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Abstract

Winograd schemas are a well-established tool
for evaluating coreference resolution (CoR)
and commonsense reasoning (CSR) capabili-
ties of computational models. So far, schemas
remained largely confined to English, limiting
their utility in multilingual settings. This work
presents Wino-X, a parallel dataset of Ger-
man, French, and Russian schemas, aligned
with their English counterparts. We use this
resource to investigate whether neural ma-
chine translation (NMT) models can perform
CoR that requires commonsense knowledge
and whether multilingual language models
(MLLMs) are capable of CSR across multi-
ple languages. Our findings show Wino-X
to be exceptionally challenging for NMT sys-
tems that are prone to undesireable biases and
unable to detect disambiguating information.
We quantify biases using established statisti-
cal methods and define ways to address both
of these issues. We furthermore present evi-
dence of active cross-lingual knowledge trans-
fer in MLLMs, whereby fine-tuning models on
English schemas yields CSR improvements in
other languages.'

1 Introduction

Originally introduced in (Winograd, 1972), Wino-
grad schemas (schemas from here on) have be-
come an established tool for probing the ability
of computational models to reason about natural
language. Either viewed through the lens of coref-
erence (CoR) as in (Levesque et al., 2012) or, more
recently, framed as a gap-filling task (Sakaguchi
et al., 2020), schemas are assumed to require com-
monsense knowledge to be resolved correctly.
Consider the following schema: The trophy
doesn’t fit into the brown suitcase because it is
too [large / small]. Here, the pronoun it has two
possible antecedents (trophy / suitcase), with the

'The Wino-X dataset and experimental codebase can be
found at https://github.com/demelin/Wino-X.

sennrich@cl.uzh.ch

Cross-Lingual (MT-Wino-X)

The gardener used the shovel more than the rake, because it
was poorly made.

CONTRASTIVE TRANSLATIONS (DE)

x Der Gartner benutzte die Schaufel mehr als den Rechen,
weil sie schlecht gemacht war.

vDer Gértner benutzte die Schaufel mehr als den Rechen,
weil er schlecht gemacht war.

Multilingual (LM-Wino-X)

The orchid grew better than the rose did because _ got less
water and sun.

FILLERS (EN) K the orchid & the rose

Opxupes pocna nydiue, 4em posa, MOTOMy YTO _ nofy4yana
MEHbLUE BOAbI U COMHLA.

V poza

FILLERS (RU) K opxuges

Figure 1: Wino-X examples. Cross-lingual samples are
used to evaluate translation models, whereas multilin-
gual instances are compatible with MLLMs. Corefer-
ent words are highlighted with the same color, while
disambiguating trigger words are underlined.

choice of the antecedent determined by the trigger
word (large / small). To connect the pronoun to its
true antecedent, a model must "know’ that objects
that are too large cannot fit into containers and that
containers that are too small cannot house objects.

When translating an instance of a schema (i.e.
the schema with a fixed trigger word) into lan-
guages such as German, where pronouns and their
antecedents must agree in their grammatical gen-
der, translation models must implicitly perform
the CoR step to produce accurate translations. A
competent translation model is, therefore, expected
to identify the correct antecedent as reflected by
the target pronoun choice. In the first part of this
work, we construct cross-lingual instances by align-
ing English instances with their translations into
morphologically rich languages, so as to probe the
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robustness of CoR in current NMT models, as il-
lustrated in Figure 1 (top half). In doing so, we
show that models follow simplistic heuristics when
attempting to resolve coreference, while failing to
detect disambiguating information.

A second category of models that is expected
to correctly identify coreference in multiple lan-
guages are multilingual language models. Where
translation models learn to map their input to se-
mantically equivalent sequences in the target lan-
guage, MLLMs are trained on a mask-filling ob-
jective and learn to encode sentences drawn from
different languages into a shared semantic space.
Accordingly, schema instances correctly solved by
MLLMs in one language should be equally solv-
able in other languages, by leveraging the same,
language-agnostic representations. Similarly, im-
provements to model performance in one language
should transfer to other languages via the shared
latent space. In the second part of our work, we
empirically put these assumptions to the test with
multilingual schema instances, as shown in Figure
1 (bottom half), finding evidence of active com-
monsense knowledge transfer across languages.

Our primary contributions are as follows:

1. We introduce Wino-X: A dataset containing
Winograd schemas in German, French, and
Russian, aligned with their English analogues.

2. We benchmark the CoR performance of NMT
models for each language pair, finding it to be
close to chance.

3. We identify two causes underlying the poor
performance of the evaluated NMT models
and define ways to mitigate them.

4. We show that Wino-X presents a challenge
for MLLMs, and observe active transfer of
commonsense knowledge across languages.

2 Wino-X: A Contrastive Dataset of
Multilingual Winograd Schemas

In order to maximize the coverage and quality
of Wino-X, we derive multilingual schemas from
WinoGrande (Sakaguchi et al., 2020), a large-
scale, crowd-sourced corpus of English Winograd
schemas. Notably, WinoGrande uses a gap token
in place of an ambiguous pronoun in each schema,
which can be filled by one of two preceding nouns.
Based on the chosen noun, the resulting sentence ei-
ther satisfies or violates commonsense constraints.

Schemas are divided into two domains - social and
physical. Those belonging to the former category
predominantly feature names of individuals (e.g.
Mary or Tom) as fillers, whereas physical samples
feature objects or entities (e.g. vase or cat). Con-
structing cross-lingual schemas suitable for eval-
uating translation models requires replacing the
gap with the ambiguous pronoun i, which is not
possible for the social domain. Consequently, we
focus our attention on the physical subset of Wino-
Grande that contains 19,260 unique samples (9,630
schemas), with each sample representing a single
instance of a monolingual, English schema.

2.1 Sample Formats

Wino-X includes samples in two formats - one for
the evaluation of translation models and another for
the evaluation of MLLMSs. In both cases the dataset
assumes a contrastive evaluation setup (Rios et al.,
2017; Gardner et al., 2020), whereby evaluated
models are used to rank two minimally different
alternatives. Models are scored according to how
frequently they rank the correct alternative above
the incorrect one.

For the evaluation of NMT models, we replace
the gap token with the ambiguous it in each sample,
and pair the result with two contrastive translations.
The translated ir agrees in gender with a different
antecedent in each case. For the purpose of our
investigation, we focus on German, French, and
Russian as morphologically rich, high-resource tar-
get languages. In the following, we refer to this set
of cross-lingual samples as MT-Wino-X.

