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Abstract
Pre-trained models for Natural Languages
(NL) like BERT and GPT have been recently
shown to transfer well to Programming Lan-
guages (PL) and largely benefit a broad set of
code-related tasks. Despite their success, most
current methods either rely on an encoder-only
(or decoder-only) pre-training that is subopti-
mal for generation (resp. understanding) tasks
or process the code snippet in the same way
as NL, neglecting the special characteristics of
PL such as token types. We present CodeT5,
a unified pre-trained encoder-decoder Trans-
former model that better leverages the code se-
mantics conveyed from the developer-assigned
identifiers. Our model employs a unified
framework to seamlessly support both code un-
derstanding and generation tasks and allows
for multi-task learning. Besides, we propose a
novel identifier-aware pre-training task that en-
ables the model to distinguish which code to-
kens are identifiers and to recover them when
they are masked. Furthermore, we propose to
exploit the user-written code comments with a
bimodal dual generation task for better NL-PL
alignment. Comprehensive experiments show
that CodeT5 significantly outperforms prior
methods on understanding tasks such as code
defect detection and clone detection, and gen-
eration tasks across various directions includ-
ing PL-NL, NL-PL, and PL-PL. Further analy-
sis reveals that our model can better capture
semantic information from code. Our code
and pre-trained models are released at https:
//github.com/salesforce/CodeT5.

1 Introduction

Pre-trained language models such as BERT (De-
vlin et al., 2019), GPT (Radford et al., 2019), and
T5 (Raffel et al., 2020) have greatly boosted per-
formance in a wide spectrum of natural language
processing (NLP) tasks. They typically employ
a pre-train then fine-tune paradigm that aims to
derive generic language representations by self-
supervised training on large-scale unlabeled data,

which can be transferred to benefit multiple down-
stream tasks, especially those with limited data an-
notation. Inspired by their success, there are many
recent attempts to adapt these pre-training meth-
ods for programming language (PL) (Svyatkovskiy
et al., 2020; Kanade et al., 2020; Feng et al., 2020),
showing promising results on code-related tasks.

However, despite their success, most of these
models rely on either an encoder-only model simi-
lar to BERT (Svyatkovskiy et al., 2020; Feng et al.,
2020) or a decoder-only model like GPT (Kanade
et al., 2020), which is suboptimal for generation
and understanding tasks, respectively. For exam-
ple, CodeBERT (Feng et al., 2020) requires an
additional decoder when applied for the code sum-
marization task, where this decoder cannot bene-
fit from the pre-training. Besides, most existing
methods simply employ the conventional NLP pre-
training techniques on source code by regarding it
as a sequence of tokens like NL. This largely ig-
nores the rich structural information in code, which
is vital to fully comprehend the code semantics.

In this work, we present CodeT5, a pre-trained
encoder-decoder model that considers the token
type information in code. Our CodeT5 builds on
the T5 architecture (Raffel et al., 2020) that em-
ploys denoising sequence-to-sequence (Seq2Seq)
pre-training and has been shown to benefit both
understanding and generation tasks in natural lan-
guage. In addition, we propose to leverage the
developer-assigned identifiers in code. When writ-
ing programs, developers tend to employ informa-
tive identifiers to make the code more understand-
able, so that these identifiers would generally pre-
serve rich code semantics, e.g., the “binarySearch”
identifier in Figure 2 directly indicates its func-
tionality. To fuse such code-specific knowledge,
we propose a novel identifier-aware objective that
trains the model to distinguish which tokens are
identifiers and recover them when they are masked.

Furthermore, we propose to leverage the code

https://github.com/salesforce/CodeT5
https://github.com/salesforce/CodeT5
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CodeT5

"Summarize Python: def inc_value(x):..."

"Generate Python: increment value"

"Defect: if x=0: x += 1"

"Refine: if x=0: x += 1"

"Translate Python to C: if x==0: x += 1"

"increment value"

"def inc_value(x):..."

"true"

"if x == 0: x += 1"

"if (x==0) {x += 1;}"

Figure 1: Illustration of our CodeT5 for code-related understanding and generation tasks.

and its accompanying comments to learn a better
NL-PL alignment. Developers often provide docu-
mentation for programs to facilitate better software
maintenance (de Souza et al., 2005), so that such
PL-NL pairs are widely available in most source
code. Specifically, we regard the NL→PL gener-
ation and PL→NL generation as dual tasks and
simultaneously optimize the model on them.

We pre-train CodeT5 on the CodeSearchNet
data (Husain et al., 2019) following (Feng et al.,
2020) that consists of both unimodal (PL-only)
and bimodal (PL-NL) data on six PLs. In addi-
tion to that, we further collect extra data of C/C#
from open-source Github repositories. We fine-
tune CodeT5 on most tasks in the CodeXGLUE
benchmark (Lu et al., 2021), including two under-
standing tasks: code defect detection and clone
detection, and generation tasks such as code sum-
marization, generation, translation, and refinement.
As shown in Figure 1, we also explore multi-task
learning to fine-tune CodeT5 on multiple tasks at a
time using a task control code as the source prompt.
In summary, we make the following contributions:

• We present one of the first unified encoder-
decoder models CodeT5 to support both code-
related understanding and generation tasks,
and also allows for multi-task learning.

