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Abstract

A challenge in designing high-stakes language
assessments is calibrating the test item diffi-
culties, either a priori or from limited pilot test
data. While prior work has addressed ‘cold
start’ estimation of item difficulties without
piloting, we devise a multi-task generalized
linear model with BERT features to jump-start
these estimates, rapidly improving their
quality with as few as 500 test-takers and a
small sample of item exposures (=6 each)
from a large item bank (4,000 items). Our
joint model provides a principled way to
compare test-taker proficiency, item difficulty,
and language proficiency frameworks like the
Common European Framework of Reference
(CEFR). This also enables new item difficulty
estimates without piloting them first, which in
turn limits item exposure and thus enhances
test security. Finally, using operational data
from the Duolingo English Test, a high-stakes
English proficiency test, we find that difficulty
estimates derived using this method correlate
strongly with lexico-grammatical features that
correlate with reading complexity.

1 Introduction

High-stakes language assessment demands high re-
liability, validity, and security (AERA et al., 2014).
These goals are at odds with each other during the
test design process. Large-scale pilot testing of new
items to accurately measure their psychometric
characteristics (e.g., difficulty and discrimination)
risks that those items will be copied and leaked
(Cao, 2015; Dudley, 2016). Computer-adaptive
tests, which more precisely score test-takers by se-
lecting items of appropriate difficulty on-the-fly,
exacerbate this conflict: their item banks must be
large enough to cover all proficiency levels while
ensuring the security of test items.
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Figure 1: Model-estimated test-taker ability, item dif-
ficulty, and CEFR cutpoints all exist on the same real
line and can be meaningfully compared (§3.3).

During the life cycle of the test, compromised
or frequently shown items must be retired. Intro-
ducing newly written items to replace or grow the
item bank usually entails new rounds of piloting. In
this paper, we present a principled method to jump
start new items without extensive piloting. A small
amount of pilot data on older items (as few as 500
test-takers, each seeing 6 test items on average) is
sufficient for calibrating new items’ difficulty and
discrimination parameters.

The closest work to ours (Settles et al., 2020)
describes automatic estimation of item difficulty
from linguistic features by supervised learning of
an external difficulty scale: the Common Euro-
pean Framework of Reference (CEFR; Council
of Europe, 2001). We recognize this as weak su-
pervision from a related task (Pino et al., 2019;
Ruder et al., 2019; Wang et al., 2019), and we
seek to perform direct supervision of item diffi-
culty from test-takers. Settles et al. (2020) pro-
vide no mechanism for this. Conversely, traditional
item response theory (IRT; Lord, 1980; Hamble-
ton et al., 1991) provides such mechanisms but is
hamstrung by a cold start problem that Settles et al.
(2020) address.
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In this work, we fuse and generalize conven-
tional IRT with the work of Settles et al. (2020),
remedying limitations of each. A single model esti-
mates difficulty a priori to guide piloting; permits
incremental learning from test-takers; and jump-
starts difficulty estimates of newly written items,
with similar quality as on observed items.

We therefore make the following contributions:

1. We design (§3) and test (§4) a principled prob-
abilistic model that incorporates arbitrary lin-
guistic features of passage-based items. As
illustrated in Figure 1, it measures item diffi-
culty, test-taker ability, and CEFR level on a
common logit scale (§3.3).

2. We show how BERT-derived passage em-
beddings (Devlin et al., 2019) facilitate
strong generalization to new test items (jump-
starting; §5) on a high-stakes English pro-
ficiency test. We outperform Settles et al.
(2020) in all measures of difficulty estimation
on test-taker response data while requiring
much less data than traditional IRT models.

3. We provide linguistic validation of these dif-
ficulty estimates (§7): they correlate strongly
with lexico-grammatical features known to
characterize reading complexity, which helps
to interpret test-takers’ skills.

2 Background: Item Response Theory

Item response theory is the basis for most modern
high-stakes standardized tests. It jointly assesses
each person’s ability and the difficulty of each item
in the item bank. The major distinction between
IRT and its predecessors, such as classical test the-
ory, is that IRT assumes the item characteristics
(e.g., difficulty) to be independent from the person
or sample characteristics (e.g., the person ability
distribution). IRT models relate the probability
of answering correctly to a person’s latent scalar
ability 6 through an item response function. The
simplest such model is the Rasch model (Rasch,
1960), a special case of logistic regression with one
parameter per test-taker p (their ability ¢, € R) and
one parameter per test item ¢ (its difficulty b; € R):

ply=1|p,i) =0, — b;). (1)

where ¢ is the sigmoid function.! Extensions of
IRT allow polytomous (rather than dichotomous)
response variables (e.g., Masters, 1982; Andrich,

"Note that we use the standard variable names from IRT.

1978; Eckes, 2011) and integrate temporal knowl-
edge by Bayesian knowledge tracing (Khajah et al.,
2014). In §5, we compare our proposed model to
an extension of the Rasch model called 2PL:

ply=1]p,i) =o(ai- (0, —bi)), (2

where a; € R+ is the item’s discrimination param-
eter (Hambleton et al., 1991), governing the slope
of the sigmoid function. Items with low discrimi-
nation are less sensitive to test-taker ability.

Decomposing items into linguistic skills We do
not believe that the test items represent indepen-
dent, atomic skills for a test-taker to master. In-
stead, each item may amalgamate several skills—
perhaps mastery of certain linguistic attributes—
that are shared across test items. The student’s
performance will depend on their attainment of
each skill to different degrees.

One of the best-known item-explanatory IRT
models is the linear logistic test model (LLTM;
Fischer, 1973) that decomposes the item difficulty
parameter of the Rasch model into a linear combi-
nation of features extracted from each item.

The Rasch model is a special case whose fea-
tures are indicator functions—only one of which
will be active per test item. In our LLTM, the
total number of active features is higher, the to-
tal number of features is lower, and they are not
orthogonal.” A single feature pertains to multiple
items, providing regularization (i.e., sharing feature
weights amongst test items) and thereby increasing
robustness. The features can characterize unseen
items as well, which enables generalization. This
is crucial to our jump-starting process.