Evaluation of MLLMs, on the other hand, adopts
the WinoGrande format. We translate samples with-
out additional modifications, obtaining a set of sam-
ples for each target language that we align with
their English equivalents. We refer to such multi-
lingual samples as the LM-Wino-X set. Appendix
A.1 provides additional examples of both formats.

2.2 From Monolingual to Multilingual

We find that not all WinoGrande samples are suit-
able for the inclusion in Wino-X, as replacing the
gap with it can yield ungrammatical or disfluent
sequences. We design a series of heuristics to filter
out problematic samples, e.g. by ignoring cases
where the gap is modified by an adjective or is part
of a compound, as well as samples with animate
referents. The full list is provided in Appendix A.2.
We furthermore ignore samples where the gap is
not located in the same sentence as its antecedents,
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MT-Wino-X

LM-Wino-X

EN-DE EN-FR EN-RU EN-DE EN-FR EN-RU

# Schemas 1,887 1,499

1,119

2,917 1,396 743

# Samples 3,774 2,988

2,238

5,834 | 2,792 1,486

Table 1: Composition of the final Wino-X dataset.

EN-DE EN-FR EN-RU
Model Property BASE BIG mBART BASE BIG mBART BASE BIG mBART
# Parameters (M) 65.5 363.5 610.9 67.7 | 313.1 | 6109 72.5 | 3179 | 6109
# Training pairs M) || 39.7 | 538.7* 42.6 140.6 36 36.8 343 | 162%* 139
Test BLEU 29.9 36.2 25.6 40.2 | 41.1 36 21.3 25.5 20.6

Table 2: Overview of the evaluated NMT models. Training size estimates were taken from corresponding publi-
cations (Ott et al., 2018; Ng et al., 2019; Tang et al., 2020). * denotes inclusion of back-translated parallel data.
For mBARTS0, training size does not include monolingual data used in pre-training. BLEU scores were computed

with SacreBLEU (Post, 2018).

to allow for a fair evaluation of models trained on
sentence-level data. To reduce dataset artifacts in
Wino-X, both instances of a schema are removed if
a single one of them is filtered-out.

To obtain contrastive translations, the gap token
is replaced with one of its fillers (which serve as
the antecedents of ir) before passing the sample
through a translation engine. For all target lan-
guages, translations are obtained via the Google
Translate API?, due to its relative domain gener-
ality. Afterwards, the previously inserted filler is
replaced with a pronoun of the same grammatical
gender, yielding the final contrastive translation
included in MT-Wino-X. For LM-Wino-X samples,
the inserted filler is replaced with the gap token.

Following the translation step, we remove M7~
Wino-X samples where the translated it has the
same gender in both translations, resulting in an
undecidable sample.? In contrast, for EN-FR and
EN-RU portions of LM-Wino-X, we only remove
samples where translations of both fillers have a
different gender, as models could otherwise ex-
ploit gender agreement of verbs and adjectives to
identify the correct filler.

Table 1 summarizes the primary statistics for the
final dataset, with further details given in Appendix
A.3. To estimate whether the constructed samples
are solvable by humans, we recruited two bilingual
raters for each language pair and asked them to se-
lect correct translations for a randomly drawn sub-
set of 100 MT-Wino-X samples. For EN-DE, mean
rater accuracy was (.84, 0.88 for EN-FR, and 0.87
for EN-RU. Inter-rater agreement was 0.69, 0.75,

2https ://cloud.google.com/translate
3We use Stanza (Qi et al., 2020) for the linguistic analysis.

and 0.77 respectively, according to Cohen’s Kappa
(Cohen, 1960). We replicate rater instructions in
Appendix A.9. We note that since the construction
of Wino-X relies on automated translation and lin-
guistic analysis, the dataset is not completely free
of noise. However, its impact on human perfor-
mance remains within limits.

Like monolingual Winograd schemas, samples
included in Wino-X represent particularly challeng-
ing instances of the CoR problem. However, how
models handle such examples is indicative of their
general language understanding capabilities. For a
computational model to achieve true human parity
on the translation task, it must be robust to high
levels of semantic ambiguity, given that it poses
little difficulty to human raters.

Next, we leverage Wino-X for the evaluation of
coreference robustness in NMT models and of com-
monsense knowledge transfer in MLLMs.

3 Testing Coreference in NMT with
Cross-Lingual Schemas

To probe whether NMT models can accurately iden-
tify coreference in cases requiring commonsense
knowledge, contrastive translations are scored ac-
cording to the sentence-level perplexity assigned
to them by the evaluated model, as in Equation
1, where X is the source sequence and Y is the
candidate translation:

PPL(Y|X) = exp(— s SI1 logs (vily<is X)) (1)

Accuracy is based on the number of instances in
which the correct translation is assigned the lower
perplexity score.
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EN-DE EN-FR EN-RU
BASE BIG mBART BASE BIG mBART BASE BIG mBART
Accuracy [| 0.5032 | 0.5093 | 0.5048 [[ 0.4960 [ 0.5107 [ 0.5030 [| 0.4973 | 0.5009 | 0.5049

Table 3: Model performance on the full M7-Wino-X dataset. Best results per language pair are in bold.

EN-DE EN-FR EN-RU
Bias Type BASE BIG mBART BASE BIG mBART BASE BIG mBART
Gender (IRBCI) 0.33 | 0.27 0.37 0.24 | 0.05 0.05 0.31 | 0.48 0.44
Positional (IRBCI) || 0.16 | 0.17 0.14 0.05 | 0.07 0.15 0.07 | 0.06 0.05

Table 4: Model bias identified for MT-Wino-X samples. Higher values indicate a stronger correlation between
antecedent features and model choice, and thus a greater bias. All values are statistically significant (p < .05).
Bold values denote a large effect / bias size, underlined values a medium one.

3.1 Experimental Setup

Our evaluation focuses on transformer NMT mod-
els (Vaswani et al., 2017), due to their current dom-
inance in the field. For a comprehensive exami-
nation of the relationship between model quality
and CoR accuracy, we examine three model cat-
egories for each language pair: 1. transformer-
BASE (BASE), 2. transformer-BIG (BIG) mod-
els distributed as part of the fairseq library*, and 3.
mBARTS0, a multilingual translation model built
on top of a pre-trained mBART? (Tang et al., 2020).
The inclusion of mBARTS50 follows the assumption
that extensive pre-training may endow models with
commonsense knowledge, as previously indicated
for large-scale monolingual LMs (Sakaguchi et al.,
2020; Bhagavatula et al., 2019; Huang et al., 2019).

