Voice Query Auto Completion
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Abstract

Query auto completion (QAC) is the task of
predicting a search engine user’s final query
from their intermediate, incomplete query. In
this paper, we extend QAC to the streaming
voice search setting, where automatic speech
recognition systems produce intermediate tran-
scripts as users speak. Naively applying ex-
isting methods fails because the intermediate
transcripts often don’t form prefixes or even
substrings of the final transcript. To address
this issue, we propose to condition QAC ap-
proaches on intermediate transcripts to com-
plete voice queries. We evaluate our models
on a speech-enabled smart television with real-
life voice search traffic, finding that this ASR-
aware conditioning improves the completion
quality. Our best method obtains an 18% rela-
tive improvement in mean reciprocal rank over
previous methods.

1 Introduction

Query auto completion (QAC) is the task of pre-
dicting a user’s complete query given the present,
incomplete prefix of the query. For example, sup-
pose a user types “COVID vaccine” into Google.
Then, a QAC system proposes the most likely com-
pletions for that prefix, e.g., “COVID vaccine near
me,” saving the user time when the prediction is cor-
rect. Existing state-of-the-art approaches generate
completions using language models conditioned
on the prefix (Park and Chiba, 2017), with simple
prefix trees serving as a strong baseline.

In the streaming voice search setting, such as on
the Google Voice Assistant, naively adapting these
existing approaches fails because the key assump-
tions differ. Most glaringly, incomplete queries
comprise partial speech, not text. In place of hu-
man users, an automatic speech recognition (ASR)
system produces the textual transcripts, resulting
in intermediate queries that often don’t form pre-
fixes or even substrings of the final query. Consider
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the voice query “Hulu” as an example. Passing
it through a streaming ASR system, we observe
the transcripts “who,” then “Hulu.” Traditional
QAC approaches fail to complete “Hulu” from
“who,” since they use orthographic prefixes and
substrings (Cai and de Rijke, 2016) instead of the
true phonetic prefix, which is generally unavailable
at training time.

Nevertheless, the intermediate transcript “who
is still informative toward predicting “Hulu” be-
cause it frequently precedes “Hulu” in the sample.
Based on this observation, we hypothesize that,
for improved QAC quality, we must additionally
model the dynamics between the intermediate and
the final transcripts from the ASR system.

In this paper, we precisely design and evaluate
ASR-aware QAC models. The main contributions
of our work are as follows: First, we are the first
to describe the task of QAC for streaming, bidi-
rectional ASR systems in voice search. Second,
we propose and evaluate novel, ASR system-aware
QAC models for the task, showing that incorporat-
ing context from intermediate transcripts helps. On
the Xfinity X1, a voice-enabled smart TV serving
more than twenty million American customers, our
best approach attains an 18% relative improvement
in mean reciprocal rank over the previous best.
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2 Voice Query Auto Completion

Our novel task is to predict the final voice queries
that users issue, given some mid-utterance, in-
termediate transcripts of their incomplete speech
from the ASR system. As is typical, these sys-
tems are streaming, with the speech being tran-
scribed to text in real time. Concretely, for some
utterance, we are given a k-tuple of string tran-
scripts X = () 2@ .. 2®) representing
the streaming outputs of the ASR system across the
utterance, where (%) is a string of words. We index
X in chronological order, e.g., (“Who”, “Hulu”,
“Hulu now”) for the utterance “Hulu now.” We wish
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Table 1: Input—output pairs for c-concatenations. For brevity, we substitute [ | ] and [$] for [SEP] and [EOS].
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In keyboard-input QAC, there is only a single
transcript, the submitted query, which researchers
model with prefix trees (Mitra and Craswell, 2015)
and autoregressive language models (Park and
Chiba, 2017) to generate completions from pre-
fixes. A tacit assumption is that partial queries
are prefixes (or within a small edit distance of an
observed prefix; Chaudhuri and Kaushik, 2009)
of the final query. Since this property is invalid
for us, we propose voice query-oriented flavors of
two state-of-the-art QAC approaches, most popu-
lar completion (MPC) and neural query language
models (NQLMs), representing a statistical and a
neural approach, respectively.

