite long time for shopping .
Binary C I C I C I C C
4-class C R C M C U C C
25-class C VERB:TENSE C DET C PREP C C
55-class C R:VERB:TENSE C M:DET C U:PREP C C
Corrected I spent quite a long time shopping.

Table 1: An example sentence with different error type labels in different multi-class settings.

et al., 2019).1 Unlike current state-of-the-art sys-
tems, we do not use any native or artificial data.

The edit annotations in all these corpora were
pre-processed and standardised using the ERRANT
annotation framework. One advantage of this
framework is that error types are modular, and
consist of “operation” + “main” type tags; e.g.
R:NOUN for replacement noun. We hence use
this modularity in our multi-class GED exper-
iments such that 4-classes consist of operation
type only (i.e. missing, replacement, unnecessary
and correct), 25-classes consist of main type only
(e.g. noun, noun number, verb tense, etc.) and
55-classes consist of the full tags combined.2 An
example is shown in Table 1.

4 Grammatical error detection

Following Rei and Yannakoudakis (2016), we treat
GED as a sequence labelling (or token classifica-
tion) task and assign a label to each token in the
input sentence, indicating whether it is correct or
incorrect (i.e. binary classification) or which error
type it belongs to at different levels of granularity
(i.e. multi-class classification). We first perform
binary classification to compare our models with
current state-of-the-art systems. We further extend
them with multi-class error classification with the
aim of improving downstream GEC.

4.1 Approach

We employ three state-of-the-art pre-trained lan-
guage representation models: BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019) and ELEC-
TRA (Clark et al., 2020). Although different
in their pre-training architectures, they are all
Transformer-based models on top of which we add
a linear classification layer. We fine-tune these

1Detailed corpus statistics are given in Appendix A. Pub-
lic data is available at: https://www.cl.cam.ac.uk/
research/nl/bea2019st#data

2See Appendix A in Bryant et al. (2017) for all combina-
tions.

models on annotated GED data for a small num-
ber of epochs. BERT is one of the most popular
and pioneering transfer learning methods involv-
ing self-attention layers of encoders and decoders
for which the pre-trained model weights are avail-
able. XLNet aims to overcome some shortcomings
of BERT by using an auto-regressive architecture
which relies on permutation rather than masking
during pre-training. ELECTRA is an extension of
BERT with a different pre-training task which is a
discriminator (rather than a generator) and aims to
detect replaced tokens. Intuitively, its objective to
discriminate between plausible and non-plausible
word tokens makes it more closely-related to GED.

4.2 Error detection experiments

All datasets contain manually annotated spans of
various types of errors, together with their sug-
gested corrections. We convert these spans into
token-based labels, assigning missing word labels
to the token on the right of the span. This is con-
sistent with previous work and necessary because
missing words fall between tokens and would other-
wise not be represented. For binary detection, each
token is labelled as either correct ‘C’ or incorrect
‘I’. For multi-class detection, we use ERRANT er-
ror types at different levels of granularity (4-class,
25-class and 55-class) as described in Section 3
and exemplified in Table 1. We perform fine-tuning
using the Adam optimiser with a learning rate of
3× 10−5 for all three models.3

For binary GED, we follow Rei and Yan-
nakoudakis (2016) and report token-level precision,
recall and F0.5 for detecting incorrect labels. For
multi-class GED, we report 1) binarised F0.5 which
is the score for detecting any non-C labels regard-
less of class, and 2) macro-averaged F0.5 which is
the average F0.5 across all classes.

3We use the pre-trained large models for BERT, XL-
Net, and ELECTRA provided by Hugging Face (https:
//huggingface.co).

https://www.cl.cam.ac.uk/research/nl/bea2019st#data
https://www.cl.cam.ac.uk/research/nl/bea2019st#data
https://huggingface.co
https://huggingface.co
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System BEA-dev FCE-test CoNLL-2014 Test 1 CoNLL-2014 Test 2
P R F0.5 P R F0.5 P R F0.5 P R F0.5