Cold starts and jump-starts In traditional test
development processes, one wants to pinpoint item
parameters by pilot testing on test-takers whose
ability is near the item’s true difficulty. But with-
out initial difficulty estimates, computer-adaptive
tests cannot choose the most informative items to
present to pilot testers. This is costly for large item
banks and a security risk for high-stakes tests.
This cold start problem is mitigated by discrim-
inative, feature-based difficulty estimation (Bein-
born et al., 2014; Settles et al., 2020) according
to an external standard like the CEFR. However,
“The same motivation exists in language modeling: repre-
senting each word in a vocabulary V' as a dense embedding
of dimensionality d < |V/| (vs. a one-hot vector) reduces

orthogonality to enable parameter-sharing among word types
(Bengio et al., 2003; Turian et al., 2010; Mikolov et al., 2010).
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once test administration yields enough test-taker
responses, the item parameters should be directly
calibrated on these responses.

Further, these test-taker responses can inform the
difficulty of new items that grow an existing item
bank, akin to establishing a prior that can be refined
via Bayesian updating as test-taker responses are
collected (Raina et al., 2006). We refer to this as
jump-starting the parameters of the new items.

3 Approach and Formalism

We extend the 2PL. model in two key ways. First,
while (2) uses a single parameter for each item’s dif-
ficulty, like Fischer (1973) we decompose item dif-
ficulty into a weighted sum of features (§3.1). We
decompose item discrimination the same way. Sec-
ond, we integrate CEFR-labeled data for indirect
supervision of passage difficulty (§3.2) within an
ordinal-logistic regression multi-task model (§3.3).

3.1 Student Modeling (TEST-TAKER)

Enumerate exam sessions p € {1,...,P} and
items ¢ € {1,...,1}. The 2PL model models
the probability of the test-taker in exam session
p responding to item ¢ correctly as

p(Ypi=1;0,a,b) = o (a;(0, — b;)) 3)

__exp(ai(fy — b))
1+ exp(a;(0p —b;))’

The higher the test-taker’s ability, the higher the
probability of a correct response.

To model our test-takers’ responses, we general-
ize 2PL into an LLTM by decomposing the item dis-
crimination a; and item difficulty b; into multiple
“skills”. Extending (3), we model the probability as

p(Ypi =1;0,w,v) ()
=0 ((w'e(i)) (0, — vT(i))),

where w € RX and v € R¥ are weight vectors
and ¢ is a vector of K feature functions used to
extract features from an item. In LLTMs, these are
typically “skills” associated with the item, but the
log-linear formulation elegantly allows for arbitrary
numerical features to be incorporated.

3.2 CEFR Level Modeling (CEFR)

The Common European Framework of Reference
for Language defines guidelines for the language
proficiency of non-native language learners. Its six
levels of proficiency are (from lowest to highest)

Al, A2, B1, B2, Cl, and C2. Because CEFR cate-
gories are ordered, we treat predicting a passage’s
CEEFR level z; as an ordinal regression problem.
To do this, we define a generalized linear model,
which generalizes linear regression and the log-
linear models common in statistical natural lan-
guage processing (e.g. the one defined in §3.1), for
ordinal regression. It computes a logit with a func-
tion that is linear in the parameters, then transforms
the logit into the mean of the distribution function.
This transformation requires an invertible /ink func-
tion. For linear regression, this is the identity func-
tion, and for logistic and softmax regression it is
the logit function. In our ordinal regression case,
we choose the logistic cumulative link (McCullagh,
1980; Agresti, 2010; Pedregosa et al., 2017). Ap-
plying this, we define the probability of level z as

0'(51) z=1
p(Zi =2;0,b)=C0(&)—0(&m1) 1<2<C
1—o(§c-1) z=0C,

)
where a learnable, sorted vector XA of C — 1 cut-
points divides the difficulty scale into C' levels ac-
cording to &, £ )\, — b;, Vz. The level z is deter-
mined by which cutpoints the logit falls between.

As in the student modeling, we compute diffi-
culty as b; = vT¢(i). Similarly, we must jointly
learn the passage difficulties and the values that
contextualize them—in this case, X instead of 6.
In other words, the CEFR model’s parameters are A
and v. We have intentionally designed this model
to share structure and parameters with the linear
logistic test model. (We elaborate on this in §3.3.)
What differs is the classification task and the conse-
quent manner in which the classification likelihood
is computed from features.

3.3 Multitasking on One Line (JOINT)

How are we able to directly rate a test-taker’s abil-
ity or a passage’s difficulty in terms of its CEFR
level? Recall that in both the ordinal CEFR model
and the binary student model, we decompose the
difficulty of item i as b; = vT¢ (7). Our computa-
tion therefore depends on a vector v of weights that
govern the (relative) contribution of each passage
feature. These weights are shared between the two
prediction tasks, so parameter estimation on one
task can hone the other’s estimate.

These b values exist on the same real line, as
do the CEFR cutpoints X and the test-taker ability
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Figure 2: In this work, we focus on C-test items like the one above. Modeling the test-taker’s ability to fill each
blank correctly depends on the difficulty of the test item.

0 values. The three are thus directly comparable
(see Figure 1). We can reason about the relative
difficulty of a passage for a test-taker (from the dif-
ference in logits), as well as their CEFR level (from
the cutpoints the ability lies between or beyond).

We cannot perform this direct comparison if we
follow Settles et al. (2020) and use nominal CEFR
classification (e.g., with a softmax function atop
some v-weighted feature extraction instead of ordi-
nal regression)—there would be one logit per class
for each passage (i.e., in R%)? instead of a single
logit per passage (i.e., in R).

We tune the item discrimination weights w, item
difficulty weights v, and CEFR cutpoints A via
maximum likelihood estimation (MLE) to predict
both passage difficulty with respect to the CEFR
scale and the correctness of test-taker responses.