BASE models are randomly initialized and
trained on the concatenation of WMT news training
data®. Data composition and pre-processing steps
as well as hyper-parameter settings are summa-
rized in Appendix A.4. As can be seen from Table
2, models differ noticeably in their size, amount of
training data, and translation quality.’

3.2 Results and Discussion

The results of the contrastive evaluation on the
full MT-Wino-X dataset are summarized in Table

“We use single-best models in place of ensembles for the
WMT19 models.

SWe use the mbart-large—-50-one-to—-many-mmt
checkpoint distributed as part of the HuggingFace Transform-
ers library (Wolf et al., 2019).

6http ://www.statmt.org/wnt [14, 20]
/translation-task.html

"Notably, the EN-FR BIG model had not been trained on
back-translated data, unlike its EN-DE and EN-RU counter-
parts. We elected to tolerate this to allow for easy replication of
our experiments using the same openly available, pre-trained
NMT models, as well as to reduce the computational overhead
and environmental impact incurred by our study.

3. All models perform at chance level (a randomly
guessing model would be 50% accurate), without
any observable effect of language pair, model size,
training data, or monolingual pre-training.

One likely explanation is that models fall back
on exploiting surface-level patterns when trying to
identify the antecedent of if, rather than engaging in
deeper language understanding. Such undesirable
behaviour is facilitated by dataset biases that mod-
els are exposed to during training (Emelin et al.,
2020). In their study of coreference, (Stojanovski
et al., 2020) indicate that gender and positional
biases can influence model behavior. To verify
whether this is the case for cross-lingual Winograd
schemas, we examine how strongly pronoun gen-
der and the relative antecedent position correlates
with model preference.

Importantly, in contrast to prior work, we quan-
tify model bias explicitly as the absolute effect size
of the observed correlation (i.e. its ‘magnitude’),
allowing us to directly compare between individual
models and language pairs. Correlation signifi-
cance is computed according to the Mann-Whitney
U test (Mann and Whitney, 1947), whereas the
effect size is estimated as the Rank Biserial Cor-
relaton (RBC) score® (Cureton, 1956). Appendix
A.5 provides additional details for both metrics.

By construction, Wino-X is free of gender or po-
sitional bias, since the translated it is guaranteed
to agree with each antecedent in exactly one in-
stance per schema, depending on the trigger word.
Therefore, preferences of an unbiased NMT system
should show no correlation with either property,
corresponding to an | RBC| score of 0. As Table 4
shows, this is not the case for the evaluated models,
as we observe moderate to strong gender bias for

8 As implemented in the pingouin library (Vallat, 2018).
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EN-DE

EN-FR EN-RU

BASE BIG mBART BASE BIG mBART BASE BIG mBART

| Trigger importance [| 0.03 [ 0.11* | 0.12* [ 0.16* [ 0.01 | 0.2*

[ 002 [035%] 0.08* |

Table 5: Trigger importance. * denotes statistically significant differences according to paired t-tests (p < .05).

EN-DE and EN-RU, but not EN-FR, as well as a
trivial, but statistically significant positional bias.’

Based on these observations, we can draw sev-
eral conclusions: 1. While both bias types influence
model behaviour, gender bias usually dominates
positional bias, 2. Neither extensive pre-training
nor multilingual training result in bias reduction for
individual language pairs, and 3. The magnitude of
biases in CoR is closer associated with training data
properties than model properties. We verify the last
point by examining the frequency with which dif-
ferent pronoun forms occur in the training data of
our BASE models, finding that gender preferences
exhibited when scoring MT-Wino-X mirror the pro-
noun gender distribution in the training data (see
Appendix A.6 for relevant statistics). Surprisingly,
absolute pronoun form frequencies appear to mat-
ter more than the likelihood of if being translated
into a particular gender. This suggests that the fre-
quency prior underlying the models’ gender bias
is surprisingly simple and, at least partly, based on
raw occurrence statistics.

While model reliance on surface-level patterns
provides one possible explanation for the chal-
lenging nature of MT-Wino-X, we also investigate
whether models consider trigger terms to be es-
pecially salient when translating ambiguous pro-
nouns.

3.3 Do Models Recognize Coreference
Trigger Words?

For the estimation of salience of individual source
words for the translation of if, we adopt the
prediction difference (PD) technique (Li et al.,
2019), shown to provide informative explanations
of model behaviour by (Li et al., 2020). To ap-
ply PD to the study of coreference, we compare
the probabilities assigned by the model to the cor-
rect it translation (w) conditioned on 1. the full
source sentence (X) and 2. the source sentence
without the trigger term (X \¢). To remove’ a trig-
ger word, its embedding is replaced with a zero
vector of equal size. Salience is computed accord-
ing to Equation 2, as the difference between the

Thresholds used for interpreting the bias severity are de-
rived in Appendix A.5.

Leonard wants to get rid of his old van and buy a new car because it gets

mi@@ le@@ age . <S>

Leonard wants to get rid of his old van and buy a new car because [ifl gets

ml@@ le@@ age . |[<Is>

Figure 2: Salience maps for two MT-Wino-X samples
(DE side is omitted for clarity). Words that are more
salient for the translation of it are highlighted in a
deeper shade of orange. Blue frames indicate trigger
words that resolve coreference ambiguity.

two probabilities.'”
Salience(t;w, X) = P(w|X) — P(w|X\t) (2)

In order to quantify the overall relative impor-
tance of trigger tokens compared to non-trigger
words per model, we compute importance scores,
defined as the standardised difference between the
means of salience score distributions assigned to
trigger tokens and words present in both contrastive
translations (i.e. non-triggers). Formally, we com-
pute Cohen’s D effect size measure, by subtracting
the means of the compared distributions p7 and
w7 and dividing the result by the pooled standard
deviation s, as in Equation 3. Table 5 reports the
results.

D = HT ~ ENT 3)
s

Across all models and language pairs, impor-
tance scores remain low'! with the difference be-
tween salience scores lacking statistical signifi-
cance in several cases. On the sentence level, this
corresponds to models failing to identify trigger
words required to establish coreference, as illus-
trated in Figure 2 for the BIG EN-DE model.

Therefore, the failure of models to perform well
on the MT-Wino-X benchmark can be partially at-
tributed to their inherent inability to identify infor-
mation relevant for establishing coreference.

3.4 TImproving CoR by Reducing Biases and
Enhancing Model Awareness

Finally, we set out to improve coreference reso-
lution in NMT models by addressing undesirable

1We average the salience of constituent sub-words for seg-
mented words.