• We propose a novel identifier-aware pre-
training objective that considers the crucial
token type information (identifiers) from code.
Besides, we propose to leverage the NL-PL
pairs that are naturally available in source
code to learn a better cross-modal alignment.

• Extensive experiments show that CodeT5
yields state-of-the-art results on the fourteen
sub-tasks in CodeXGLUE. Further analysis
shows our CodeT5 can better capture the code
semantics with the proposed identifier-aware
pre-training and bimodal dual generation pri-
marily benefits NL↔PL tasks.

2 Related Work

Pre-training on Natural Language. Pre-
trained models based on Transformer archi-
tectures (Vaswani et al., 2017) have led to
state-of-the-art performance on a broad set of
NLP tasks. They can be generally categorized
into three groups: encoder-only models such
as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019b), and ELECTRA (Clark et al., 2020),
decoder-only models like GPT (Radford et al.,
2019), and encoder-decoder models such as
MASS (Song et al., 2019), BART (Lewis et al.,
2020), and T5 (Raffel et al., 2020). Compared
to encoder-only and decoder-only models that
respectively favor understanding and generation
tasks, encoder-decoder models can well support
both types of tasks. They often employ denoising
sequence-to-sequence pre-training objectives that
corrupt the source input and require the decoder
to recover them. In this work, we extend T5 to
the programming language and propose a novel
identifier-aware denoising objective that enables
the model to better comprehend the code.

Pre-training on Programming Language. Pre-
training on the programming language is a nascent
field where much recent work attempts to extend
the NLP pre-training methods to source code. Cu-
BERT (Kanade et al., 2020) and CodeBERT (Feng
et al., 2020) are the two pioneer models. CuBERT
employs BERT’s powerful masked language mod-
eling objective to derive generic code-specific rep-
resentation, and CodeBERT further adds a replaced
token detection (Clark et al., 2020) task to learn
NL-PL cross-modal representation. Besides the
BERT-style models, Svyatkovskiy et al. (2020) and
Liu et al. (2020) respectively employ GPT and
UniLM (Dong et al., 2019) for the code completion
task. Transcoder (Rozière et al., 2020) explores
programming language translation in an unsuper-
vised setting. Different from them, we explore
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# recursive binary search
def binarySearch(arr, left, right, x):

mid = (left + right) // 2
if arr[mid] == x:

return mid
...

Bimodal Input

if arr [ mid ] == x : return mid

0 1 0 1 0 0 1 0 0 1

# recursive binary search

def binarySearch(arr, left, right, x):
mid = (left + right) // 2
if arr[mid] == x:

return mid

(d) Bimodal Dual Generation(b) Identifier Tagging

(c) Masked Identifier Prediction

# recursive binary search
def MASK0(MASK1, MASK2, MASK3, MASK4):

MASK5 = (MASK2 + MASK3) // 2
if MASK1[MASK5] == MASK4:

return MASK5

MASK0 binarySearch MASK1 arr MASK2 
left MASK3 right MASK4 x MASK5 mid

Masked Input

Output

# recursive MASK0
def binarySearch(arr, left, right, x):

mid = (left + MASK1
if arr MASK2 == x:

return mid

MASK0 binary search MASK1 right ) // 2 
MASK2 [ mid ]

Masked Input

Output

(a) Masked Span Prediction

Figure 2: Pre-training tasks of CodeT5. We first alternately train span prediction, identifier prediction, and identi-
fier tagging on both unimodal and bimodal data, and then leverage the bimodal data for dual generation training.

encoder-decoder models based on T5 for program-
ming language pre-training and support a more
comprehensive set of tasks.

Some emerging work (Clement et al., 2020; Mas-
tropaolo et al., 2021; Elnaggar et al., 2021) in the
recent literature also explore the T5 framework on
code, but they only focus on a limited subset of
generation tasks and do not support understand-
ing tasks like us. Apart from these, PLBART (Ah-
mad et al., 2021) based on another encoder-decoder
model BART can also support both understanding
and generation tasks. However, all the above prior
work simply processes code in the same way as nat-
ural language and largely ignores the code-specific
characteristics. Instead, we propose to leverage the
identifier information in code for pre-training.

Recently, GraphCodeBERT (Guo et al., 2021)
incorporates the data flow extracted from the code
structure into CodeBERT, while Rozière et al.
(2021) propose a deobfuscation objective to lever-
age the structural aspect of PL. These models only
focus on training a better code-specific encoder.
Zügner et al. (2021) proposes to capture the rela-
tive distances between code tokens over the code
structure. By contrast, we specifically focus on
the identifiers that reserve rich code semantics and
fuse such information into a Seq2Seq model via
two novel identifier tagging and prediction tasks.

3 CodeT5

Our CodeT5 builds on an encoder-decoder frame-
work with the same architecture as T5 (Raffel et al.,
2020). It aims to derive generic representations
for programming language (PL) and natural lan-
guage (NL) via pre-training on unlabeled source
code. As illustrated in Figure 2, we extend the de-

noising Seq2Seq objective in T5 by proposing two
identifier tagging and prediction tasks to enable the
model to better leverage the token type informa-
tion from PL, which are the identifiers assigned by
developers. To improve the NL-PL alignment, we
further propose a bimodal dual learning objective
for a bidirectional conversion between NL and PL.

In the following, we introduce how CodeT5 en-
codes PL and NL inputs (§3.1) and our proposed
identifier-aware pre-training tasks (§3.2), followed
by the fine-tuning with task-specific transfer learn-
ing and multi-task training (§3.3).