3.4 Feature Design

For passage featurization, we use a Transformer-
based passage representation using BERT (Devlin
et al., 2019), which is able to implicitly represent
linguistic content of its input text (Tenney et al.,
2019; Ettinger, 2020). For k € {1,2,...,768}, let

é1(i) = BERT (text (7)),

where the function BERT extracts a 768-
dimensional embedding vector to represent each
passage of text.*

4 Experimental Setup

We train our jump-start model (which we hereafter
refer to as BERT-LLTM) on either CEFR-labeled
data, test-taker responses from a high-stakes En-
glish proficiency test, or both. Specifics of learning
3More precisely, these are confined to the simplex A®.

*Other passage features can be included as well. We found
that word frequency quantile features had minimal effect.

and reproducibility details are given in Appendix B.
We then compare several measures of model fit,
both on held-out test-taker exam sessions and fully
held-out items. The latter represents adding new
items to an already-available test. §5 shows that
we are able to jump-start the difficulty estimates
for these items, outperforming three baselines, in-
cluding Settles et al. (2020).

4.1 Data

CEFR-labeled Dataset We use 3,826 English
passages automatically extracted and labeled with
CEFR levels (_allla) by two subject-matter ex-
perts (SME) with education and experience in ap-
plied linguistics/language teaching, with an aver-
age weighted x between annotator pairs of 0.599.
Disagreements beyond one score-point were ad-
judicated by the lead of the labeling study. Two
instances of each passage are created in the final
dataset: one instance with each label when there is
disagreement by one CEFR level between annota-
tors, and two instances with the agreed-upon CEFR
level otherwise. We hold out 10 % of the passages
for evaluation.

Test-taker Response Dataset We also use a
much larger collection of test-taker response data
from the Duolingo English Test, a high-stakes,
adaptive English proficiency test. We collected
100,495 exam sessions over a 14-month period, ex-
tracting C-test item responses (Klein-Braley, 1984;
Khodadady, 2014; Reichert et al., 2010) for this
study. Each session contained test-taker responses
to 5-8 distinct items drawn from an item bank of
4,151 unique C-test items. The extreme sparsity
would pose a challenge for accurately estimating
item parameters via a traditional IRT model, with
1-3 parameters for each test item (Linacre, 2014).
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A C-test item is similar to a cloze-deletion item
(Taylor, 1953), except that words are only partially
omitted. Specifically, for each partially omitted
(i.e., “damaged”) word in the passage, the first half
of the word is provided, as is the number of miss-
ing characters (see Figure 2). In our dataset, we
treat each damaged word (i.e., sub-item) as a sep-
arate instance of the same item, which was either
answered correctly or not.’

The proficiency test we consider contains other
item types besides C-tests. We use these to com-
pute a gold-standard ability estimate for each exam
session. This is the score on other item types in the
exam, ignoring the C-test items. As a high-stakes
exam, these ability estimates are highly accurate,
with a test-retest reliability of 0.92. We use this
gold standard as the ability parameters & when
training the 2PL IRT baseline and our BERT-LLTM
model. It is also needed for some metrics (§4.2).
We consider joint estimation in Appendix C.

Finally, we held out 10 % of sessions for evalua-
tion and used the other 90 % of sessions for train-
ing. Evaluation on the test-taker response dataset
requires additional care: the fact that multiple item
responses share the same exam sessions or items
violates the i.i.d. assumption underlying supervised
machine learning evaluation practices. In partic-
ular, items that occur in the training data set will
also occur in the test dataset, but with responses
from different test-takers.

Item-Split Dataset To ensure that our model
generalizes well on new, unseen items, we created
an additional split of the data described above. In
the item-split dataset, we randomly sample 3 % of
items, and we hold out all sessions where at least
one of those items were administered (which is
roughly 20 % of sessions). The remaining sessions
are used for training. In the evaluation phase of the
item-split experiments, we only evaluate results on
the held-out items, not entire sessions.

>In effect, this is how we dichotomized the response data,
which is required for the logistic models upon which IRT and
LLTM models are usually based. We also considered continu-
ous IRT models (Deonovic et al., 2020) in Appendix A, but
these are much less commonly used and our experiments (not
reported here) demonstrated that they fit the data very poorly.
Our approach has the limitation that it does not consider the
differences in difficulty among damaged words within the
same passage; it effectively models the average difficulty
among those damaged words. We may get additional pre-
cision by modeling the difficulty at the word level, but we
leave this to a future work.

4.2 Metrics

We measure performance on the CEFR data with
these two measures:

Pearson’s » The coefficient of determination be-
tween the model’s logit-scale difficulty esti-
mate and the CEFR label (using A1 =0, A2 =
1, etc.).

Spearman’s p The rank correlation between the
model’s logit-scale difficulty estimate and its
CEFR label. This can capture nonlinear rela-
tionships in the data.

When evaluating the models on the test-taker
response dataset, we predict the test-taker’s score
on each item using the gold-standard abilities and
the learned item parameters. We also compute an
aggregate score of each test-taker’s performance
on the C-test items (referred to as the item-type
score), by using the learned item parameters and
the test-taker’s item scores on C-test items. We
then evaluate the following metrics:

Item Mean Score / Predicted Score Pearson’s
The correlation between the item’s mean
score across all sessions, and the item’s mean
predicted score across all sessions. This
relates the item’s difficulty to the item’s
predicted difficulty (both relative to the
audience each item was administered to).

Cross-Entropy The cross-entropy between each
sub-item score and the model’s predicted prob-
ability of getting a sub-item of that item cor-
rect.

Residual standard deviation A residual is the
difference between the item score predicted by
the model for a given test-taker, and the test-
taker’s actual item score. In a well-calibrated
model, the standard deviation of residuals
across all items in the test dataset is small.

Item-Type / Total Pearson’s » The Pearson cor-
relation between the item-type score and the
gold-standard ability estimates. This metric is
common in assessment research (Furr, 2017).