GED (BERT) 65.48 42.85 59.23 75.73 47.98 67.88 49.73 34.23 45.60 64.52 32.33 53.80
GED (XLNet) 70.03 45.55 63.23 77.50 49.81 69.75 53.23 36.17 48.64 70.68 34.95 58.68
GED (ELECTRA) 72.81 46.85 65.54 82.05 50.49 72.93 55.15 39.78 51.19 76.44 40.13 64.73
Bell et al. (2019) 53.31 35.65 48.50 64.96 38.89 57.28 38.04 33.12 36.94 53.52 30.05 46.29
Kaneko and Komachi (2019) - - - 68.87 43.45 61.65 35.74 33.50 35.26 46.45 35.47 43.74

Table 2: Binary error detection performance on BEA-dev, FCE-test and CoNLL-2014; Test 1 and Test 2 refer to
the two different CoNLL annotations. All systems are trained on the FCE.

Binary GED To be comparable with previous
work (e.g. Bell et al. 2019; Kaneko and Komachi
2019), we first fine-tune our models for binary de-
tection on the FCE dataset, and report results on
BEA-dev, FCE-test and CoNLL-2014 (Ng et al.,
2014). Results are presented in Table 2. As can be
seen, all our Transformer-based GED models out-
perform the current state-of-the-art systems on all
test sets by large margins, with fine-tuned ELEC-
TRA performing the best overall. We believe that
this is due to its intuitively more GED-relevant
discriminative pre-training objective.

Multi-class GED Given that ELECTRA per-
formed the best at binary GED, we use it in our
multi-class GED experiments. Table 3 shows the
binarised and macro-averaged F0.5 scores for dif-
ferent binary and multi-class GED systems. As
expected, we see lower macro-averaged scores for
multi-class classification when there are a higher
number of classes. This is due to the sparsity of the
labels when we add more error types. It is interest-
ing to note, however, that adding more error types
does not significantly affect the performance of the
models in terms of binarised detection. For exam-
ple, the binarised performance of the 4-class and
55-class models is slightly higher than the binary
model on BEA-dev (66.10 and 65.81 vs. 65.54).
This may suggest that all systems are capable of de-
tecting roughly the same number of errors despite
the number of classes and generally struggle only
with the specific class labels themselves.

5 Using GED to improve GEC

In this section, we investigate different ways of us-
ing GED to inform GEC. We use the Transformer
sequence-to-sequence model as our baseline and
employ a multi-encoder GEC system that takes ad-
ditional GED predictions as input. We then experi-
ment with two methods of using GED information:
i) as auxiliary input, and ii) for re-ranking.

Mode BEA-dev FCE-test
F0.5 F0.5

binarised macro binarised macro
binary 65.54 80.39 72.93 83.54
4-class 66.10 67.07 72.57 70.95
25-class 63.08 47.28 72.08 54.59
55-class 65.81 32.99 73.85 34.88

Table 3: Binary and multi-class error detection per-
formance of the ELECTRA GED model trained on the
FCE. The highest binarised F0.5 scores are in bold.

5.1 Baseline GEC system

The Transformer follows an encoder-decoder ar-
chitecture. Each layer of the encoder contains two
sub-layers: a multi-head self-attention mechanism
and a feed-forward network. The decoder inserts
an additional third sub-layer, which performs multi-
head attention over the output of the encoder stack.
See Vaswani et al. (2017) for more details.

5.2 Multi-encoder GEC system

In order to incorporate GED into GEC, we pro-
pose a new extension to the standard Transformer
encoder-decoder model, which employs a second
encoder to take additional GED input (Figure 1).

Encoder The original Transformer encoder reads
the source sentence Ssrc and learns a vector rep-
resentation csrc as before. An additional encoder
is introduced to process any auxiliary GED input
Sged and compute a context representation cged.

Decoder Similar to the original Transformer de-
coder, each layer of the decoder in our model is
composed of three sub-layers. The first sub-layer
performs masked multi-head self-attention on the
known outputs at positions less than i. The sec-
ond sub-layer now contains two multi-head atten-
tion components: a source multi-head attention
(MHsrc), which performs multi-head attention over
the output of the encoder stack for the source sen-
tence csrc, and a new GED multi-head attention
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Figure 1: Multi-encoder GEC system. The newly intro-
duced modules are highlighted in blue.