"Cohen’s D values < 0.5 are considered to be trivial to
small (Cohen, 2013).
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Figure 3: Few-shot fine-tuning results on M7-Wino-X. Red lines denote accuracy, blue lines correspond to BLEU.

biases and enhancing their ability to detect disam-
biguating information. Since MT-Wino-X is con-
structed to be unbiased towards antecedent gender,
a straight-forward way to mitigate model bias is to
fine-tune models on a fraction of the dataset, build-
ing upon the methodology proposed in (Saunders
and Byrne, 2020). Given its limited size, extensive
fine-tuning on M7T-Wino-X is not feasible. However,
to investigate whether bias reduction alone is suf-
ficient to improve CoR that presupposes common-
sense knowledge, we conduct a series of few-shot
fine-tuning experiments.

For this purpose, we split language-specific MT-
Wino-X datasets into training, development, and
test sets, taking care that both instances belonging
to the same schema are assigned to the same split.
For all experiments, development and test sets are
fixed, containing 200 and 1k samples, respectively.
Training set size is varied in increments of 500 up to
2k for EN-DE, 1.5k for EN-FR, and 1k for EN-RU.
All models are fine-tuned until convergence as de-
termined by early-stopping, with hyper-paremeter
settings discussed in Appendix A.7. We focus on
the BIG models, measuring the effect of increased
training size on accuracy and translation quality.

As shown in Figure 3, fine-tuning yields slight
improvements in accuracy for all language pairs,
up to 3.2% for EN-RU. In parallel, we observe a
substantial reduction in gender bias in fine-tuned
models, using the methodology from §3.2. Expos-
ing translation models to 2.5k samples for EN-DE
and 1k for EN-RU reduces gender bias by 71% and
73 %, respectively, from 0.24 to 0.07 and from 0.49
to 0.13.!2 Still, debiasing alone is not sufficient
to substantially increase CoR accuracy.

We also note that fine-tuning has a mixed ef-
fect on test BLEU which increases for EN-DE but
degrades for EN-FR and, to a lesser extent, EN-
RU. An analysis of EN-DE test translations before
and after fine-tuning shows an increased pronoun

Initial gender biase values (i.e. 0.24 and 0.49) are recom-
puted on test sets used in the few-shot experiments. Given the

low initial gender bias in EN-FR BIG (0.024), fine-tuning has
no noticeable effect.

coverage for the fine-tuned model, with most pro-
nounced improvements detected for masculine and
feminine pronoun forms (Table 6), corroborating
the quantitative reduction in gender bias.

Source Feminine Masculine Neutral
| Reference | 340 | 476 [ 380 |
Pre-trained 270 410 321
Fine-tuned 290 420 326

Table 6: Pronoun frequencies in BIG EN-DE transla-
tions, compared to the newstest2020 reference.

Since bias reduction alone does not suffice to
address the unique challenges presented by MT-
Wino-X, we additionally experiment with equipping
translation models with an inductive bias that facil-
itates accurate pronoun translation. To accomplish
this, we define the Pronoun Penalty (PP) objective
that actively penalizes translation models for as-
signing higher probability to an incorrect pronoun
form during training.'3, so as to encourage mod-
els to better utilize trigger words. The objective is
defined in Equation 4, where C'E is the smoothed
cross-entropy loss, A is the scaling factor, » € R
are correct target pronouns found in the reference
translation, and a € A are alternative, incorrect
pronoun forms for each correct pronoun (e.g. [er,
es] if the correct German pronoun is sie).

IR|
L(S)=CE(S)+\Y_ PP(r) @
r=1
PP(r) =1 P](\;") maxai\/; P(a) )
|
N=P(r)+ > P(a) 6)
=1

We fine-tune the BIG models on the largest train-
ing set for each language pair with this enhanced
objective, and present the results in Table 7.'% The
new objective substantially improves accuracy for

BFor simplicity, we only consider singular pronouns in the
nominative case, e.g. [er, sie, es] for DE.
14\ = 100 for all language pairs.
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EN-DE and EN-FR, by 4-7%, while no noticeable
difference can be observed for EN-RU. Crucially,
the observed improvements correlate with an in-
crease in trigger word importance. Reusing the
method introduced in §3.3, we find trigger impor-
tance increase by a factor of 1.5 for EN-DE and
4.25 for EN-FR compared to models fine-tuned
without PP, from 0.12 to 0.18 and 0.04 to 0.17.1

Regime EN-DE EN-FR EN-RU
Pre-trained || 0.51 (36.2) | 0.51 (41.1) | 0.5 (25.5)
Fine-tuned || 0.52 (36.9) | 0.52 (37) | 0.53 (25.3)
+PP 0.56 (36.6) | 0.59 (39.4) | 0.53 (25.3)

Table 7: MT-Wino-X accuracy of models with different
training regimes. Test BLEU in parentheses.

Overall, our findings indicate that coreference
remains an unsolved challenge in machine trans-
lation, especially in cases requiring commonsense
knowledge. While debiasing models leads to im-
proved CoR accuracy, inductive biases that en-
able models to detect disambiguating informa-
tion can be more important still.

4 Testing Cross-Lingual Transfer in
MLLMs

Having thus probed the capacity and limitations
of NMT models for solving cross-lingual Wino-X
samples, we now turn to MLLMs.

4.1 Experimental Setup

Our investigation seeks to answer two questions:
1. To what extent can MLLMs solve Winograd
schemas in different languages? and 2. Does com-
monsense knowledge actively transfer across lan-
guages? Should the latter be the case, it could
substantially reduce the need for language-specific
commonsense knowledge bases that usually require
significant human effort to construct and expand
(Speer et al., 2017). Our experiments focus on
the XLM-RoBERTa (XLLM-R) model introduced
in (Conneau et al., 2020). Structurally similar to
the decoder of a transformer NMT model, XLM-
R is trained on monolingual as well as parallel
data covering 100 diverse languages, to induce
language-agnostic representations in a shared se-
mantic space. Intuitively, sharing representations
across languages should facilitate commonsense

15 As with bias values, initial trigger importance scores are
re-computed on test sets used in few-shot experiments. Fine-
tuning has a limited effect on EN-RU which had the highest
initial importance scores.

knowledge transfer, although it is yet unclear to
what extent this holds true for Winograd schemas.
Analogous to our evaluation of NMT models,
MLLMs are examined in the contrastive setting.
As input, models receive a schema instance con-
taining a gap, as depicted in Figure 1 (bottom
half), which is replaced with a model-specific
<MASK> token used during pre-training. Condi-
tioned on this input, we compute sentence-level
pseudo-perplexities (PPPL) (Salazar et al., 2020)
for two completions of the input sequence, each
with a different filler that replaces the <MASK>
token. The completion assigned the lowest PPPL
indicates the model’s preference towards a specific
gap-filler, which informs model accuracy.