Test-retest Reliability The correlation of item-
type scores among all pairs of exam sessions
in the test dataset taken by the same test-taker
within 30 days of each other. Like above, this
reliability estimate is common in assessment
research (Furr, 2017).

4.3 Baselines

We compare our model to three baselines:
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ALL-SAME. Here, we fix all item difficulties at
0.0 and all item discriminations at 1.0. This base-
line shows what is trivially attainable on the test-
taker response metrics.

2PL-IRT. In this model, item parameters are es-
timated using (2), where the test-taker ability pa-
rameters 6 are fixed to the gold-standard ability
estimates. This is a considered a strong baseline in
assessment research. By design, this model cannot
predict test-taker performance on new items before
those items have undergone pilot testing.

SETTLES-ET-AL. We reproduce the features and
model design of the work closest to ours, Settles
et al. (2020), but train on the same CEFR dataset as
our other models, without data augmentation.6 By
its design, their model cannot use test-taker data.

5 Results and Interpretation

Here we study how well our model captures test-
takers’ ability to answer C-test items based upon
the passage’s difficulty, and how well it contextual-
izes this with the CEFR scale.

5.1 Comparison to baselines

We present CEFR-labeling and test-taker model-
ing metrics in Table 1. Our joint model’s item
parameters are better calibrated, more consistent,
and lead to a more reliable test than the estimates
from Settles et al. (2020). It outperforms SETTLES-
ET-AL on all five measures of test-taker model-
ing: relative improvements in cross-entropy (40 %),
residual standard deviation (15 %), item score r
(44 %), item total r (14 %), and test—retest reliabil-
ity (17 %). CEFR prediction slightly improves.
The joint model also performs very similarly
to the standard 2PL-IRT, matching or beating it
on 4 out of 5 metrics, despite having far fewer free
parameters. However, as we’ll see in §5.2-5.3, 2PL-
IRT is incapable on unseen items and plummets
when less test-taker response data is available.’
Finally, we note that while JOINT and 2PL outper-
form ALL-SAME on all measures, SETTLES-ET-AL
has a higher cross-entropy than this trivial baseline.

®Settles et al. (2020) used additional datasets in a semi-
supervised label propagation scheme akin to the Yarowsky
algorithm (Yarowsky, 1995).

"This occurs because 2PL’s parameters are per-item, akin
to one-hot encoding. When an item isn’t included in training
(the essence of the jump-start scenario), 2PL does not have
any parameters to represent it. It thus cannot make predictions
for items unseen in training.)

This only reflects that SETTLES-ET-AL cannot es-
timate item discrimination parameters a; its cross-
entropy can be altered by arbitrarily changing the
fixed, shared discrimination parameter.

5.2 Model ablation experiments

How valuable is multitasking? We find that having
both sources of data available leads to strong test-
taker modeling while contextualizing difficulties
with the CEFR scale. Using only test-taker data
produces small improvements in three test-taker
modeling metrics compared to the JOINT model,
but unsurprisingly yields a dramatic decrease in
CEFR labeling performance.

Similarly, the model trained on only CEFR data
improves slightly on CEFR modeling but drops
substantially on test-taker modeling. The perfor-
mance becomes similar to SETTLES-ET-AL, which
also does not use test-taker data. With robust featur-
ization in our log-linear model, no pilot testing is
necessary to get accurate item difficulty estimates.
We thus provide an alternative solution to the cold
start problem, which is able to improve as test-taker
data becomes available.

5.3 Jump-starting new items

As a high-stakes test evolves, we must introduce
new items with new parameters to be estimated.
Pilot testing is resource-intensive, so we wish to
expedite it by jump-starting item parameters with
initial estimates from our model, requiring less
pilot data. We use the item-split dataset described
above to simulate this scenario and evaluate our
model’s generalization to new items (see “Jump-
starting New Items” in Table 1).

On this data split, we again achieve better item
mean r, cross-entropy, and residual standard devi-
ation than SETTLES-ET-AL. (Recall that 2PL-IRT
cannot even be used in this scenario.) As before,
training on only test-taker data produces further
gains, at the cost of CEFR labeling performance.
In all, this indicates that our principled joint model
effectively jump-starts the item a and b parameters.

5.4 Data ablation experiments

In §5.2, we note that the model is viable for a
cold start and improves as test-taker responses are
recorded. How quickly can we expect this improve-
ment? We measure this by recursively removing
half the test-taker data, fitting a model on the re-
mainder, and evaluating its performance.
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CEFR-labeling Metrics

Test-taker Response Metrics

Item Mean Score/  Cross- Residual Item-Type/Total Test—Retest
Model Pearson’s r  Spearman’s p  Pred. Pearson’s  entropy st. dev. Pearson’s r  Reliability
Baselines
ALL-SAME 0.00 0.00 0.32 0.73 0.21 0.41 0.18
2PL-IRT N/AT N/AT 0.74 0.56 0.16 0.74 0.62
SETTLES-ET-AL 0.81 0.75 0.43 0.91 0.20 0.66 0.53
BERT-LLTM
CEFR OBJECTIVE 0.84 0.77 0.45 0.88 0.28 0.70 0.51
TEST-TAKER OBJECTIVE 0.73 0.49 0.66 0.55 0.16 0.75 0.63
JOINT OBJECTIVE 0.82 0.76 0.62 0.55 0.17 0.75 0.62
Jump-starting New Items”
BERT-LLTM
TEST-TAKER OBJECTIVE 0.74 0.56 0.59 0.53 0.16 N/At N/Al
JOINT OBIJECTIVE 0.80 0.73 0.52 0.54 0.17 N/At N/A?

* These experiments are run on a different split of the test-taker dataset, so they have an additional source of variance when comparing to the models above.
1 2PL IRT can only estimate difficulties for passages with test-taker data, so they cannot be evaluated on the CEFR-labeling task.
1 Since only held-out items are evaluated in these experiments, we cannot score all items in the session and thus cannot compute these metrics.

Table 1: Metrics for each training objective. Lower rows are a different data split and not directly comparable.