3.1 Encoding NL and PL

At the pre-training stage, our model would receive
either PL-only or NL-PL as inputs depending on
whether the code snippet has accompanying NL
descriptions or not. For the NL-PL bimodal in-
puts, we concatenate them into a sequence with
a delimiter token [SEP] and represent the whole
input sequence into the format as x = ([CLS],
w1, ..., wn, [SEP], c1, ..., cm, [SEP]), where n
and m denote the number of NL word tokens and
PL code tokens, respectively. The NL word se-
quence will be empty for PL-only unimodal inputs.

In order to capture more code-specific features,
we propose to leverage token type information from
code. We focus on the type of identifiers (e.g., func-
tion names and variables) as they are one of the
most PL-agnostic features and reserve rich code
semantics. Specifically, we convert the PL segment
into an Abstract Syntax Tree (AST) and extract the
node types for each code token. Finally, we con-
struct a sequence of binary labels y ∈ {0, 1}m for
the PL segment, where each yi ∈ {0, 1} represents
whether the code token ci is an identifier or not.
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3.2 Pre-training Tasks

We now introduce our proposed pre-training tasks
that enable CodeT5 to learn useful patterns from
either PL-only or NL-PL bimodal data.

Identifier-aware Denoising Pre-training. De-
noising Sequence-to-Sequence (Seq2Seq) pre-
training has been shown to be quite effective in
a broad set of NLP tasks (Song et al., 2019; Raf-
fel et al., 2020; Lewis et al., 2020). This denois-
ing objective typically first corrupts the source se-
quence with some noising functions and then re-
quires the decoder to recover the original texts. In
this work, we utilize a span masking objective sim-
ilar to T5 (Raffel et al., 2020) that randomly masks
spans with arbitrary lengths and then predicts these
masked spans combined with some sentinel tokens
at the decoder. We refer this task to Masked Span
Prediction (MSP), as illustrated in Figure 2 (a).

Specifically, we employ the same 15% corrup-
tion rate as T5 and ensure the average span length
to be 3 by uniformly sampling spans of from 1 to
5 tokens. Moreover, we employ the whole word
masking by sampling spans before subword tok-
enization, which aims to avoid masking partial sub-
tokens and is shown to be helpful (Sun et al., 2019).
Notably, we pre-train a shared model for various
PLs to learn robust cross-lingual representations.
We describe the masked span prediction loss as:

LMSP (θ) =

k∑
t=1

− logPθ(x
mask
t |x\mask,xmask

<t ),

(1)
where θ are the model parameters, x\mask is the
masked input, xmask is the masked sequence to pre-
dict from the decoder with k denoting the number
of tokens in xmask, and xmask

<t is the span sequence
generated so far.

To fuse more code-specific structural informa-
tion (the identifier node type in AST) into the
model, we propose two additional tasks: Identi-
fier Tagging (IT) and Masked Identifier Prediction
(MIP) to complement the denoising pre-training. .

• Identifier Tagging (IT) It aims to notify the
model with the knowledge of whether this code
token is an identifier or not, which shares a similar
spirit of syntax highlighting in some developer-
aided tools. As shown in Figure 2 (b), we map
the final hidden states of the PL segment at the
CodeT5 encoder into a sequence of probabilities
p = (p1, ..., pm), and compute a binary cross en-

tropy loss for sequence labeling:

LIT (θe) =
m∑
i=1

−[yi log pi+ (1− yi) log(1− pi)],

(2)
where θe are the encoder parameters. Note that by
casting the task as a sequence labeling problem, the
model is expected to capture the code syntax and
the data flow structures of the code.

• Masked Identifier Prediction (MIP) Differ-
ent from the random span masking in MSP, we
mask all identifiers in the PL segment and employ
a unique sentinel token for all occurrences of one
specific identifier. In the field of software engi-
neering, this is called obfuscation where changing
identifier names does not impact the code seman-
tics. Inspired by Rozière et al. (2021), we arrange
the unique identifiers with the sentinel tokens into
a target sequence I as shown in Figure 2 (c). We
then predict it in an auto-regressive manner:

LMIP (θ) =

|I|∑
j=1

− logPθ(Ij |x\I, I<j), (3)

where x\I is the masked input. Note that deobfus-
cation is a more challenging task that requires the
model to comprehend the code semantics based on
obfuscated code and link the occurrences of the
same identifiers together.

We alternately optimize these three losses with
an equal probability, which constitutes our pro-
posed identifier-aware denoising pre-training.

Bimodal Dual Generation. In the pre-training
phase, the decoder only sees discrete masked spans
and identifiers, which is disparate from the down-
stream tasks where the decoder needs to gener-
ate either fluent NL texts or syntactically correct
code snippets. To close the gap between the pre-
training and fine-tuning, we propose to leverage
the NL-PL bimodal data to train the model for a
bidirectional conversion as shown in Figure 2 (d).
Specifically, we regard the NL→PL generation and
PL→NL generation as dual tasks and simultane-
ously optimize the model on them. For each NL-
PL bimodal datapoint, we construct two training
instances with reverse directions and add language
ids (e.g., <java> and <en> for Java PL and En-
glish NL, respectively). This operation can be also
seen as a special case of T5’s span masking by
either masking the full NL or PL segment from
the bimodal inputs. This task aims to improve the
alignment between the NL and PL counterparts.
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3.3 Fine-tuning CodeT5

After pre-training on large-scale unlabeled data, we
adapt CodeT5 to downstream tasks via either task-
specific transfer learning or multi-task learning.

