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Abstract

In the context of neural machine translation,
data augmentation (DA) techniques may be
used for generating additional training sam-
ples when the available parallel data are scarce.
Many DA approaches aim at expanding the
support of the empirical data distribution by
generating new sentence pairs that contain in-
frequent words, thus making it closer to the
true data distribution of parallel sentences. In
this paper, we propose to follow a completely
different approach and present a multi-task DA
approach in which we generate new sentence
pairs with transformations, such as reversing
the order of the target sentence, which pro-
duce unfluent target sentences. During train-
ing, these augmented sentences are used as
auxiliary tasks in a multi-task framework with
the aim of providing new contexts where the
target prefix is not informative enough to pre-
dict the next word. This strengthens the en-
coder and forces the decoder to pay more at-
tention to the source representations of the en-
coder. Experiments carried out on six low-
resource translation tasks show consistent im-
provements over the baseline and over DA
methods aiming at extending the support of
the empirical data distribution. The systems
trained with our approach rely more on the
source tokens, are more robust against domain
shift and suffer less hallucinations.

1 Introduction

In order to train reliable neural machine transla-
tion (NMT) systems, large amounts of parallel sen-
tences —sentence pairs in two languages that are
mutual translations— are needed, which constitutes
a critical barrier for low-resource language pairs.
This problem has been addressed through different
approaches, such as transfer-learning from high-
resource language pairs (Kocmi and Bojar, 2018),
using linguistic annotations (Sennrich and Had-
dow, 2016), training multilingual systems (John-
son et al., 2017) and applying data augmentation

strategies (Li et al., 2019; Feng et al., 2021), i.e.,
artificially generating additional parallel sentences.

Data augmentation (DA) is formalised by many
authors as a solution to a data distribution mismatch
problem (Wang et al., 2018; Wei et al., 2020). The
data distribution of the sentence pairs observed
in the training corpus, p̂(x,y), differs from the
true data distribution, p(x,y). Hence, the system
should be trained on a training set that follows
q(x,y), an augmented version of p̂(x,y) with a
wider support. In this way, the trained system is
less likely to face totally out-of-distribution data
when translating.

In this paper, we propose a completely different
framework for DA in which we generate additional
parallel sentences which, despite being completely
unlikely under the data distribution, systematically
improve the quality of the resulting NMT system.
Inspired by one-to-many multilingual NMT, where
richer encoder representations are obtained (Dong
et al., 2015), we propose a set of simple DA strate-
gies to produce synthetic target sentences aimed
at strengthening the encoder. These strategies ex-
pose the network during training to new situations
where the target-language context is not sufficient
to achieve a low loss, and the burden is passed on to
the encoder. Recent findings by Voita et al. (2021)
further motivate our approach: they claim that the
influence of source tokens in the output predictions
of an NMT system decreases as decoding advances.
Moreover, to avoid harmful interferences by the
out-of-distribution target data generated, we follow
a simple multi-task learning (MTL) approach that
does not require changes to the model architecture.
We call the proposed framework multi-task learn-
ing data augmentation (MTL DA) to stress the
fact that the augmented data, which do not follow
the distribution of parallel sentences in the train-
ing corpus, constitute different auxiliary tasks that
nevertheless produce a positive transfer to the main
task.
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Our framework does not require elaborated pre-
processing steps, training additional systems, or
data besides the available training parallel corpora.
Experiments with six low-resource translation tasks
show that it systematically outperforms two pow-
erful methods aiming at extending the support of
the empirical data distribution —RAML (Norouzi
et al., 2016) and SwitchOut (Wang et al., 2018)—
and that it can be combined with synthetic corpora
generated through back-translation (Sennrich et al.,
2016b) to get further improvements.

In the context of explainable deep learning mod-
els, we perform an analysis of the relevance of the
encoder and decoder representations in the NMT
system output, which shows that, thanks to the
auxiliary tasks, MTL DA increases the contribu-
tion of the source tokens to the decisions made by
the NMT system. Moreover, systems trained with
MTL DA are much more robust against domain
shift and produce less hallucinations (Wang and
Sennrich, 2020).