In Figure 3 we see that even with only 452 exam
sessions, we still reach near-optimum performance.
By comparison, 2PL-IRT model performance de-
graded even with 64,000 sessions, and needed at
least 8,000 sessions to even beat the trivial ALL-
SAME baseline. Similar trends emerge when ex-
amining other test-taker response metrics. This
is expected, given that the 2PL-IRT model gener-
ally requires 200—400 test-taker responses per item
(Henning, 1987).

Notably, at 452 sessions with an average of 6.15
items per session, there are fewer total responses
than the number of items in the item bank. In this
reduced dataset, each item in the item bank was
viewed 0.67 times, on average. This paucity of
data shows that we can achieve high calibration
and reliability while preserving test security. Simi-
lar trends occur for test—retest reliability and item
mean Pearson’s 7 (Appendix D).

6 Recipe for a Language Proficiency Test

The better calibration and reliability of JOINT over
baselines, its aptitude for cold start scenarios, and
the ability to jump-start new item parameters sug-
gest a “user guide” for building and growing a new
English proficiency exam for a cold start.

1. Begin from a cold start, using item difficul-
ties learned by ordinal regression on CEFR-
labeled passages to accelerate piloting.

2. As the test is administered, incrementally im-
prove the estimates using the JOINT objective,
adjusting the test-taker response objective’s
weight depending upon to the amount of data

P s T T )(
506 <
g .
S —e— BERT-LLTM
P> ST =X
_%04 -=- ALLSAME [
50_2 == 2PL IRT 1
e Settles etal. [
mn 1 ||||III| T Ty LB ERLLL T
10! 103 10°

Number of sessions (log-scale)

Figure 3: Item type/total r as the number of pilot ses-
sions is reduced. Only 500 exam sessions are needed
for near-optimal results. Other metrics trend similarly.

collected. (We found that as few as 500 short
exam sessions were sufficient to reach near-
optimal performance for this model).

3. Eventually, the feature-based operational-only
objective will outgrow the CEFR data. If
CEFR levels of test-takers and items are not
important to the test construct, the CEFR-
labeled data may eventually be retired.

4. Introduce new test items, accelerating their
piloting by jump-starting difficulty and dis-
crimination estimates with the model.

This approach enables continuous improvement of
item difficulty and discrimination parameters. Im-
portantly, our model can elegantly handle training
from any of these data combinations available.

7 Linguistic Interpretation

Here we triangulate between the BERT features and
linguistic features of the text, examining whether
our model generates theoretically valid, linguisti-
cally meaningful difficulty estimates.
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(a) Training BERT-LLTM with the JOINT objective
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MD Analysis Dimension Scores

(b) Training from Settles et al. (2020)

Figure 4: Relating model-derived 3 estimates to our six identified dimensions of functional language; 3 dimensions
show significant, strong correlation (|r| > 0.5) in our model vs. none from Settles et al. (2020).

Our approach, multi-dimensional (MD) anal-
ysis (Biber, 1988; Biber and Conrad, 2019), was
developed in applied linguistics to comprehensively
describe linguistic variation in a corpus. This is a
process that employs exploratory factor analysis to
reduce a large set of computationally identified lin-
guistic features in passages down to a smaller set of
interpretable “dimensions” for which each passage
receives a dimension score (see Biber and Conrad
(2019) for complete details). The interpretation of
each dimension is based on linguistic theory, the
results of previous MD analysis literature, and a
qualitative analysis of the texts with relatively high
and low dimension scores.

Based on these sources of evidence, we devel-
oped a functional interpretation for each of the six
resulting factors:

D1: Oral/involved vs. Literate/informational
D2: Lexical variability

D3: Expository vs. Narrative style

D4: Personal feelings, expectations, and desires
DS: Epistemic stance expression

D6: Subjective vs. Objective description

Details of our MD analysis are in Appendix E.
Figure 4 illustrates the relationship between the
final difficulty estimates from our models and the
MD-based linguistic dimension scores for each pas-
sage. The BERT-LLTM (JOINT) model (Figure 4a)
shows moderately strong relationships between the
difficulty estimates and the dimension scores on
the first four of the six dimensions. In contrast, the
Settles et al. (2020) baseline (Figure 4b) showed
moderate to weak relationships, and were consis-
tently lower than those of our model. This indicates

that the BERT-LLTM difficulty estimates do a better
job of honing in on pertinent linguistic features.
For example, as passages are estimated to be more
difficult, they become more informational, have
greater lexical variability, and become more expos-
itory and objective.

While privacy and test integrity prevents the re-
lease of in-use test items, we present some retired
test items with their model predictions in Table 2,
to allow a qualitative analysis. Encouragingly, it
is apparent that less clausal, more phrasal and lex-
ically varied items are scored as more difficult by
the BERT-LLTM. This aligns with the quantitative
findings of MD analysis dimensions above.

8 Related Work

The challenge of estimating passage difficulty is
widely considered, with roots in the readability
research (Flesch, 1943; Chall and Dale, 1995). Re-
cent approaches leverage techniques from natural
language processing (Beinborn et al., 2014, 2015;
Loukina et al., 2016; Settles et al., 2020). Rather
than using explicit, interpretable linguistic features
of the passage, our features (§3.4) are drawn from
a large, pre-trained neural network’s representation
of the passage.

Pre-trained distributed representations of text are
in widespread use in natural language processing;
recent work leverages these large models for as-
sessment research. Ha et al. (2020) provides an
empirical study, comparing a battery of pre-trained
models on their ability to predict test-taker profi-
ciency from short-answer and multiple choice ques-
tions on a high-stakes medical exam. In a related
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Passage

SME
CEFR level

Predicted
CEFR level

Predicted
difficulty

Tara: Do you want to go to the museum today? Billy: No, I don’t like the museum very much. I want to
go to the movie theater. Tara: 1 don’t like any of the movies at the movie theater. Billy: OK, we’ll go to
the café. Tara: OK!