4.2 Results

As a first step, we measure the zero-shot perfor-
mance of XLM-R BASE (~270M parameters) and
LARGE (~550M parameters) models'® on the full
LM-Wino-X datasets, summarizing the results in Ta-
ble 8. Accuracy remains comparatively low across
the board, with the BASE model scoring close
to chance level. On the other hand, the XLM-
R LARGE variant substantially outperforms its
BASE analogue and demonstrates roughly compa-
rable performance across all examined languages.

EN-DE EN-FR EN-RU

EN DE EN FR EN RU
BASE 0.53 | 0.53 || 0.54 | 0.53 || 0.52 | 0.52
LARGE || 0.62 | 0.61 || 0.63 | 0.6 | 0.62 | 0.59
Table 8: XLM-R accuracy on LM-Wino-X. Since

dataset composition and size differs between language
pairs as detailed in §2.2, for EN-X, EN denotes model
performance on the EN side of the pair-specific dataset,
and X on the aligned non-EN language.

4.3 Is Monolingual Data Enough for
Multilingual CSR?

Of central interest to our investigation is whether
fine-tuning models on schema instances in a pri-
mary language, e.g. EN, also improves CSR in a
transfer language, e.g. DE, and how this improve-
ment compares to directly fine-tuning the model on
the latter. We conduct a series of few-shot experi-
ments to answer this question, while exploring the
relationship between cross-lingual commonsense
knowledge transfer and the amount of fine-tuning
data. Due to its greater efficiency, our investiga-

We use the HuggingFace Transformers library.
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EN-DE EN-FR EN-RU

EN DE EN FR EN RU
Accuracy FT || 0.67 | 0.60 || 0.67 | 0.59 || 0.65 | 0.57
Accuracy A || 14% | 7% | 13% | 6% || 13% | 5%

Table 9: Test accuracy of XLM-R BASE fine-tuned on
WinoGrande. DE, FR, and RU are transfer languages
not seen during fine-tuning. A denotes the accuracy
increase compared to the first row of Table 8.

tion is focused on XLM-R BASE!’. Analogous to
experiments in §3.4, we split the LM-Wino-X data
into training, development, and test sets, keeping
development and test sizes fixed at 200 and 1k sam-
ples, while varying the size of the training set in
increments of 500. Instances derived from the same
schema are assigned to the same set.

0625 o EN EN
o600 | —* EN--DE 058 1 —a— EN-=FR
: —e— DE —— R
0575 - 0.56 o
0550 - 054 4 %::
0525
052 -
— T T T T T
O L o0 000 0 00 o & ] ]
o .07 07 07 O° OF 07 O ) o
FFF TS &S 5

EN-DE

Figure 4: Few-shot fine-tuning results on LM-Wino-X.
EN->X denotes zero-shot knowledge transfer to lan-
guage X after training the model on EN samples only.

To adopt XLLM-R to the studied task, it is fine-
tuned on target sequences containing the correct
gap-filler with the masked language modeling ob-
jective. Models are trained until convergence as de-
termined by early-stopping, with hyper-parameters
given in Appendix A.8. We treat EN as the primary
language and evaluate knowledge transfer toward
DE and FR'®, summarizing the results in Figure
4. Improved accuracy is observed for all models.
However, fine-tuning benefits EN models most as
the amount of training samples increases, which
may be linked to EN being the dominant language
in the XLM-R pre-training corpus (Conneau et al.,
2020). More importantly, we can observe a substan-
tial transfer of commonsense knowledge between
languages. Models fine-tuned on EN and evalu-
ated on DE / FR often achieve higher accuracy than
models directly fine-tuned on the transfer language.

To shed light on commonsense knowledge trans-
fer beyond the few-shot setting, we additionally
fine-tune instances of XLM-R on the entirety of

7We were unable to train XLM-R LARGE as our hardware
could not accommodate its significant size outside inference.

3Due to its limited size, EN-RU data is excluded from the
few-shot evaluation.

WinoGrande and evaluate them on the few-shot test
sets.'” As can be seen from Table 9, commonsense
knowledge transfer benefits from the increase in
training data, with improvements in the transfer lan-
guages being roughly half of those observed for the
primary language. This indicates that large-scale,
monolingual commonsense resources can signif-
icantly contribute towards building models ca-
pable of CSR in a wide variety of languages.

5 Related Work

Winograd schemas have been widely adopted in
recent years for the study of pronominal coref-
erence and CSR (Kocijan et al., 2020). Several
datasets have been proposed, differing in whether
schemas are authored by experts (Levesque et al.,
2012; Wang et al., 2019) or composed by crowd-
workers (Isaak and Michael, 2019; Sakaguchi et al.,
2020). Crucially, the majority of such resources
is in English, with the notable exception of (Am-
sili and Seminck, 2017; Melo et al., 2019; Bernard
and Han, 2020) (each contain a few hundred ex-
amples). The process by which we extend mono-
lingual schemas into other languages shares sim-
ilarities with (Stanovsky et al., 2019), while also
modifying the English schemas and incorporating
a more sophisticated set of filtering heuristics, due
to differences in the examined tasks.

Similarly, the study of coreference has a long tra-
dition in machine translation. Several CoR datasets
have been proposed in the past, including (Guillou
and Hardmeier, 2016; Bawden et al., 2018; Miiller
et al., 2018; Stojanovski et al., 2020). Among those,
that of (Stojanovski et al., 2020) is most relevant
to our work. While it contains samples that re-
quire world knowledge to resolve coreference, they
are constructed from a fixed set of templates and
remain limited to EN-DE. In contrast, Wino-X en-
compasses multiple target languages, while offer-
ing greater linguistic and thematic diversity.

Finally, while cross-lingual transfer in MLLMs
has received much attention in the past (Conneau
et al., 2018, 2020; Hu et al., 2020; Liang et al.,
2020), research on CSR in multiple languages re-
mains limited, with (He et al., 2020) being the only
relevant machine translation study known to us.
Concurrent to our work, (Lin et al., 2021) examine
whether MLLMs can perform multilingual CSR on
tasks unrelated to Winograd schemas.