(MHged), that attends directly to the GED encoder
representation cged. Afterwards, a linear interpola-
tion with gating is applied:

Gating(MH) = λMHsrc + (1− λ)MHged (1)

The gating activation λ is given by:

λ = σ(W [MHsrc;MHged] + b) (2)

where σ is the logistic sigmoid function, and W
and b are learnable parameters. The resulting
Gating(MH) is used as an input to the third sub-
layer, which is a position-wise fully connected feed-
forward network.

Two-step training Inspired by the idea of freez-
ing some parameters while fine-tuning the remain-
ing part of the model (Zhang et al., 2018; Yuan
and Bryant, 2021), we apply a two-step training
strategy to train our proposed model. We divide
model parameters into two subsets:

θ = [θsrc; θged] (3)

where θsrc is a set of original Transformer model
parameters, and θged is a set of newly-introduced
GED component parameters (i.e. the GED encoder,
the GED multi-head attention and the gating - high-
lighted in blue in Figure 1).

In the first step, we train a standard encoder-
decoder GEC model using standard source-target
parallel data:

θ̂src = argmax
θsrc

N∑
n=1

logP (Tn|Sn, θsrc) (4)

where N is the total number of training examples
and (Sn, Tn) is the nth source-target sentence pair.

In the second step, we construct a new dataset
by adding GED information (Sged) for each source-
target pair and estimate GED parameters θged:

θ̂ged = argmax
θged

M∑
n=1

logP (Tn|Sn, Snged, θ̂src, θged)

(5)
where M is the total number of training exam-
ples in the new fine-tuning dataset (M < N ) and
(Sn, Snged, T

n) is the nth triplet.
Our training strategy is different from most fine-

tuning approaches in GEC (e.g. Kiyono et al., 2019;
Lichtarge et al., 2020) as we only update θged and
keep θsrc fixed when adding GED auxiliary input.
This is to prevent overfitting, as the dataset used in
the second step is much smaller than the one used
in the first step.

5.3 Using GED as auxiliary input
Experimental setup Following previous work
that advocates fine-tuning GEC models on high-
quality, in-domain data (Kiyono et al., 2019;
Lichtarge et al., 2020; Yuan and Bryant, 2021),
we pre-train two GEC systems on public Lang-8
data (constrained) and private CLC data (uncon-
strained) respectively, and fine-tune both on W&I +
FCE + NUCLE. The constrained system thus only
uses public data released in the BEA-2019 shared
task. Two GED systems are similarly fine-tuned
using the Lang-8 and CLC pre-training data,4 and
are used to make predictions on the W&I + FCE +
NUCLE fine-tuning data that is auxiliary input to
the GEC system.5

We use byte pair encoding (BPE) (Sennrich et al.,
2016) with 30k merge operations. For both the
Transformer baseline and our multi-encoder GEC
models, the hidden size is set to 512 and the filter
size is set to 2,048. In training, we use the Adam
optimizer (Kingma and Ba, 2015) with the default
parameters. Batch size is 3k tokens. All other set-
tings follow the 6-layer ‘Transformer (base)’ model
in Vaswani et al. (2017). We use four Tesla P40
GPUs for training and one for decoding. Experi-
ments are carried out with Fairseq (Ott et al., 2019).

Results GEC performance on BEA-dev (evalu-
ated by ERRANT) in the unconstrained setting is

4Performance shown in Appendix B.
5This setup was chosen because it would be unfair to train

the GED system on the same data that is used as predicted
input to the GEC system.
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reported in Table 4. For the baseline model, we use
the same pre-training and fine-tuning data splits,
but with no additional GED input for fine-tuning,
which follows the standard encoder-decoder GEC
training procedure. For our new multi-encoder
GEC model, we experiment with predictions from
both the binary and multi-class GED models intro-
duced in Section 4. The results demonstrate the
efficacy of the multi-encoder GEC model: adding
GED predictions as auxiliary input yields a con-
sistent statistically significant improvement in per-
formance over the baseline.6 Our best system uses
the 4-class GED predictions, achieving 52.84 F0.5,
followed by binary (52.20), 25-class (51.78) and
55-class (51.52). We suspect the 4-class system
works best here because it represents the best com-
promise between label informativeness and model
reliability. In contrast, binary predictions tend to
be less informative but more reliable because there
are only two classes, while 25-class and 55-class
predictions tend to be more informative but less
reliable because of the increased difficulty in pre-
dicting sparser classes. These results nevertheless
show that multi-class GED provides GEC with new
information, and we expect further performance
gains with better multi-class GED systems. We
also notice that almost all the improvements come
from recall, with only a negligible influence on
precision.