Task-specific Transfer Learning: Generation
vs. Understanding Tasks. Code-related tasks
can be categorized into generation and understand-
ing tasks. For the former one, our CodeT5 can
be naturally adapted with its Seq2Seq framework.
For understanding tasks, we investigate two ways
of either generating the label as a unigram target
sequence (Raffel et al., 2020), or predicting it from
the vocabulary of class labels based on the last
decoder hidden state following Lewis et al. (2020).

Multi-task Learning. We also explore a multi-
task learning setting by training a shared model
on multiple tasks at a time. Multi-task learning
is able to reduce computation cost by reusing the
most of model weights for many tasks and has
been shown to improve the model generalization
capability in NL pre-training (Liu et al., 2019a).
We follow Raffel et al. (2020) to employ the same
unified model for all tasks without adding any task-
specific networks but allow to select different best
checkpoints for different tasks. To notify the model
with which task it is dealing with, we design a
unified format of task control codes and prepend
it into the source inputs as shown in Figure 1. For
instance, we employ “Translate Java to CSharp:” as
the source prompt for the code-to-code translation
task from Java to CSharp.

As different tasks have different dataset sizes,
we follow Conneau and Lample (2019) to employ
a balanced sampling strategy. For N number of
datasets (or tasks), with probabilities {qi}Ni=1, we
define the following multinomial distribution to
sample from:

qi =
rαi∑N
j=1 r

α
j

, where ri =
ni∑N
k=1 nk

, (4)

where ni is number of examples for i-th task and
α is set to 0.7. This balanced sampling aims to
alleviate the bias towards high-resource tasks.

4 Experimental Setup

4.1 Pre-training Dataset

We follow Feng et al. (2020) to employ Code-
SearchNet (Husain et al., 2019) to pre-train

PLs W/ NL W/o NL Identifier

C
od

eS
ea

rc
hN

et



Ruby 49,009 110,551 32.08%
JavaScript 125,166 1,717,933 19.82%
Go 319,132 379,103 19.32%
Python 453,772 657,030 30.02%
Java 457,381 1,070,271 25.76%
PHP 525,357 398,058 23.44%

O
ur{ C 1M - 24.94%

CSharp 228,496 856,375 27.85%

Total 3,158,313 5,189,321 8,347,634

Table 1: Dataset statistics. “Identifier” denotes the pro-
portion of identifiers over all code tokens for each PL.

CodeT5, which consists of six PLs with both uni-
modal and bimodal data. Apart from that, we ad-
ditionally collect two datasets of C/CSharp from
BigQuery1 to ensure that all downstream tasks have
overlapped PLs with the pre-training data. In total,
we employ around 8.35 million instances for pre-
training. Table 1 shows some basic statistics. To
obtain the identifier labels from code, we leverage
the tree-sitter2 to convert the PL into an abstract
syntax tree and then extract its node type informa-
tion. We filter out reserved keywords for each PL
from its identifier list. We observe that PLs have
different identifier rates, where Go has the least
rate of 19% and Ruby has the highest rate of 32%.

4.2 Code-specific Tokenizer
Tokenization is a key ingredient for the success of
pre-trained language models like BERT and GPT.
They often employ a Byte-Pair Encoding (BPE) to-
kenizer (Sennrich et al., 2016) to alleviate the Out-
of-Vocabulary (OoV) issues. Specifically, we train
a Byte-level BPE tokenizer following Radford et al.
(2019) and set the vocabulary size to 32,000 as T5.
We add additional special tokens ([PAD], [CLS],
[SEP], [MASK0], ..., [MASK99]). This token-
zier is trained on all of our pre-training data with
non-printable characters and low-frequent tokens
(occurring <3 times) filtered. We compare it with
T5’s default tokenizer and find that our tokenizer
largely reduces the length of tokenized code se-
quence by 30% - 45% on downstream tasks. This
will accelerate the training and especially benefit
generation tasks due to the shorter sequence to pre-
dict. We also spot a severe problem for applying
the T5’s default tokenizer on source code, where it
would encode some common code tokens such as
brackets [‘{’, ‘}’] into unknown tokens.

1https://console.cloud.google.com/
marketplace/details/github/github-repos

2https://tree-sitter.github.io/
tree-sitter/

https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/


8701

Methods Ruby JavaScript Go Python Java PHP Overall

RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 17.83
DOBF - - - 18.24 19.05 - -
PLBART 14.11 15.56 18.91 19.30 18.45 23.58 18.32

CodeT5-small 14.87 15.32 19.25 20.04 19.92 25.46 19.14
+dual-gen 15.30 15.61 19.74 19.94 19.78 26.48 19.48
+multi-task 15.50 15.52 19.62 20.10 19.59 25.69 19.37

CodeT5-base 15.24 16.16 19.56 20.01 20.31 26.03 19.55
+dual-gen 15.73 16.00 19.71 20.11 20.41 26.53 19.75
+multi-task 15.69 16.24 19.76 20.36 20.46 26.09 19.77

Table 2: Smoothed BLEU-4 scores on the code summarization task. The “Overall”
column shows the average scores over six PLs. Best results are in bold.