Excluding samples found in each test set from training.
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6 Conclusion and Outlook

In this work, we introduced Wino-X, a dataset con-
taining cross-lingual and multilingual Winograd
schemas. Based on this resource, we showed that
NMT models struggle to correctly resolve corefer-
ence that presupposes commonsense knowledge,
due to over-reliance on dataset artifacts and gen-
eral inability to detect disambiguating information.
We defined methods to quantify biases and trigger
word importance in a principled way, and proposed
strategies for reducing the former while increasing
the latter. For MLLMs, we presented evidence of
commonsense knowledge transfer, showing that
transferring knowledge from English to another
language can lead to similar (or greater) improve-
ments as directly fine-tuning on transfer languages.
Overall, our study identifies existing difficulties
in cross-lingual CoR and CSR, discusses potential
causes, and offers initial ways to mitigate them.

In future work, we intend to further improve
the handling of coreference in NMT by reducing
undesirable biases and introducing useful ones. For
MLLMs, future efforts can be directed towards
identifying categories of knowledge that do not
benefit from cross-lingual transfer, to effectively
guide data collection in lower-resourced languages.
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Ethical Considerations

Since our work introduces a novel resource, we
include a Data Statement (Bender and Friedman,
2018) as a concise overview of its provenance and
construction. We hope this will motivate the re-
search community to adopt the dataset for projects
relating to cross-lingual natural language under-
standing by increasing transparency.

A. CURATION RATIONALE: We discuss the fil-
tering criteria applied to WinoGrande samples and
their translations in §2.2 and §A.2. In enforcing
conservative selection criteria, our aim is to en-
sure grammaticality of the semi-automatically con-
structed samples and to minimize the percentage
of undecidable or disfluent instances.

B. LANGUAGE VARIETY: The collected dataset
contains English, German, French, and Russian
sentences. English sentences were authored by hu-
man crowd-workers, while translations into other
languages were obtained from an online transla-
tion service. Since (Sakaguchi et al., 2020) do not
provide demographics of workers involved in data
collection, we cannot report on the dominant va-
riety of English. Due to their origin, translations
into DE, FR, and RU are likely to exhibit features
of neural translationese (Graham et al., 2020).

C. SPEAKER DEMOGRAPHIC: N/A

D. ANNOTATOR DEMOGRAPHIC: We appropri-
ate this section to summarize the demographics of
raters involved in evaluating the dataset quality, as
detailed in §2.2. Of the 6 annotators involved (two
per language pair), all were bilingual speakers with
native or native-like proficiency in both English
and German / French / Russian. All six were of
European origin, between 25-35 years of age, and
held a graduate degree. Four of the raters identified
as female and two as male.

E. SPEECH SITUATION: The dataset was
constructed semi-automatically using scripts dis-
tributed in the project’s repository. Raters submit-
ted their judgments in the course of a single week
and had the opportunity to contact the primary au-
thor with clarifying questions.

F. TEXT CHARACTERISTICS: Wino-X contains
a collection of cross-lingual and multilingual Wino-
grad schemas for the study of coreference resolu-
tion and commonsense reasoning in NMT models
and MLLMs. Due to the relative simplicity of
scenarios described by the schemas, it is highly
unlikely for the dataset to have significant ethical
implications.

G. RECORDING QUALITY: N/A

H. OTHER: N/A

I. PROVENANCE APPENDIX: According to
(Sakaguchi et al., 2020), WinoGrande was col-
lected through the Amazon Mechanical Turk
(AMT) platform. Workers had to meet a minimum
qualification that required 99% approval rate and
5k AMT approvals in total. For composing twin
sentences corresponding to a single schema, work-
ers were awarded $0.4. Each collected sample
was subsequently validated by three other crowd-
workers, with 68% of samples deemed to be valid.
For each sentence validation, workers were reim-
bursed with $0.03. See (Sakaguchi et al., 2020) for
a more extensive discussion of WinoGrande.
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A Supplementary Material

A.1 Additional Wino-X Examples

Additional MT-Wino-X examples are provided in
Table 10, while Table 11 contains further LM-Wino-
X entries.

A.2 Filtering Heuristics

To obtain grammatical sentences after replacing the
gap token with it, we exclude WinoGrande samples
from Wino-X if:

* Either referent is animate (e.g. teacher, baker)

* The gap token is part of a compound noun or
a noun phrase

* Either referent is a plural noun
* The gap token is modified by an adjective

To improve the quality of our constructed cross-
lingual and multilingual schemas, we aim to reduce
potential sources of noise by furthermore excluding
samples if:

* The translated it or gap-filler is not in the nom-
inative case

* Either antecedent denotes an activity (e.g.
singing or playing the piano) (due to issues it
presents to morphological analyzers)

Additionally, we use a grammar checker? to
ensure that the insertion of it does not introduce
grammatical errors.

A.3 Additional Dataset Statistics

Table 12 summarizes the fine-grained statistics for
the MT-Wino-X and LM-Wino-X datasets.

A.4 NMT Training Details

EN-DE and EN-RU models are trained on the con-
catenation of WMT20 news task data, with new-
stest2019 used for development and newstest2020
serving as the text set. For EN-DE, we exclude
the Wiki Titles v2 corpus. The EN-FR model, on
the other hand, is trained on the WMT14 news
task data, augmented with ParaCrawl v8*'. We
use newstest2013 as the development set and test
on newstest2014. All data is cleaned by removing
sentence pairs with a source-to-target length ratio
exceeding 2 or identified as belonging to unrelated

LanguageTool for python.
Hhttps://paracrawl.eu/

languages by langid**>. We tokenize all datasets
using Moses scripts?® and employ the subword-nmt
library®* (Sennrich et al., 2016) to segment words.
Subword segmentation used 32k merge operations
and a vocabulary threshold of 50.

Hyper-parameter settings are provided in Table
13. We adopt the same settings for all three models.
The only exception is the use of tied embeddings
for EN-DE and EN-FR, but not EN-RU, as recom-
mended in (Ng et al., 2019). Parameters specific to
the transformer architecture (e.g. layer size, num-
ber of attention heads) correspond to the BASE con-
figuration in (Vaswani et al., 2017). Other hyper-
parameters not covered in Table 13 use the default
fairseq settings for the ’transformer’ architecture.
All models were trained on NVIDIA RTX 2080 Ti
cards until convergence according to early stopping
(~20 hours each).