Finally, we also analysed the performance of
each operation error type in the 4-class GEC system
and found that most gains come from missing word
errors (+6.66 F0.5), which happen to be the worst
performing type in the baseline system.7

Oracle To better understand our model’s capac-
ity to use GED information, we estimate an upper
bound for the GEC system by using gold multi-
class detection labels as auxiliary input. This pro-
vides us with the maximum performance our multi-
encoder GEC system can obtain given a perfect
GED system. In Table 4, we see that our system
benefits the most when the finest and most gran-
ular level of error type information is provided.
Specifically, results show that the maximum at-
tainable score is achieved by the 55-class oracle
GED system (70.24 F0.5), followed by the 25-class
(68.36 F0.5), 4-class (67.86 F0.5) and binary sys-
tems (63.68 F0.5). This further supports the idea
that the main bottleneck in a practical system is

6We perform two-tailed paired T-tests, where p < 0.001.
7Error analysis results are included in Appendix C.

P R F0.5
Baseline w/o GED 58.52 31.20 49.80

Binary
+ GED 58.32 36.76 52.20
+ Oracle 64.29 61.36 63.68

4-class
+ GED 58.68 37.78 52.84
+ Oracle 68.37 65.86 67.86

25-class
+ GED 58.54 35.42 51.78
+ Oracle 68.56 67.56 68.36

55-class
+ GED 57.50 36.38 51.52
+ Oracle 70.49 69.27 70.24

Table 4: ERRANT span-level correction results on
BEA-dev in the unconstrained setting of our multi-
encoder GEC system using different GED models and
oracle detection. The highest GED and oracle results
are in bold.

the reliability of the GED predictions rather than
the informativeness of the labels. We finally ob-
serve only a small difference between the 4-class
and 25-class oracle GED labels, suggesting that the
4-class operation labels (i.e. missing, replacement,
unnecessary and correct) are about as informative
as the 25-class POS-based error types for our multi-
encoder GEC system.

5.4 Using GED for re-ranking

The GEC decoder generates different hypothesis
sentences from which the sentence with the high-
est confidence score is predicted as the correction.
Inspired by Yannakoudakis et al. (2017) and Yuan
et al. (2019), we take advantage of these hypothe-
ses and employ a re-ranking approach using GED
outputs to further improve our GEC results. Specif-
ically, we i) generate a 10-best list of candidate
hypotheses for each sentence, ii) align each hypoth-
esis with the source sentence using ERRANT to
extract the edits, and iii) convert the edit spans to
token-based detection labels as described in Sec-
tion 4.2. This produces a list of hypotheses, where
each hypothesis Hi∈{1:10} = (hi,1, hi,2, ..., hi,l)
consists of the error-type labels for each token in
a source sentence of length l as predicted by the
GEC system. We then use a GED system to predict
a corresponding set of labels D = (d1, d2, ..., dl)
for each source token, and re-rank the hypotheses
based on the minimum Hamming distance between
Hi and D. This ensures the maximal overlap be-
tween the GEC hypothesis and the (multi-class)
GED predictions and hence provides greater confi-
dence that a hypothesis is correct when more error-
type labels from both systems agree.
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Figure 2: ERRANT span-level correction results on
BEA-dev using GED predictions from different mod-
els for re-ranking.

It is finally worth mentioning that we do not use
any other features in our approach – not even the
original scores output by the GEC system – and so
our simple re-ranking method can also be applied to
any number of hypotheses from multiple systems.

Results We perform re-ranking using both GED
predictions8 and oracle labels as before. We report
the results on BEA-dev using the binary, 4-class,
25-class and 55-class GED labels. As can be seen
in Figure 2, using GED for re-ranking GEC output
improves the results consistently and significantly.9

Interestingly, there is a gradual increase in perfor-
mance as the granularity of the GED labels also
increases; the best re-ranking model uses 55-class
GED (54.35 F0.5). We suspect this is because the
55-class labels are the most discriminative com-
pared to the other tagsets, even if they are poten-
tially the noisiest. The performance boost using
GED predictions is still far from what the model
can achieve using oracle however. This suggests
that having more accurate GED models is essen-
tial and that more fine-grained error types can be
effectively incorporated into GEC.