Methods EM BLEU CodeBLEU

GPT-2 17.35 25.37 29.69
CodeGPT-2 18.25 28.69 32.71
CodeGPT-adapted 20.10 32.79 35.98
PLBART 18.75 36.69 38.52

CodeT5-small 21.55 38.13 41.39
+dual-gen 19.95 39.02 42.21
+multi-task 20.15 35.89 38.83

CodeT5-base 22.30 40.73 43.20
+dual-gen 22.70 41.48 44.10
+multi-task 21.15 37.54 40.01

Table 3: Results on the code generation task. EM de-
notes the exact match.

4.3 Downstream Tasks and Metrics

We cover most generation and understanding tasks
in the CodeXGLUE benchmark (Lu et al., 2021)
and employ the provided public datasets and the
same data splits following it for all these tasks.

We first consider two cross-modal generation
tasks. Code summarization aims to summarize a
function-level code snippet into English descrip-
tions. The dataset consists of six PLs including
Ruby, JavaScript, Go, Python, Java, and PHP from
CodeSearchNet (Husain et al., 2019). We employ
the smoothed BLEU-4 (Lin and Och, 2004) to eval-
uate this task. Code generation is the task to gen-
erate a code snippet based on NL descriptions. We
employ the Concode data (Iyer et al., 2018) in Java
where the input contains both NL texts and class
environment contexts, and the output is a function.
We evaluate it with BLEU-4, exact match (EM)
accuracy, and CodeBLEU (Ren et al., 2020) that
considers syntactic and semantic matches based on
the code structure in addition to the n-gram match.

Besides, we consider two code-to-code gener-
ation tasks. Code translation aims to migrate
legacy software from one PL to another, where we
focus on translating functions from Java to CSharp
and vice versa. Code refinement aims to convert
a buggy function into a correct one. We employ
two Java datasets provided by Tufano et al. (2019)
with various function lengths: small (fewer than
50 tokens) and medium (50-100 tokens). We use
BLEU-4 and exact match to evaluate them.

We also investigate how CodeT5 performs on
two understanding-based tasks. The first one is
defect detection that aims to predict whether a
code is vulnerable to software systems or not. We
use the C dataset provided by Zhou et al. (2019)
for experiment. The second task is clone detection
which aims to measure the similarity between two
code snippets and predict whether they have the

same functionality. We experiment with the Java
data provided by Wang et al. (2020). We employ
F1 score and accuracy for evaluating these two
tasks respectively. In total, our CodeT5 supports
six tasks and fourteen sub-tasks in CodeXGLUE
with a unified encoder-decoder model.

4.4 Comparison Models

We compare CodeT5 with state-of-the-art (SOTA)
pre-trained models that can be categorized into
three types: encoder-only, decoder-only, and
encoder-decoder models. As encoder-only mod-
els, we consider RoBERTa (Liu et al., 2019b),
RoBERTa (code) trained with masked language
modeling (MLM) on code, CodeBERT (Feng et al.,
2020) trained with both MLM and replaced to-
ken detection (Clark et al., 2020), GraphCode-
BERT (Guo et al., 2021) using data flow from code,
and DOBF (Rozière et al., 2021) trained with the
identifier deobfuscation objective. Note that al-
though DOBF employs a Seq2Seq model during
pre-training, it only aims to train a better encoder
for downstream tasks without exploring the poten-
tial benefit of the pre-trained decoder.

For decoder-only models, we compare GPT-
2 (Radford et al., 2019) and its adaptations on
code domain including CodeGPT-2, and CodeGPT-
adapted. The difference is that the latter one uti-
lizes a GPT-2 checkpoint for model initialization
while the former one is trained from scratch. As
encoder-decoder models, the current SOTA model
for the CodeXGLUE benchmark is PLBART (Ah-
mad et al., 2021) based on BART (Lewis et al.,
2020) architecture. For pre-training data, most of
these models employ CodeSearchNet (Husain et al.,
2019) except DOBF and PLBART. DOBF is pre-
trained on 7.9M Java and 3.6M Python files from
BigQuery while PLBART employs a much larger
data with 470M Python and 210M Java functions,
and 47M NL posts from StackOverflow.
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Methods
Java to C# C# to Java Refine Small Refine Medium

BLEU EM BLEU EM BLEU EM BLEU EM

Naive Copy 18.54 0 18.69 0 78.06 0 90.91 0
RoBERTa (code) 77.46 56.10 71.99 57.90 77.30 15.90 90.07 4.10
CodeBERT 79.92 59.00 72.14 58.80 77.42 16.40 91.07 5.20
GraphCodeBERT 80.58 59.40 72.64 58.80 80.02 17.30 91.31 9.10
PLBART 83.02 64.60 78.35 65.00 77.02 19.21 88.50 8.98

CodeT5-small 82.98 64.10 79.10 65.60 76.23 19.06 89.20 10.92
+dual-gen 82.24 63.20 78.10 63.40 77.03 17.50 88.99 10.28
+multi-task 83.49 64.30 78.56 65.40 77.03 20.94 87.51 11.11

CodeT5-base 84.03 65.90 79.87 66.90 77.43 21.61 87.64 13.96
+dual-gen 81.84 62.00 77.83 63.20 77.66 19.43 90.43 11.69
+multi-task 82.31 63.40 78.01 64.00 78.06 22.59 88.90 14.18

Table 4: BLEU-4 scores and exact match (EM) accuracies for code translation (Java to
C# and C# to Java) and code refinement (small and medium) tasks.