Hyper-parameter Value
LR Te-4

LR schedule inverse_sqrt
Batch size 4,096 tokens
# Gradient accumulation steps 6
Optimizer Adam
Adam betas 0.9, 0.98
Dropout p 0.1
Warm-up updates 4k
Max # Epochs 1k
Validation frequency Sk updates
Early stopping patience 3
Random seed 42

Table 13: Hyper-parameters for training BASE models.

A.5 Statistical Methods

To estimate the statistical significance of the corre-
lation between the gender of the translated it and
model preference, the Mann-Whitney U test com-
bines translations preferred by the model (i.e. those
assigned the lower PPL) and those rejected by the
model and ranks them according to the numerical
ID that corresponds to the gender of the it trans-
lation (i.e. 1=masculine, 2=feminine, 3=neutral).
Subsequently, the U-value is computed according
to Equations 7-9, where R; denotes the sum of
ranks of translations preferred by the model and
nq their total count, while Ry denotes the sum of
ranks of translations rejected by the model and ng

Zpttps://github.com/saffsd/langid.py

Bhttps://github.com/moses—smt/
mosesdecoder

¥nttps://github.com/rsennrich/
subword-nmt
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Dataset H Sample

Source Sentence: I dusted the dresser in the bedroom with a rag until it was free of dust.

Correct Translation: Ich staubte die Kommode im Schlafzimmer mit einem Lappen ab, bis sie staubfrei war.
Incorrect Translation: Ich staubte die Kommode im Schlafzimmer mit einem Lappen ab, bis er staubfrei war.
Source Sentence: Stacey used the company credit card to buy a plane ticket, but it was declined.

Correct Translation: Stacey a utilisé la carte de crédit de I’ entreprise pour acheter un billet d” avion, mais elle a été refusée.
Incorrect Translation: Stacey a utilisé la carte de crédit de 1’ entreprise pour acheter un billet d’ avion, mais il a été refusé.

EN-DE

EN-FR

Source Sentence: Dana could not hang the artwork on her wall because it was too thin.
Correct Translation: [Tana He MoIIa NOBECHTS MPOM3BEEHHE HCKYCCTEA HA CTEHY, IOTOMY UTO OHA DbUIa CTHINKOM TOHKO.
Incorrect Translation: /lana He Mor/ia NOBeCHTh IPOH3BeJeHHe HCKYCCTBA Ha CTEHY, TOTOMY YTO 0HO OBLIO C/IMILIKOM TOHKHM.

EN-RU

Table 10: Additional MT-Wino-X examples. Highlighting signifies coreference.

Dataset || Sample

EN Context: Adam chose to sleep on a sofa instead of a bed because _ was much more comfortable.
Correct Filler: the sofa
Incorrect Filler: the bed
EN-DE
DE Context: Adam entschied sich dafiir, auf einem Sofa statt auf einem Bett zu schlafen, weil _ viel bequemer war.
Correct Filler: das Sofa
Incorrect Filler: das Bett
EN Context: The bartender poured the juice from the blender into the cocktail glass until _ was full.
Correct Filler: the glass
Incorrect Filler: the blender
EN-FR
FR Context: Le barman versa le jus du mixeur dans le verre a cocktail jusqu’a ce que _ soit plein.
Correct Filler: le verre
Incorrect Filler: le mixeur
EN Context: The man took off the tank top and put on the t-shirt, because _ was sweaty.
Correct Filler: the tank top
Incorrect Filler: the t-shirt
RU Context: MyxunHa cHsl Maifky u Hagen ¢yTbonaky, notomy uto _ 6bi1a MOTHOMH.
Correct Filler: maiika
EN-RU Incorrect Filler: dyr6oska
Table 11: Additional LM-Wino-X examples. Highlighting signifies coreference.
MT-Wino-X LM-Wino-X
Mean Sentence Mean Translation Mean EN Mean X Mean EN Mean X
Length Length Context Length  Context Length  Filler Length  Filler Length
EN-DE 17.8 (2.86) 17.15 (3.1) 17.84 (2.86) 17.16 (3.11) 2.04 (0.19) 2(0.0)
EN-FR 17.85 (2.9) 20 (3.87) 18.01 (2.86) 20.24 (3.74) 2.02 (0.13) 2 (0.0)
EN-RU 17.73 (2.87) 14.86 (2.99) 18.06 (2.97) 15.34 (3.07) 2.02 (0.14) 2 (0.0)

Table 12: Additional dataset statistics. X stands for the language aligned with En for each language pair. Length is
computed in tokens based on Moses-tokenized sentences. Values in parentheses denote standard deviation.

their respective total count.

U= min(Ul, Ug) (7)
Uy = Ry — nl(n;H) )
Uy = Ry — n2(”;+1) 9)

To obtain the p-values, U-values are subjected to tie
correction and normal approximation. Significance
of the positional bias is computed following the
same procedure, with ranking taking place accord-
ing to the relative antecedent location.

In order to compute the RBC values, test sen-
tences are divided into two groups - one containing
translations that are preferred by the model and an-
other comprised of the rejected translations. Next,
all possible pairs are constructed between the two
groups, pairing together each translation from one
group with all translations in the other. The pro-
portion of pairs f where the pronoun ID of the pre-
ferred translation is greater than that of the rejected
translation is computed, as well as the proportion
of pairs u where the opposite relation holds. The
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EN-DE EN-FR EN-RU
Model Property Masc. Fem. Neut. Masc. Fem. Masc. Fem. Neut.
# Preferred by model 982 985 1,807 1,893 1,095 1,674 311 124
# ref it translations 175,552 | 473,880 | 2,113,923 || 4,719,590 | 1,460,420 || 236,422 | 225,560 | 102,189
# absolute ref. occurrences || 1,757,265 -¥ 4,504,505 || 21,715,292 | 6,026,101 || 1,035,361 | 508,117 | 165,369

Table 14: Pronoun frequencies in MT-Wino-X translations preferred by BASE models and found in the training data.
*The German sie is highly polysemous and, as such, not included in the absolute counts, since disambiguation via
linguistic analysis of ~10M candidate sentences (e.g. with Stanza) was computationally prohibitive.

RBC value is obtained according to Eqn.10.

RBC =f—u (10)

As we are only interested in the effect size and not
in the direction of the effect, we take its absolute
value to signify bias strength. Positional bias is
estimated in the same manner.