Looking deeper into the performance of our best
re-ranking GEC system which uses 55-class GED,
we see that the model’s F0.5 score increases by
+9.97 for missing and +10.98 for unnecessary
word errors. The improvement is much smaller
for replacement errors however (+1.13). This is
not the case for oracle where the improvement
for replacement errors is also significant (+17.97).

8The GED systems for re-ranking experiments are fine-
tuned on in-domain FCE + W&I.

9We perform two-tailed paired T-tests, where p < 0.001.

Our error analysis reveals that the highest gain is
achieved for R:NOUN:INFL (+25.44), followed
by U:VERB (+19.16), U:PUNCT (+16.63), and
U:VERB:TENSE (+15.84).10

5.5 Final GEC results

In our final experiment, we combine both meth-
ods and apply the 55-class GED re-ranking strat-
egy with our best multi-encoder GEC model which
uses 4-class GED in both the constrained and un-
constrained settings. We also evaluate our mod-
els on two other GEC benchmarks: BEA-test and
CoNLL-2014. Results are presented in Table 5,
where further performance gains are observed, sug-
gesting that these two methods are complementary.

Comparison with other systems In terms of the
constrained setting, which only uses public data
released in the BEA-2019 shared task, our system
outperforms the only other comparable system by
a large margin. Specifically, we outperform Raheja
and Alikaniotis (2020) by +9.4 F0.5 on BEA-test
and +7.3 F0.5 on CoNLL-2014, with the largest
gains coming from re-ranking.

In terms of the unconstrained setting, which in-
cludes systems trained on additional private and/or
artificial data, our system outperforms all other
previous work that combines GED and GEC, and
furthermore achieves a new single-model NMT-
based state of the art on BEA-test. Our closest
NMT-based competitor meanwhile is Stahlberg and
Kumar (2021), who holds the current record on
CoNLL-2014 (66.6 F0.5). Although Omelianchuk
et al. (2020) score higher than our approach on
both test sets, we note that their sequence-tagging
approach additionally relies on a carefully curated
set of 5000 language-specific edit tags. Ultimately,
we believe we have demonstrated the value of in-
corporating multi-class GED into GEC and also
the effectiveness of our proposed approaches.

Error type performance We also perform
a detailed error analysis to better understand
the performance of our final GEC system.11

The largest improvement over the baseline is
observed in U:CONJ (+64.52), followed by
U:NOUN:POSS (+41.21), R:NOUN:INFL
(+21.57), R:VERB:INFL (+20.00), M:PUNCT
(+16.89), M:VERB (+15.12), U:PUNCT

10Throughout our error analysis, we note that type-specific
results may not be truly representative as some error types only
account for a small fraction of the test data. See Appendix D.

11More details in Appendix E.
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System BEA-test CoNLL-2014
P R F0.5 P R F0.5

constrained

NMT-based systems
Raheja and Alikaniotis (2020) 53.8 36.5 49.1 64.7 22.6 47.1
NMT-based systems using GED
Kaneko et al. (2020) 58.1 44.8 54.8 63.6 33.0 53.6
Our work
Baseline 49.0 41.9 47.4 51.0 26.8 43.2

+ Multi-encoder GEC 54.0 44.6 51.8 53.8 31.3 47.0
+ GED re-ranking 60.8 50.8 58.5 60.4 39.0 54.4

unconstrained

NMT-based systems
Ji et al. (2017)† - - - - - 45.2
Ge et al. (2018)†‡ - - - 61.2 37.9 54.5
Kiyono et al. (2019)• 65.5 59.4 64.2 67.9 44.1 61.3
Lichtarge et al. (2020)MN 67.6 62.5 66.5 69.4 43.9 62.1
Wan et al. (2020)◦ 66.9 60.6 65.5 69.5 47.3 63.5
Stahlberg and Kumar (2021)MN� 72.1 64.4 70.4 72.8 49.5 66.6
Yuan and Bryant (2021)† - - - 74.3 39.0 62.9
NMT-based systems using GED
Zhao et al. (2019)� - - - 67.7 40.6 59.8
Yuan et al. (2019)N� 70.5 55.1 66.8 - - -
Kaneko et al. (2020)• 67.1 60.1 65.6 69.2 45.6 62.6
Chen et al. (2020)N•� 70.4 55.9 66.9 72.6 37.2 61.0
Wang et al. (2020)N - - - 65.0 33.5 54.6
Our work†
Baseline 70.0 50.9 65.1 72.6 34.4 59.4