2.1 Concatenated Sequence Transformation

To model Eqn. (1) using autoregressive models,
we propose to concatenate some intermediate tran-
scripts with the final transcript for each utterance.
Let [SEP] and [EOS] be the separator and the
end-of-sequence tokens, respectively. Define all c-
concatenations of X as the set of strings where all
contiguous windows of < c transcripts are joined
together with [SEP] and prepended to “[EOS]

2®) ” This transformation, when viewed in an
autoregressive, left-to-right manner, relates the fi-
nal transcript to c intermediate ones. For input—
output examples, see Table 1. Given the context
size ¢, we then construct a training set of strings
D, from the training corpus of N transcript tu-
ples D := (X1, Xs,...,Xy) as the set of all c-
concatenations of each X € D.

We differentiate the motivation of our method
from that of Tsunematsu et al. (2020), who treat
speech completion as the same as typographical
QAC. Typing is much more linear than automatic
speech recognition is, with intermediate keystrokes
(or queries) being within a short edit distance of the
final query. In other words, typographical sequence
completion already has the full history of the query
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inherently, in the final query text itself. As a result,
our motivation is to include the same information
that is available to typographical systems by includ-
ing the full transcript history, captured from the
ASR system.

2.2 Our Models

Most popular completion. In keyboard-input
most popular completion, researchers construct a
trie over the characters of each query in the train-
ing corpus, keeping track of the frequency. At
inference time, given some prefix of the query, the
top-K completions from the trie are returned. In
our case, given the context size ¢, we build the trie
from D,, naming this method “concatenated MPC,”
or “CAT-MPC” for short.

Neural query language models. The clear draw-
back of MPC is that it fails to complete unseen
prefixes. The current state-of-the-art workaround is
to apply neural language models (NLMs; Park and
Chiba, 2017) rather than relying on observed statis-
tics, thus allowing for unseen suffixes to be gener-
ated. We propose to model D, using lightweight
transformers (Vaswani et al., 2017), which repre-
sent the state-of-the-art architecture in language
modeling (Brown et al., 2020). For learning the sta-
tistical distribution p(W7, ..., W,,) over the word
sequence W1,...,W,, NLMs typically use the
negative log-likelihood (NLL) objective

||

Z Z*IOgPG(Wi =xilzy,...,xi—1), (2)

xz€D, =1

where D, is a training corpus as previously defined,
pg is an NLM, and « is a tokenized string. We call
this approach “concatenated neural query language
model,” or “CAT-NQLM.”

Neural trie objective. NLL is pointwise in the
sense that the likelihood of a single word (or out-
come) is maximized at each iteration, ignoring the
full distribution across the vocabulary. On a long
corpus, this is the best we can do, for the data is
too sparse to provide an estimate beyond the next-
best token conditioned on all its previous ones. On
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Figure 1: Distribution statistics of queries to the ASR system and its outputs.

query logs, the data is instead short, dense, and
well modeled by tries (as the high quality of MPC
shows), enabling us to estimate the distribution
across the vocabulary for each new token. We con-
struct a trie pyie (W1, ..., W) over the dataset D,
and introduce the objective

||
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€D, i—1
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where KL(-||-) denotes the Kullback—Leibler di-
vergence. Unlike Eqn. (2), this loss uses
the entire distribution across the vocabulary.
In the data-sparse case, this objective de-
generates to the negative log-likelihood loss
since pyie (W; = x;|x1, ..., 2;—1) = 1. We name
Eqn. (3) the neural trie (NT) objective.

Model inference. At inference time, given some
intermediate transcripts, we join the final ¢ tran-
scripts with [SEP] and append the [EOS] sen-
tinel. For CAT-MPC, we return the top-K com-
pletions following the sentinel; for CAT-NQLM,
following Park and Chiba (2017), we feed the trans-
formed string into the NLM, run beam search with
a width of K, and return the generated tokens.

3 Experiments

3.1 Experimental Setup

We run experiments using PyTorch and Transform-
ers (Wolf et al., 2019) on machines with Titan RTX
GPUs. For CAT-NQLM, we use the same archi-
tecture as GPT-2-base (Radford et al., 2019) but
with an embedding and hidden size of 256, 8 atten-
tion heads, 4 layers, and 8,000 tokens. This model
runs in real time (much less than 100ms, the limit
for instantaneous perception) and totals 4.7 million
parameters, which is slightly larger than the small

3.8M-parameter model from Park and Chiba (2017)
and much smaller than their large 30M variant.
We train this model using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 5 x 107%, a batch size of 128, and 5 epochs.
We denote the models trained using the neural trie
objective with the “NT” subscript. For tokeniza-
tion, following the current state of the art, we apply
byte-pair encoding (Kudo and Richardson, 2018)
to solve the out-of-vocabulary problem. We tune ¢
from Section 2.1 forc =1, ..., 5 for all CAT-* ap-
proaches and pick a beam search width of 10. For
more specific training details, refer to the appendix.