Since water is so important, you might wonder if you’re drinking enough. There is no magic amount of
water that kids need to drink every day. Usually, kids like to drink something with meals and should
definitely drink when they are thirsty. But when it’s warm out or you're exercising, you'll need more.
Be sure to drink some extra water when you’re out in warm weather, especially while playing sports or

exercising.

The same as all eight of Connecticut’s counties, there is no county government and no county seat. In
Connecticut, towns are responsible for all local government activities, including fire and rescue, snow
removal and schools. In a few cases, neighboring towns will share some resources ( e.g., water, gas,

etc. ). New London County is only a group of towns on a map. It has no governmental authority.

Ariel University, formerly the College of Judea and Samaria, is the major Israeli institution of higher
education in the West Bank. With close to 13,000 students, it is Israel’s largest public college. The
college was accredited in 1994 and awards bachelor’s degrees in arts, sciences, technology, architecture
and physical therapy. The school’s current temporary status is that of a “university institution” conferred
by the Israel Defense Forces, but it remains without university accreditation.

The basic operation of a telephone involves sound waves being converted into electrical signals. These
signals can then be sent over long distances from a device transmitting these signals at one end to a
device receiving them at another. The original telephone system involved direct connections between

two locations or parties. However, this was rapidly changed to a more flexible system where a central

A2

B1/B2

B2

B2

Cl

A2

B2

B2

B2

Cl

—6.75

—4.04

—2.98

—2.40

—1.06

office would direct calls towards an intended receiver.

Table 2: Five retired items from the Duolingo English Test (https://englishtest.duolingo.com), with their
expert-annotated CEFR level and model predictions. The italicized sentences are damaged in the C-test.

vein, Xue et al. (2020) explore transfer learning for
predicting item difficulty and response time, again
using large pre-trained models. None of these use
our joint probability model to improve learning
and contextualize the scores of test-taker ability
and item difficulty or relate deep features to lin-
guistically measurable attributes of the passages;
nor do they provide ablations showing our minimal
need for test-taker data.

9 Conclusion

We have introduced a multitask model BERT-LLTM
to estimate item parameters for adaptive language
tests, and demonstrated that it improves upon the
performance of Settles et al. (2020) by incorporat-
ing test-taker response data, and matches the strong
2PL-IRT baseline on most metrics. Furthermore,
we showed that 3,000 pilot item administrations
were sufficient for good performance with a large
(>4,000) item bank, whereas the standard 2PL-IRT
model required 200 times as many administrations
to achieve similar performance (see Figure D.2).
Finally, we showed that model’s item parameter es-
timates generalize well even for items that have not
yet been piloted, whereas a 2PL-IRT model cannot
generalize to unseen items at all.
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These results have significant applications in the
area of high-stakes language proficiency testing. In
addition to addressing the cold start problem de-
scribed by Settles et al. (2020), models like BERT-
LLTM can be used to jump-start new items by pro-
viding good initial parameter estimates. This re-
duces the number of item exposures needed during
piloting and increases the feasibility of maintain-
ing large item banks, both of which are crucial for
maintaining the security of a high-stakes test.

Furthermore, the difficulty estimates produced
by our model are much more strongly correlated
with four of six dimensions of functional language
derived from co-occurring lexico-grammatical fea-
tures, suggesting both that the model is keying
into these features (see Tenney et al., 2019) and
that these linguistic features are related to the true
difficulty of the passages. This illuminates the lin-
guistic abilities of the test-takers.

In the future, we plan to show that BERT-LLTM’s
parameter estimates can be used as Bayesian priors
for a 2PL-IRT model to achieve even more accu-
rate results. Furthermore, we can expand to other
item types. Finally, we will explore modeling the
word-level difficulty and discrimination of dam-
aged words in the passage.


https://englishtest.duolingo.com
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A Additional Information on Modeling
Fractional Responses

In §3, we describe how to score binary items. How-
ever, the C-test item contains several “sub-item”
that must be scored. How can we integrate this into
our model? Regressing to the fraction of blanks
answered correctly is not well-founded probabilisti-
cally (Loaiza-Ganem and Cunningham, 2019), and
rounding to O or 1 loses information.

One option is modeling a continuous Bernoulli
distribution. This distribution, long known to the
psychometric community (Miiller, 1987; Verhelst,
2019), has recently been explored in machine learn-
ing (Loaiza-Ganem and Cunningham, 2019). Its
support is [0, 1] instead of {0, 1}, and its unnormal-
ized probability density can be expressed in the
same form as a function of the natural parameter:

p(y [ ) oc exp(nz).

The normalizing constant must then account for
this continuous support. However, Monte Carlo
estimates of cross-entropy for continuous variables
can be difficult to interpret because differential en-
tropy can become negative. Additionally, we found
this to yield poor empirical results.

We suspect that the continuous Bernoulli distri-
bution fits the data poorly because it is designed
for “U-shaped” distributions, i.e., convex density
functions. By contrast, our item-score data is ap-
proximately normally distributed.

A second issue with the continuous Bernoulli
distribution is that probability mass is wasted. The
possible scores on a given C-test item are quan-
tized, based on the number of damaged letters V.
To handle this, in §4 we model an item as N sep-
arate items that share item parameters. A more
sophisticated model could separately parameterize
each blank, perhaps using information about which
words are damaged.

Another option for fractional responses is dyadic
expansion (Billingsley, 2012; Deonovic et al.,
2020), recursively split the interval [0, 1] and pre-
dicting one bit for each split. This resembles pre-
dicting a fixed-precision binary fraction, bit by bit.

B Additional Information on Parameter
Estimation and Reproducibility

We train parameters using ADAMW (Loshchilov
and Hutter, 2019), a stochastic gradient
method, to maximize the log-joint likelihood

> (i) 108 P(Yp,i, zi | 0, w,v) over all test-taker
responses in the test-taker data and all tagged
passages in the CEFR data. This objective
combines (3) and (5). If either y or z is not
observed, we marginalize it out.