+ Multi-encoder GEC 70.8 57.2 67.6 73.8 39.3 62.7
+ GED re-ranking 73.3 61.5 70.6 71.3 44.3 63.5

Sequence labelling systems
Omelianchuk et al. (2020)♦ 79.2 53.9 72.4 77.5 40.1 65.3

Table 5: Comparison of recent single-model GEC systems evaluated using ERRANT on BEA-test and
M2 (Dahlmeier and Ng, 2012) on CoNLL-2014. Constrained systems are trained only on public BEA-2019
shared task data, while unconstrained systems are variously trained on private and/or artificial data, including:
†CLC (2M sentences), ‡non-public Lang-8 (3M), MWikipedia revision histories (170M), Nartificial Wikipedia
(170M), ◦artificial Gigaword (16M), •artificial Gigaword (70M), ♦artificial one-billion-word (9M) with user-
defined language-specific edit operations, �artificial one-billion-word (30M), �artificial Colossal Clean Crawled
Corpus (200M), and �artificial News Crawl.

(+14.34), and U:VERB:FORM (+13.89). After
looking at the individual system performance in
previous sections, we believe the 4-class GED
fine-tuning process contributes the most to the
improvement for U:CONJ, U:NOUN:POSS,
and R:VERB:INFL amongst others, while
the 55-class GED re-ranking process improves
performance for R:NOUN:INFL, U:PUNCT,
and U:VERB:TENSE. Meanwhile, both steps
contribute to improvements in M:PUNCT and
U:VERB:FORM, which shows how different GED
systems benefit different error types. Finally,
although our GEC system improves F0.5 for

most error types, we note that a small subset are
negatively affected; e.g. performance on M:PART
drops from 48.39 to 33.33, and R:ADJ:FORM
from 75.00 to 62.50.

6 Conclusion

We have shown that multi-class GED can be used
to significantly improve GEC. First, we showed
that fine-tuning a pre-trained Transformer-based
language model can lead to significant improve-
ments in binary GED. Specifically, we found that
fine-tuning ELECTRA, which has a discriminative
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pre-training objective that is conceptually similar
to GED, produces a new state of the art on three
benchmark datasets. We furthermore showed that
our models are capable of multi-class detection,
and obtain similar F0.5 performance to binary GED.

Next, we employ a multi-encoder GEC model
and presented two methods of integrating GED
predictions into GEC systems: firstly during GEC
fine-tuning and secondly as a post-processing re-
ranking step. Results show that both methods,
when applied independently, significantly improve
over a strong NMT-based GEC baseline. When
applied together, we find the methods complement
each other, yielding further performance gains. Our
best single-model GEC system outperforms all pre-
vious systems that combine GED and GEC on both
test sets, and all other single-model NMT-based
systems on BEA-test.

Our results ultimately demonstrate the advan-
tages of integrating multi-class detection into cor-
rection. In particular, different multi-class GED
systems benefit GEC in different ways, and we
find that the 4-class GED model leads to the best
performance in fine-tuning the GEC system, but
re-ranking using the 55-class GED model produces
the best GEC performance overall. Finally, oracle
experiments reveal that our proposed GEC systems
are very effective at incorporating new GED infor-
mation, but that there are still significant gains to
be made in terms of more accurate GED systems.
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A Corpus statistics

Corpus # Sentences
FCE-train 28,350
FCE-dev 2,191
FCE-test 2,695
W&I-train 34,308
BEA-dev 4,384
BEA-test 4,477
NUCLE 57,151
Lang-8 574,281
CLC 1,961,065

Table 6: Basic corpus statistics. Lang-8 only includes sentences that contain errors.