Dataset. We curate a proprietary dataset from real-
life voice queries to our smart TV, the X1 enter-
tainment system, which users interact with using
a voice remote. Example queries include navigat-
ing to a specific channel (“Channel 57), searching
YouTube (“YouTube funny videos™), and program
lookups (“Cowboy Bebop™).

In Figure 1, we present the empirical cumulative
distribution functions (ECDFs) of important statis-
tics. From left to right, we plot the frequency rank
of the query, the lexical length of the query, the
number of ASR outputs, and the duration between
the first and the last output. Note that this output
activity duration is zero seconds for single-output
utterances. We observe that the top-10 queries
make up 25% of the traffic, which is roughly equal
to the long tail past a rank of 1000 (see the left-
most figure). As the middle two figures show, the
final queries are mostly short with few intermediate
ASR outputs, with 80% of them having fewer than
15 characters and yielding no more than 5 interme-
diate transcripts. Thus, the ASR system actively
outputs for less than a second on most queries, as
plotted in the rightmost figure. For a detailed anal-
ysis of the queries, see our previous work (Li and
Ture, 2020; Tang et al., 2019; Rao et al., 2018).
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# Model All Seen Unseen ¢
1 MPC 0.494 0.656 0.0 -
2  MPC-KExt 0.518 0.689 0.0 -
3  NQLM 0.531 0.626 0.245 -
4  CAT-MPC 0.547 0.726 0.0 1
5 CAT-NQLM 0.625 0.741 0.273 5
6 CAT-NQLMpyr 0.629 0.744 0.278 5

Table 2: The test set results (MRRs) on EntSys1M, tak-
ing the median across five randomly seeded runs, with
the best bolded. c denotes the best context size from
Section 2.1, picked based on the dev set results.

For the training and the development sets, we col-
lect the streaming transcripts (provided by a third-
party ASR system) of one million voice queries
sampled uniformly at random from April 14",
2021, setting aside 10% of it for development and
the rest for training. This set represents roughly
3% of our daily traffic, containing 163K unique
final transcripts . For the test set, we sample 100k
queries from April 15™, 2021, a different date from
the training set’s, as is common in QAC datasets
for testing generalizability (Adar, 2007). We call
this dataset “EntSys1M.”

To evaluate the models, we compute for each pre-
diction the mean reciprocal rank (MRR), defined
as MRR := ﬁ Zuieﬁc RR,,, where D, is the
transformed test set using Section 2.1, and RR,,
is the reciprocal rank (index) of the first correct
prediction in the top- K completions, as produced
following Section 2.2. If no correct prediction ex-
ists, then RR,,; = 0. We further split the test set
into two distinct subsets: final transcripts seen at
training time and unseen ones.

Baseline models. We implement MPC and
NQLMs (Park and Chiba, 2017) trained on the final
transcript of each utterance, with the NLM archi-
tecture and training procedure matching our CAT-
NQLM’s for a fair comparison. We also implement
and train the error-tolerant version of MPC (Chaud-
huri and Kaushik, 2009), named MPC-KExt, which
allows for up to an edit distance of k between the
lookup prefix and the observed prefixes. We tune k
on the development set for k= 1,...,10.

3.2 Results and Discussion

We present the overall quality of the models in
Table 2. Our proposed approaches (rows 4—6) out-
perform the existing ones (rows 1-3) by 0.01-0.1
points in MRR on the full set. In absolute terms,
our best model, CAT-NQLM 7, improves over the
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Figure 2: The test set MRRs of CAT-NQLM y 7, the
best model, on EntSys1M as a function of time (left)
and the length of the final transcript (right).
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Figure 3: The test set MRR plotted against the prefix
deletion distance, truncated at 20 for illustration.

previous best, NQLM, by about a third of a rank
of the correct prediction, on average. MPC-KEXxt,
which is tolerant to some changes in the prefix rel-
ative to the final transcript, still underperforms our
proposed methods, likely because the intermediate
transcript isn’t necessarily close in edit distance to
the final (e.g., “Who” and “Hulu”). These results
highlight the importance of conditioning the model
on the intermediate transcripts.