B.1 2PL-IRT details

Our 2PL implementation follows the text of Em-
bretson and Reise (2013). It amounts to a three-step
process which we summarize here.

1. For each item, we fit a logistic regression
model to the observed data and the gold-
standard ability estimates 6. This yields an
intercept and slope for each item.

2. We use empirical Bayes shrinkage to obtain
the shrunken logistic regression coefficient,
in order to avoid the issue that small sample
sizes (i.e., small number of respondents) may
yield inaccurate logistic regression coefficient
estimates.

3. These shrunken parameters are transformed
to the 2PL discrimination or difficulty scale.

B.2 Reproducibility details

We train for 1,000 epochs using batching and
no regularization. A search over coefficients in
{1v1, 1v2, 1v4, 1v8} to govern the relative impor-
tance of the two training objectives (CEFR vs test-
taker) found that 1v8 yielded the best compromise
between the two training objectives. The initial pa-
rameters € R7%® are all drawn from U/ (—\/E , \/%),
where k is the number of features, except for the or-
dered CEFR cutpoints, which we arbitrarily initial-
ize as [—-2.5,—1.5,—0.5,0.5, 1.5]. For ADAMW,
we use a learning rate of 0.01 and averaging coeffi-
cients (0.9,0.999).

For passage representation, we use the publicly
available, pre-trained XLM-RoBERTa (Conneau
et al., 2020), a variant of BERT which removes
the standard BERT architecture’s next sentence
prediction objective, alters the training regimen,
and is trained on over 100 languages’ text. While
we do not evaluate cross- or multi-lingual perfor-
mance, XLM-RoBERTa’s strong performance in
downstream discriminative tasks across languages
suggests an avenue for robustly generalizing our
difficulty and proficiency estimation to other high-
resource languages.

We implement our model in the PyTorch differ-
entiable computation library (Paszke et al., 2019).
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Training and validation on a CPU is extremely
fast, completing an entire experiment in about an
hour on a single 2.9 GHz Intel i9 GHz processor.

Why not fine-tune BERT? Arguably, a tighter
model fit (i.e., a lower conditional cross-entropy
on training data) could be achieved by discrimi-
native fine-tuning of the BERT parameters, rather
than using BERT as a static feature extractor. The
model then becomes log-nonlinear in the learnable
parameters 8, which now include BERT’s parame-
ters. This introduces a host of local optima, making
the model non-identifiable, unlike our log-linear
formulation with regularization. This translates
into higher-variance estimates of test-taker abil-
ity (Geman et al., 1992), subject to the parameter
initialization and the vagaries of sampling during
optimization. High-stakes proficiency testing de-
mands reliable, consistent estimates, so we prefer
the identifiability of our log-linear model.

Additionally, there are other approaches for us-
ing BERT to represent the passage suggested in the
semantic similarity literature. We could average
the BERT token embeddings instead of using the
[CLS] embedding, or we could use a variant more
tailored to fixed-length representation (Reimers and
Gurevych, 2019). We leave these comparisons to
future work.

C Additional Information on Training
with Free 0 Parameters

The experiments described in §4 rely on a gold-
standard test-taker ability estimated from test-taker
performance on non—C-test items. In other words,
we evaluate in the case that a new item type is be-
ing piloted in the context of an high-reliability test
where the test-takers’ abilities are known. Gener-
ally, there are a number of ways we could acquire
high-quality estimates of the pilot test-taker’s abil-
ity. Our setup would thus be applicable in many
“cold start” situations.

When you cannot acquire the pilot test-taker’s
ability directly, you can infer the abilities by not
fixing @ in the model, instead learning the param-
eter vector. For completeness, we train a model
with this setup. The results are given in Table C.1.
While the BERT-LLTM did worse, the hyperparam-
eters were not tuned for this vastly larger number
of parameters. Also, in such a piloting scenario,
one would generally administer much more than 6
pilot items to each test-taker, so that each 6 could
be more accurately inferred. Nonetheless, these are

Metric Value
Item Mean Score / Predicted »  0.62
Cross-entropy 0.57
Residual st.dev. 0.18
Item type/total score r 0.72
Test-retest reliability 0.59

Table C.1: Model performance when test-taker ability
0 is learned instead of gold-standard.
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Figure D.1: Mean item score Pearson’s r as the number
of training sessions is reduced shows that as few as 500
exam sessions are necessary.

better than either the Rasch model or 2PL could
produce in this case, both of which would require
hundreds of test-taker responses per item (Henning,
1987).

D Additional Information on Data
Ablation

In Figure 3, we reported the item type total cor-
relation as the number of exam sessions used in
training was reduced. Here we show the item mean
score/prediction correlation (Figure D.1) and the
test-retest reliability (Figure D.2). The trend is sim-
ilar to what was reported in §5.4: with 452 exam
sessions, each item is administered during piloting
fewer than one time on average to achieve a strong
model fit.

E Additional Information on
Multi-Dimensional Analysis

Here we provide the linguistic variables from our
multidimensional analysis in §7, an overview of
how the linguistic features were extracted, and a
summary of the factor analysis. The variables them-
selves are in Table E.1 and their loadings are in
Table E.2.

Linguistic feature extraction We used the
Biber tagger to annotate the lexico-grammatical
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Figure D.2: Test-retest reliability as the number of
training sessions is reduced shows that with substan-
tially fewer training samples, high reliabilty is main-
tained.

features of the C-test passages. The Biber Tagger
has been developed and revised by Douglas Biber
over the past 30 years. The current version has both
probabilistic and rule-based components and uses
multiple large-scale dictionaries. After tagging, we
calculated normalized rates of occurrence for more
than 150 lexico-grammatical features®.

We pruned redundant features, those with ex-
tremely low mean rates of occurrence, and those
with many zeros from this starting list. This re-
sulted in a set of 80 linguistic variables. We fur-
ther pruned with the squared multiple correlation
method (Jackson and Tweed, 1980), resulting in
the 43 final linguistic features given in Table E.1.