Methods
Defect Clone

Accuracy F1

RoBERTa 61.05 94.9
CodeBERT 62.08 96.5
DOBF - 96.5
GraphCodeBERT - 97.1
PLBART 63.18 97.2

CodeT5-small 63.40 97.1
+dual-gen 63.47 97.0
+multi-task 63.58 -

CodeT5-base 65.78 97.2
+dual-gen 62.88 97.0
+multi-task 65.02 -

Table 5: Results on the code defect detec-
tion and clone detection tasks.

4.5 Model Configurations

We build CodeT5 based on Huggingface’s T5 (Raf-
fel et al., 2020) PyTorch implementation3 and
employ two sizes of CodeT5-small (60M) and
CodeT5-base (220M). We set the maximum source
and target sequence lengths to be 512 and 256, re-
spectively. We use the mixed precision of FP16 to
accelerate the pre-training. We set the batch size
to 1024 and employ the peak learning rate of 2e-4
with linear decay. We pre-train the model with the
denoising objective for 100 epochs and bimodal
dual training for further 50 epochs on a cluster of
16 NVIDIA A100 GPUs with 40G memory. The
total training time for CodeT5-small and CodeT5-
base is 5 and 12 days, respectively.

In the fine-tuning phase, we find that the tasks in
CodeXGLUE (Lu et al., 2021) are quite sensitive
to some hyper parameters such as learning rate,
training steps, and batch size. We conduct a grid
search and select the best parameters based on the
validation set. In multi-task learning, we cover all
downstream tasks except clone detection.

5 Results and Analysis

In this section, we compare CodeT5 with SOTA
models on a broad set of CodeXGLUE downstream
tasks (§5.1), and investigate the effects of our
bimodal dual generation and multi-task learning
(§5.2), followed by a detailed analysis on the pro-
posed identifier-aware pre-training (§5.3).

5.1 CodeXGLUE Downstream Tasks

We evaluate two sizes of our model: CodeT5-
small and CodeT5-base that are pre-trained with
identifier-aware denoising. In addition, we consider
the model that continues to train with bimodal dual

3https://huggingface.co/

generation (dual-gen) and show the results with
multi-task fine-tuning. The results of all compari-
son models are obtained from their original papers
and also the CodeXGLUE paper (Lu et al., 2021).

Code Summarization. We show code summa-
rization results of smoothed BLEU-4 on six PL
data in Table 2. We observe all our model vari-
ants significantly outperform prior work with either
an encode-only (RoBERTa, CodeBERT, DOBF)
or encoder-decoder framework (PLBART). More-
over, the salient performance gap between these
two groups of models confirms that encode-only
frameworks are suboptimal for generation tasks.
Compared to the SOTA encoder-decoder model
PLBART, we find that even our CodeT5-small
yields better overall scores (also on Python and
Java) given that our model is much smaller (60M
vs. 140M) and PLBART is pre-trained with much
larger Python and Java data (> 100 times). We at-
tribute such improvement to our identifier-aware
denoising pre-training and better employment of bi-
modal training data4. By increasing the model size,
our CodeT5-base boosts the overall performance
by over 1.2 absolute points over PLBART.

Code Generation. We compare CodeT5 with
GPT-style models and PLBART in Table 3. Our
CodeT5-small outperforms all decoder-only mod-
els and also the SOTA PLBART, which again
confirms the superiority of encoder-decoder mod-
els at generating code snippets. Moreover, our
CodeT5-base further significantly pushes the SOTA
results across three metrics. Particularly, it achieves
around 4.7 points improvement on CodeBLEU over
PLBART, indicating our CodeT5 can better com-
prehend the code syntax and semantics with the
help of identifier-aware pre-training.

4Apart from bimodal dual generation, we concatenate NL
and PL for training while PLBART deals with them separately.

https://huggingface.co/
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Type Code

Target
public long ramBytesUsed(){

return BASE_RAM_BYTES_USED+((index!=null)?
index.ramBytesUsed() : 0);}

CodeT5

public long ramBytesUsed(){
long sizeInBytes = BASE_RAM_BYTES_USED;
if (index != null){

sizeInBytes += index.ramBytesUsed();}
return sizeInBytes;}

Figure 3: One translation (C# to Java) example that is seman-
tically correct but with a 50.23% BLEU-4 score.

Code-to-Code Generation Tasks. We compare
two code-to-code generation tasks: code translation
and code refinement in Table 4 and further consider
one naive copy baseline by copying the source in-
put as the target prediction. In the code translation
task, our CodeT5-small outperforms most of base-
lines and obtains comparable results with PLBART,
which shows the advantages of encoder-decoder
models in the code-to-code generation setting. Our
CodeT5-base further achieves consistent improve-
ments over PLBART across various metrics for
translating from Java to C# and vice versa.

Here we show one CodeT5’s output of translat-
ing C# to Java in Figure 3. In this case, despite
the poor BLEU score, CodeT5 is able to gener-
ate a function that reserves the same functionality
and even has better readability compared to the
ground-truth. This reveals that CodeT5 has a good
generalization ability instead of memorizing and re-
peating what it has seen before. On the other hand,
it also suggests that BLEU score is not a perfect
evaluation metric for code generation tasks, where
sometimes a higher score can instead reflect the
problematic copy issues of neural models.