We confirm that the neural trie objective (Eqn. 3;
row 6) improves over the negative log-likelihood
loss (row 5), showing that training against the entire
vocabulary distribution for each word helps. While
not shown due to space constraints, these gains are
consistent for each ¢ = 1,...,5 and require no
extra machinery (and hence latency) at inference
time, thus making CAT-NQLM yr Pareto-better.
We note that picking a larger context size (c) does
not always result in a better model: CAT-MPC is
best when ¢ = 1 because the statistics are more
sparse for ¢ = 2 and above, yielding less robust
predictions for count-based methods.

Subgroup analysis. We further study how the
model quality changes with different character-
istics of the transcripts. In Figure 2, we choose
CAT-NQLM T, the best model, and plot the MRR
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against the portion of the audio clip remaining, as
well as the length of the final transcript in the right
subfigure. Note that the seen set cuts off after 7
words due to a natural mismatch between the statis-
tics of the training set and the test set. We find that
the MRR falls off as less audio is available (i.e., the
first few transcripts are generally uninformative),
with the unseen set’s quality decreasing the fastest.
We note a sharp uptick on the seen set and the all
set when the full audio clip is remaining, mainly
because many simple, short queries have a single
intermediate transcript. Similarly, due to increased
query diversity and audio clip length, the MRR
worsens with increasing final transcript length (see
the right subfigure).

Finally, in Figure 3, we graph the MRR split
across different prefix deletion distances, defined as
the number of characters to delete from the end of
the intermediate transcript for it to be a prefix of the
final one. The NQLM and the MPC approaches fail
when the intermediate transcript is not a prefix of
the final transcript, and our best model surprisingly
outperforms them even when the deletion distance
is zero—see the leftmost bucket. These results
suggest that our proposed approach is robust across
all prefix deletion distances, including zero.

4 Related Work

Tsunematsu et al. (2020) study speech transcript
completion for unidirectional ASR systems on non-
query data, while our focus is QAC on real-life
voice queries with a typical ASR system where
intermediate transcripts don’t necessarily form pre-
fixes of the final one. Park and Chiba (2017)
are the first to apply neural language models to
QAGC, representing the state of the art; Fiorini and
Lu (2018) extend this work with user personal-
ization. Other more restricted examinations in-
clude improving QAC for rare prefixes (Mitra and
Craswell, 2015), QAC in the presence of typograph-
ical errors (Chaudhuri and Kaushik, 2009), efficient
QAC (Wang et al., 2020), and the effects of conver-
sations on voice QAC (Vuong et al., 2021).

5 Conclusions and Future Work

We study the task of QAC for voice queries on bidi-
rectional ASR systems. Along with an improved
language modeling objective for query logs, we
propose several novel methods which relate the
mid-utterance transcripts to the final one, attaining
relative gains of 18% over the previous best.

Voice QAC lends itself to a variety of end appli-
cations: For one, on voice-controlled smart televi-
sions, it can guide viewers toward final queries in
real time, much like the now-retired Google Instant
feature. For another, in general voice query process-
ing pipelines, it can serve as part of a latency reduc-
tion method, where the most likely voice queries
are speculatively processed and their responses pre-
computed as the user speaks. If we know what the
user is going to say before they finish speaking,
then we can speculatively send those predicted fi-
nal queries to the rest of the information retrieval
system, while the user is speaking. We plan to
explore these lines of research in future work.
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A Specifications

Our machines use Titan RTX GPUs, CUDA 10.2,
PyTorch 1.8.1, Transformers 4.5.0, and Python
3.8.8. Our NLMs are based on a smaller version
of Disti1GPT-2 from the HuggingFace Trans-
formers library, with a SentencePiece vocabulary
of 8,000 learned from our datasets. Specifically, we
make the following changes to the configuration:

from transformers import GPT2Config, GPT2LMHeadModel

cfg = GPT2Config. from_pretrained(’distilgpt2’)
cfg.vocab_size = 8000

cfg.num_labels = 8000

cfg.n_embd = 256

cfg.n_layer = 4

cfg.n_head = 8

model = GPT2LMHeadModel(cfg)

We train these models using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning
rate of 5 x 10™* and a linear triangular learn-
ing rate schedule with a 300 warmup steps and
a linear decay until the end, as implemented by
the get_linear_schedule_with_warmup

function from Transformers.
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