A common practice for interpreting effect size
strength is the adoption of Cohen’s benchmark (Co-
hen, 2013), which posits that the effect size d is
large if d >= 0.8, medium if d >= 0.5, and small
if d >= 0.2. It is, however, not inherently ap-
plicable to the interpretation of RBC, due to its
insensitivity to the base rate - the size ratio be-
tween the two groups denoted by the dichotomous
variable, i.e. whether a translation is preferred or re-
jected by the model. For a detailed discussion, see
(McGrath and Meyer, 2006). To apply the afore-
mentioned thresholds to RBC, we use the conver-
sion formula in Equation 11 (McGrath and Meyer,
2006), where pl and p2 represent the proportions
of groups described by the dichotomous variable,
with p; = p; = 0.5. Within the contrastive evalua-
tion setting, the base rate is guaranteed to equal 1,
since for each sample, one translation will be pre-
ferred by the model while the other one is rejected.

d
d? + -1

p1p2

threshold = (1)

The adjusted effect size thresholds are, therefore, as
follows: small if d >= 0.1, medium if d >= 0.24,
and large if d >= 0.37.

A.6 Pronoun Frequencies

For EN-DE, our BASE model strongly favours neu-
tral antecedents, preferring them over the alterna-
tive in ~48% of samples, while they represent the
correct choice in just ~31% of the dataset. Look-
ing at the training data, we find that translations of
it are 4.5-12 times more likely to have the neutral
gender than female and male, respectively. A sim-
ilar trend can be observed for EN-FR, where it is

translated as male in ~63% of samples favoured
by the model (which is correct in ~50% of the
dataset), with translations into the male gender be-
ing 3.2 times more likely than female in the training
data. Male gender is even more dominant for EN-
RU, where it is preferred by the model in ~79% of
instances (and correct in just ~40% of the dataset).

Importantly, the likelihood of it being translated
as male or female in the EN-RU training data is
roughly equal, with translation into male being 1.05
times more likely, yet the absolute frequency of the
male pronoun is roughly twice as high compared to
the female form. A similar picture emerges for the
EN-FR data, where the male pronoun is 3.6 times
more frequent than its female analogue, overall. It
is difficult to estimate the absolute frequency of the
German female pronoun, as it is highly polysemous.
Table 14 summarizes the corresponding statistics.

A.7 NMT Fine-Tuning

To fine-tune the BASE and BIG NMT models, we
use the same settings as provided in §A.4, but set
the learning rate to le-7, reduce the total batch size
to 8 sentence pairs, and forego any warm-up steps.
Models are fine-tuned to convergence according
to early-stopping, with patience set to 3 validation
steps. Validation takes place after each completed
training epoch. The optimal LR was determined
via grid search over [1e-5, le-6, le-7].

Settings for fine-tuning mBART are summarized
in table 15. Hyper-parameters not covered use the
default setting in HuggingFace Transformers.

Hyper-parameter Value

LR le-5

# Gradient accumulation steps 1

Batch size 16 sentence pairs
Max # Epochs 1k
Validation frequency 1 epoch
Early stopping patience 3
Random seed 42

Table 15: Settings used to fine-tune mBARTS0.
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A.8 MLLM Fine-Tuning

We provide the fine-tuning hyper-parameters used
in conjunction with XLM-R BASE and LARGE in
Table 16. As before, setting not covered in the table
correspond to their default value in Transformers.
Same settings are used for all language pairs. The
optimal LR was determined via grid search over
[le-5, 1e-6, le-7].

Hyper-parameter Value

LR le-7

# Gradient accumulation steps 1

Batch size 16 sentence pairs
Max # Epochs 1k
Validation frequency 1 epoch
Early stopping patience 3
Random seed 42

Table 16: Settings used to fine-tune XLM-R.

A.9 Rater Instructions

Once you open the form you were given a link to,
you will see a sheet containing ~100 rows, with
each row representing an individual sample for
you to annotate. Each row is subdivided into 4
fields: SENTENCE, TRANSLATION_I, TRANS-
LATION_2, and WHICH TRANSLATION IS BET-
TER?

Please begin the annotation of each row by first
reading the sentence given in the SENTENCE field.
Each SENTENCE should contain the English pro-
noun “it” as well as several nouns. One of the
nouns should be identifiable as the referent of “it”,
i.e. as denoting the object or entity that “it” clearly
refers to. For instance, given the SENTENCE “The
trophy does not fit into the suitcase because it is
too small”, the bolded it clearly refers to suitcase
rather than trophy, since a suitcase can be too small
to fit a trophy, but a trophy cannot be too small to
fit inside a suitcase.

TRANSLATION_1 and TRANSLATION_2 pro-
vide two alternative, minimally different transla-
tions of SENTENCE. The primary difference be-
tween both translations is the gender of the pro-
noun representing the translation of the ambiguous
“it” in SENTENCE. Continuing with our running
example, TRANSLATION_I could be “Die Trophde
passt nicht in den Koffer, weil er zu klein ist”,
while TRANSLATION_2 could be “Die Trophde
passt nicht in den Koffer, weil sie zu klein ist”. In
TRANSLATION_1, “it” has been translated as the
German pronoun er that unambiguously refers to
Koffer (corresponding to the English “suitcase”),

as both are masculine in gender. On the other
hand, in TRANSLATION_2, “it” is translated as
the German pronoun sie that unambiguously refers
to Trophde (corresponding to the English “tro-
phy”), as both are feminine in gender. Given that
things cannot usually be too small to fit into re-
ceptacles, TRANSLATION_I should be judged as
correct, rather than TRANSLATION_2.

When annotating each example, please select
the most appropriate option from the drop-down
menu in the WHICH TRANSLATION IS BETTER?
column. If you think that TRANSLATION_1 is ac-
curate or have a preference towards it (e.g. based
on your world knowledge / common sense), please
choose “17”. If you think that TRANSLATION_2 is
accurate or have a preference towards it, please
choose “2”. If both translations are perfectly
equally likely, please choose “BOTH”. If the trans-
lation quality is insufficient for you to make a con-
fident judgment, please select “BAD SAMPLE”.

Since the translations were machine-generated,
we ask you to be lenient towards translation errors
that do not affect the pronoun disambiguation. If
the translation is not perfect, e.g. containing odd
structure or mistranslated words, but you're still
able to identify the correct pronoun translation,
please indicate your translation choice, rather than
marking the sample as bad.

TRANSLATION_I1 and TRANSLATION_2 will
always differ as to how “it” is translated, but may
have other surface-level differences, as well. As
long as both translations convey similar content,
we encourage you to ignore any differences other
than the translation of “it” for the purpose of your
judgments.
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