Another code-to-code generation task is code
refinement, a challenging task that requires to de-
tect which parts of code are buggy and fix them
via generating a bug-free code sequence. Due to
the large overlap of source and target code, even
the naive copy approach yields very high BLEU
scores but zero exact matches. Therefore, we fo-
cus on the exact match (EM) metric to evaluate
on this task. As shown in Table 4, we observe
that EM scores for the small data are consistently
higher than the medium one, indicating that it is
harder to fix bugs for a longer code snippet. Our
CodeT5-base significantly outperforms all base-
lines on EM and especially boosts over 4.8 points
for the more challenging medium task (13.96 vs.
GraphCodeBERT’s 9.10), reflecting its strong code
understanding capability.

Understanding Tasks. We compare with two un-
derstanding tasks of defect detection and clone de-

Methods
Sum-PY Code-Gen Refine Small Defect
(BLEU) (CodeBLEU) (EM) (Acc)

CodeT5 20.04 41.39 19.06 63.40
-MSP 18.93 37.44 15.92 64.02
-IT 19.73 39.21 18.65 63.29
-MIP 19.81 38.25 18.32 62.92

Table 6: Ablation study with CodeT5-small on four se-
lected tasks. “Sum-PY” denotes code summarization
on Python and “Code-Gen” denotes code generation.

tection in Table 5. Specifically, we generate the
binary labels as a unigram sequence from the de-
coder for the defect detection task, while for the
clone detection task, we first obtain the sequence
embedding of each code snippet using the last
decoder state following Lewis et al. (2020) and
then predict the labels by measuring their simi-
larity. Both CodeT5-small and CodeT5-base out-
perform all baselines on the defect detection task
while CodeT5-base yields 2.6 accuracy score im-
provement than PLBART. For the clone detection
task, our CodeT5 models achieve comparable re-
sults to the SOTA GraphCodeBERT and PLBART
models. These results demonstrate that with an
encode-decoder framework, our CodeT5 can still
be adapted well for understanding tasks.

5.2 Effects of Bimodal Dual Generation and
Multi-task Learning

We examine the effects of bimodal dual genera-
tion at pre-training and multi-task learning at fine-
tuning. The bimodal pre-training brings consistent
improvements for code summarization and genera-
tion tasks on both CodeT5-small and CodeT5-base.
However, this pre-training task does not help and
even sometimes slightly hurts the performance for
PL-PL generation and understanding tasks. We
anticipate this is because bimodal dual generation
learns a better alignment between PL and NL that
naturally benefits the former tasks involving both
PL and NL. As a side effect, this objective could
bias the model towards the PL-NL tasks and affect
its performance on PL-PL tasks.

In multi-task learning, it generally improves
most of downstream tasks except the code trans-
lation and defect detection. Particularly, it largely
boosts the performance on code summarization,
which is not surprising as code summarization
takes up the largest portion of sub tasks (six out
of thirteen) and thereby benefit the most from
the multi-task learning. Besides, we observe that
multi-task learning consistently improves the per-
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Type Code

Source
Text: returns the string value of the
specified field. the value is obtained from
whichever scan contains the field.
Env: Scan s1 ; Scan s2 ; boolean hasField

CodeT5

String function (String arg0){
if ( s1 . hasField (arg0))

return s1 .getString(arg0);

else return s2 .getString(arg0);}

W/o MIP+IT
String function (String arg0){

return s1 .getString(arg0);}

Figure 4: One code generation example on Concode
test set, where our CodeT5 gives a correct prediction.
The important identifiers are highlighted.

formance of code refinement, which might benefit
from the joint training of both small and medium
refinement data. Another possible reason is that
multi-task training with defect detection would en-
able the model to better comprehend the code se-
mantics for bug detection, which is also a necessary
intermediate step for code refinement.

5.3 Analyzing Identifier-aware Pre-training

We provide an ablation study to examine the con-
tribution of each component in our identifier-aware
pre-training objective. Specifically, we compare
the performance of our CodeT5-small on four se-
lected tasks by ablating each of the three objectives:
masked span prediction (MSP), identifier tagging
(IT), and masked identifier prediction (MIP). As
shown in Table 6, we observe that generally re-
moving one of the objectives would reduce the
performance for all tasks, indicating that all objec-
tives contribute to the better code understanding
of our CodeT5. However, the effect of each ob-
jective differs across tasks. Specifically, removing
MSP would largely reduce the performance of all
generation tasks but instead increase the defect de-
tection performance. This shows that masked span
prediction is more crucial for capturing syntactic
information for generation tasks. On the contrary,
removing MIP would hurt the defect detection task
the most, indicating that it might focus more on
code semantic understanding. By combining these
objectives, our CodeT5 can better capture both syn-
tactic and semantic information from code.

We further provide outputs from CodeT5 and its
variant without MIP and IT on code generation in
Figure 4. We observe that CodeT5 can correctly
generate the exact function, while the model with-
out MIP and IT fails to recover the identifiers of “s2”
and “hasField”. This shows our identifier-aware
denoising pre-training can better distinguish and
leverage the identifier information.