B Binary and multi-class GED performance

Training data Mode BEA-dev FCE-test
F0.5 F0.5

binarised macro binarised macro

CLC

binary 67.18 81.45 75.60 85.39
4-class 66.86 67.86 76.06 72.89
25-class 67.02 51.99 74.53 58.08
55-class 67.01 47.47 74.94 47.54

Lang-8

binary 60.37 77.70 62.96 78.33
4-class 61.99 63.39 66.11 64.00
25-class 59.68 44.42 65.58 42.81
55-class 60.40 37.84 64.64 37.52

Table 7: Binary and multi-class error detection performance of the ELECTRA GED model trained on the CLC
and Lang-8. The highest binarised F0.5 scores are in bold.

C Type-specific error analysis: 4-class multi-encoder GEC

Type Baseline 4-class GED 4-class Oracle
P R F0.5 P R F0.5 P R F0.5

M 54.14 30.26 46.76 54.14 50.72 53.42 71.72 77.50 72.80
R 59.68 32.38 51.07 61.75 33.68 52.93 64.66 58.29 63.28
U 64.69 26.57 50.27 60.59 29.01 49.76 78.83 81.26 79.30

Table 8: Precision, recall and F0.5 for missing, replacement and unnecessary errors for baseline and our multi-
encoder GEC systems fine-tuned with 4-class GED predictions and oracle on BEA-dev.
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D Type-specific error analysis: 55-class re-ranking GEC

Type Baseline 55-class GED 55-class Oracle
P R F0.5 P R F0.5 P R F0.5

M 54.14 30.26 46.76 62.37 41.66 56.73 80.00 53.76 72.88
R 59.68 32.38 51.07 57.54 38.07 52.20 74.07 54.29 69.04
U 64.69 26.57 50.27 68.36 43.26 61.25 84.65 55.20 76.49

Table 9: Precision, recall and F0.5 for missing, replacement and unnecessary errors for baseline and our re-ranking
GEC systems using 55-class GED predictions and oracle on BEA-dev.

Type Baseline 55-class GED Diff. % of
F0.5 F0.5 F0.5 errors

R:NOUN:INFL 66.67 92.11 25.44 0.13
U:VERB 19.80 38.96 19.16 0.39
U:PUNCT 35.53 52.16 16.63 1.41
U:VERB:TENSE 43.86 59.70 15.84 0.56
M:PUNCT 46.20 60.72 14.52 14.61
U:VERB:FORM 41.67 55.56 13.89 0.16
U:PART 65.22 78.95 13.73 0.09
R:DET 38.94 51.66 12.72 2.12
U:PRON 57.55 70.18 12.63 0.63
R:CONTR 70.42 82.09 11.67 0.25
M:NOUN:POSS 70.09 80.81 10.72 0.36
M:PART 48.39 26.32 -22.07 0.15
R:PART 74.07 64.71 -9.36 0.56
U:ADJ 55.56 46.88 -8.68 0.16
R:VERB:INFL 80.00 71.43 -8.57 0.07
R:ADJ:FORM 75.00 68.18 -6.82 0.21

Table 10: Error type-specific performance before and after 55-class GED re-ranking on BEA-dev. We show results
for a subset of error types that are mostly positively (top part) and negatively (bottom part) affected.
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E Type-specific error analysis: our final GEC system

Type Baseline GEC Diff. % of
F0.5 F0.5 F0.5 errors

U:CONJ 0 64.52 64.52 0.15
U:NOUN:POSS 35.71 76.92 41.21 0.13
R:NOUN:INFL 66.67 88.24 21.57 0.13
R:VERB:INFL 80.00 100.00 20.00 0.07
M:PUNCT 46.20 63.09 16.89 14.61
M:VERB 26.32 41.44 15.12 0.55
U:PUNCT 35.53 49.87 14.34 1.41
U:VERB:FORM 41.67 55.56 13.89 0.16
U:VERB:TENSE 43.86 57.69 13.83 0.56
U:PART 65.22 78.95 13.73 0.09
M:PART 48.39 33.33 -15.06 0.15
M:CONJ 14.85 0 -14.85 0.34
R:ADJ:FORM 75.00 62.50 -12.50 0.21
M:ADV 29.63 17.39 -12.24 0.36
M:ADJ 9.80 0 -9.80 0.20

Table 11: Error type-specific performance of the baseline and our final GEC system on BEA-dev. We show results
for a subset of error types that are mostly positively (top part) and negatively (bottom part) affected.