Factor analysis Factor analysis, a technique re-
lated to principal components analysis, models data
as a linear combination of latent factors. In our fac-
tor analysis, we found an acceptable Kaiser—Meyer—
Olkin index (Kaiser, 1974) of 0.63 out of 1.0, sug-
gesting the appropriateness of our 43 variables. To
determine the optimal number of factors, we exam-
ined a scree plot (Cattell, 1966), which suggested a
six-factor solution, and these six factors accounted
for 45% of the variance in the dataset. We include
the factor (structure) matrix for the 43 variables in
Table E.2.

Functional interpretation of factors We com-
puted factor scores for every C-test passage on
each of the six factors in the final factor solution,
using the regression method. We used a liberal fac-

8This tagger achieves accuracy levels comparable to other
taggers of its time (see Biber et al., 2011) and analyzes a larger
set of lexico-grammatical features than most other taggers,
including a wide range of semantic categories for words (e.g.,
nouns: animate, cognitive, concrete, technical, quantity, place,
group, abstract) and lexico-grammatical features (e.g., that-
complement clauses controlled by stance nouns, such as in
The claim that I would even do that is ridiculous.).

tor loading cutoff of 0.20 and, for purposes of our
interpretations, assigned a linguistic variable to the
factor on which it loaded strongest. This concluded
the quantitative portion of the factor analysis, and
we turned our attention to qualitatively interpreting
the six factors. We set out to functionally interpret
each of the six factors as underlying dimensions of
linguistic variation.
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Abbreviation

Feature

adv
advl_stance_all
all_def_art
all_indef_art
conj_advl
conj_all
contract
emphatic
infinitive
jj-attr
ji-pred
mod_poss
mod_pred
nn_abstact
nn_all
nn_common
nn_concrete
nn_nom
nn_place
nn_premod
nn_proper
passive_short
prep

pro_1

pro_2

pro_3

pro_it
th_stance_all
th_vb
that_del
to_stance_all
tt_ratio
vb_act
vb_be
vb_comm
vb_mental
vb_past
vb_present
vb_progress
wh_cls
wh_ques
word_count
word_length

Adverb (not inc. emphatics, hedges, amplifiers, downtoners, time/place adverbs)

Stance adverbs

Definite articles

Indefinite articles

Adverbial — conjuncts

All conjunctions

Contractions

Emphatics

Infinitive verbs

Attributive adjective

Predicative adjective

Modals of possibility

Modal of prediction

Abstract nouns

Total nouns

Common nouns

Concrete nouns

Nominalizations

Place nouns

Pre-modifying nouns (noun-noun sequences)
Proper nouns

Agentless passive verbs

Prepositions

First person pronouns

Second person pronouns

Third person pronoun (except ‘it’)

Pronoun “it”

‘That’ complement clauses controlled by stance verbs
‘That” complement clause controlled by all verbs
‘That’ deletion

“To’ complement clauses controlled by stance verbs
Type/token ratio (first 100 words)

Activity verbs

Verb “be” (uninflected present tense, verb and auxiliary)
Communication verbs

Mental verbs

Past tense verbs

Verb (uninflected present, imperative & third person)
Verbs — present progressive

Wh- clauses

Wh- questions

Total words

Average word length

Table E.1: The forty-three linguistic variables included in final factor analysis
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D1 D2 D3 D4 D5 D6
adv 0.142 -0.137  0.104 0.464
advl_stance_all 0.195 -0.13 -0.131 0.339
all_def art -0.247  0.263 -0.297 -0.127 -0.443
all_indef _art -0.188
conj_advl 0.257
conj_all 0.267 -0.166 -0.202 0.235 0.379
contract 0.565 -0.236 -0.196 0.289 0.207 0.277
emphatic 0.211 0.17
infinitive 0.18 -0.144 -0.118 0.662 0.103 0.185
jj-attr -0.334  0.246 0303 -0.349 -0.168
ji-pred 0.199 -0.146 0.284
mod_poss 0.262 -0.119 0.152 0.241
mod_pred 0.454 -0.173 -0.106 0.266 0.113 0.18
nn_abstact -0.127 0.316 -0.112
nn_all -0.688 0364 0.557 -0.573 -0.282 -0.657
nn_common -0.519 0.234 0.669 -0315 -035 -0.34
nn_concrete 0.177 -0.259
nn_nom 0.165 -0.189
nn_place -0.114 -0.116 -0.244
nn_premod -0.337  0.131 0.559 -0.208 -0.199 -0.239
nn_proper -0.31  0.354 -0.199 -0.303 -0.422
passive_short ~ -0.229  0.128 -0.167 -0.11
prep -0.417  0.376 0.11 -0429 -0.159 -0.538
pro_1 0.571 -0.277 -0.212 0326 0.229 0.2
pro_2 0.472 -0.162 0.266 0.189
pro_3 -0.218 -0.448 0.275 0.156 0.275
pro_it 0.256 -0.104 0.107
th_stance_all 0.271 -0.121 0303 0.858 0.232
th_vb 0.172 0.158 0.539 0.188
that_del 0.279 -0.123 -0.161 0.182 0452 0.176
to_stance_all 0.212 -0.149 -0.119 0.651 0.188 0.103
tt_ratio -0.313 0931 0.117 -0.185 0.117 -0.105
vb_act 0.219 -0.247 -0.225 0379 -0.126 0.118
vb_be 0.29 0.207
vb_comm -0.107  0.108 0.241 0.142
vb_mental 0.402 -0.232 -0.21 0.53 0407 0.268
vb_past -0.349 -0.542 0.156 -0.115
vb_present 0.762 -0.444 0.154 0362 0.108 0.497
vb_progress 0.117 0.221  0.117 0.156
wh_cls 0.168 0.146 0.124
wh_ques 0.257
word_count -0.32 0921 0.149 -0.216 -0.231
word_length -0.604 0448 0.488 -0.457 -0.186

Table E.2: Factor (structure) matrix; loadings > .10
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