Methods
MSP MIP

Acc #Pred M Acc #Pred M

MSP-only 50.13 99.80 2.94 1.60
MIP-only 1.68 82.40 42.75 98.80
MIP+MSP 48.26 99.60 42.72 98.60

Table 7: Compare MSP and MIP on a subset of Java in
CodeSearchNet. “#Pred M” denotes the ratio of predic-
tion numbers that matches the sentinel token numbers.

We also investigate the identifier tagging perfor-
mance and find it achieves over 99% F1 for all PLs,
showing that our CodeT5 can confidently distin-
guish identifiers in code. We then check whether
MSP and MIP tasks would have conflicts as they
employ the same sentinel tokens for masking. In
identifier masking, all occurrences of one unique
identifier are replaced with the same sentinel token,
resulting in a many-to-one mapping compared to
the one-to-one mapping in span prediction. We
compare models pre-trained with either MSP or
MIP, and both on these two tasks in Table 7. We
report the prediction accuracy and also the ratio of
how often they can generate the same number of
predictions as the sentinel tokens. We observe that
pre-training only with either MIP or MSP would
bias the model towards that task, achieving poor
accuracy and higher mismatch in number of predic-
tions when applied to the other task. Interestingly,
we find that MIP-only objective can better recover
the correct number of predictions in the MSP task
than MSP-only does for the MIP task, meaning
that it is easier to adapt from many-to-one mapping
to one-to-one mapping and difficult for the oppo-
site. At last, combining them can help our model
to make a good trade-off on both tasks.

6 Conclusion

We have presented CodeT5, a pre-trained encoder-
decoder model that incorporates the token type in-
formation from code. We propose a novel identifier-
aware pre-training objective to better leverage the
identifiers and propose a bimodal dual generation
task to learn a better NL-PL alignment using code
and its comments. Our unified model can sup-
port both code understanding and generation tasks
and allow for multi-task learning. Experiments
show that CodeT5 significantly outperforms all
prior work in most CodeXGLUE tasks. Further
analysis also reveals its better code comprehension
capability across various programming languages.
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Broader Impact and Ethical Consideration

Our work generally belongs to NLP applications
for software intelligence. With the goal of improv-
ing the development productivity of software with
machine learning methods, software intelligence
research has attracted increasing attention in both
academia and industries over the last decade. Soft-
ware code intelligence techniques can help develop-
ers to reduce tedious repetitive workloads, enhance
the programming quality and improve the overall
software development productivity. This would
considerably decrease their working time and also
could potentially reduce the computation and oper-
ational cost, as a bug might degrade the system per-
formance or even crash the entire system. Our work
addresses the fundamental challenge of software
code pre-training, our study covers a wide range
of code intelligence applications in the software
development lifecycle, and the proposed CodeT5
method achieves the state-of-the-art performance
on many of the benchmark tasks, showing its great
potential benefit towards this goal.

We further discuss the ethical consideration of
training CodeT5 and the potential risks when ap-
plying it into real-world downstream applications:

Dataset bias. The training datasets in our study
are source code including user-written comments
from open source Github repositories and publicly
available, which do not tie to any specific appli-
cation. However, it is possible that these datasets
would encode some stereotypes like race and gen-
der from the text comments or even from the source
code such as variables, function and class names.
As such, social biases would be intrinsically embed-
ded into the models trained on them. As suggested
by Chen et al. (2021), interventions such as filtra-
tion or modulation of generated outputs may help
to mitigate these biases in code corpus.

Computational cost. Our model pre-training re-
quires non-trivial computational resources though
we have tried our best to carefully design our ex-
periments and improve experiments to save unnec-
essary computation costs. In fact, compared to the
recent large-scale language model Codex (Chen
et al., 2021), our CodeT5-base has a much smaller
model size of 220M than theirs of 12B (∼ 55×).
In addition, we experiment on Google Cloud Plat-
form which purchases carbon credits to reduce its
carbon footprint, e.g., training CodeT5-base pro-
duced around 49.25 kg CO2 which was totally off-

set by the provider. Furthermore, we release our
pre-trained models publicly to avoid repeated train-
ing for the code intelligence research community.

Automation bias. As CodeT5 can be deployed
to provide coding assistance such as code genera-
tion for aiding developers, automation bias of ma-
chine learning systems should be carefully consid-
ered, especially for developers who tend to over-
rely on the model-generated outputs. Sometimes
these systems might produce functions that superfi-
cially appear correct but do not actually align with
the developer’s intents. If developers unintention-
ally adopt these incorrect code suggestions, it might
cause them much longer time on debugging and
even lead to some significant safety issues. We sug-
gest practitioners using CodeT5 should always bear
in mind that its generation outputs should be only
taken as references which require domain experts
for further correctness and security checking.

Security implications. We train CodeT5 on ex-
isting code corpus including CodeSearchNet (Hu-
sain et al., 2019) and a small fraction of Google
BigQuery, both of which are originally collected
from public Github repositories. Pre-trained mod-
els might encode some sensitive information (e.g.,
personal addresses or identification numbers) from
the training data. Though we have conducted multi-
rounds of data cleaning to mitigate this before train-
ing our models, it is still possible that some sen-
sitive information cannot be completely removed.
Besides, due to the non-deterministic nature of gen-
eration models like CodeT5, it might produce some
vulnerable code to harmfully affect the software
and even be able to benefit more advanced malware
development when deliberately misused.
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