The remainder of the paper is organised as fol-
lows. Next section briefly describes our MTL DA
approach and the different auxiliary tasks we eval-
uated. After that, Sec. 3 describes the experimental
settings, whereas Sec. 4 provides and discusses the
results obtained. Sec. 5 then presents an analysis of
the changes in the transformer dynamics induced
by our auxiliary tasks as a way of explaining the
improvement in translation quality. The paper ends
with a review of the most relevant works in the
area of DA for NMT in Sec. 6, followed by some
concluding remarks in Sec. 7.

2 Multi-task learning approach and
auxiliary tasks

We propose a simple MTL approach that consists
of using a vanilla NMT system —in our exper-
iments, it is a transformer system as defined by
Vaswani et al. (2017)— where all (main and aux-
iliary) tasks share the encoder and the decoder. In
order to avoid harmful interferences by the out-of-
distribution target data generated for the auxiliary
tasks, we add a task-specific artificial token to the
source sentence to constrain the kind of output to
be produced (Sennrich et al., 2016a; Johnson et al.,
2017), much like in multilingual NMT. For each
auxiliary task, we append a synthetic corpus of the
same size to the original training data, which is
obtained by applying a transformation to each orig-
inal pair of sentences. In almost all the tasks, the

source sentence is left unchanged while the target
sentence is substantially modified.

What follows is a brief explanation of the trans-
formations we have tested and their expected effect
on the training dynamics of the encoder. Some
of them have been previously applied in DA, but
never in an MTL set-up such as the one we are
presenting. Some transformations are controlled by
a hyperparameter α that determines the proportion
of target words affected by the transformation. In
what follows, t denotes the amount of words in the
original target sentence. Table 1 provides an exam-
ple of the effect of the different transformations on
a single sentence pair.

swap: Pairs of random target words are swapped
until only (1−α)·twords remain in their original
position. This task (Artetxe et al., 2018; Lample
et al., 2018) tries to force the system to trust less
the target prefix when generating a new word.

token: α · t random target words are replaced by
a special (UNK) token (Xie et al., 2017). Again,
when generating a new word, the target prefix
should become less informative and force the sys-
tem to pay more attention to the encoder. This
is the effect envisaged by word dropout when
preventing posterior collapse in variational au-
toencoders (Bowman et al., 2016).

source: The target sentence becomes a copy of the
source sentence. In this way, the most efficient
way of emitting the right output is checking the
encoder representation to copy from the source.
Some authors have identified such training in-
stances as harmful for NMT (Ott et al., 2018;
Khayrallah and Koehn, 2018), and only copying
in the inverse direction has been proved to be
useful (Currey et al., 2017). However, the MTL
framework may allow us to leverage such syn-
thetic training data.

reverse: The order of the words in the target sen-
tence is reversed. Voita et al. (2021) suggest that
the influence of the encoder decreases along the
target sentence; therefore, by reversing the order
we expect the system to learn to use more infor-
mation from the encoder when generating words
that usually appear near the end of the sentence.

mono: Target words are reordered so as to make
the alignment between source and target words
monotonous. This transformation uses one-to-
many word alignments and is inspired by the con-
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Task Lang. Synthetic training sample
source Es gibt andere Möglichkeiten , die Pyramide zu durchbrechen .original

training
sample target There ’s other ways of breaking the pyramid .

swap target There . other ways of breaking pyramid ’s the
token target There ’s other UNK of UNK UNK UNK .
source target Es gibt andere Möglichkeiten , die Pyramide zu durchbrechen .
reverse target . pyramid the breaking of ways other ’s There
mono target ’s There other ways the pyramid of breaking .

replace source Es gibt aufzurüsten kalt , Schach Spezialwissen zu durchbrechen .
target There ’s arming cold of breaking chess specialties .

Table 1: A German–English, word-aligned training sample (first row) and the result of applying the transformations
described in Sec. 2 using α = 0.5 for those transformations controlled by this hyperparameter. Words modified
by each transformation are coloured; for swap and replace, a different colour identifies each pair of words that are
either swapped or replaced together, respectively.

cept of biwords introduced by Sánchez-Martínez
et al. (2012) for the compression of parallel cor-
pora. By making the alignment between source
and target words monotonous, the target sen-
tences become less fluent, so we expect the sys-
tem to pay more attention to the encoder.

replace: α · t source–target aligned words are se-
lected at random and replaced by random entries
in a bilingual lexicon obtained from the training
corpus; to this end, one-to-one word alignments
are used.1 This transformation is likely to intro-
duce words that are difficult to produce by relying
only on the target language prefix, thus forcing
the system to pay attention to the source words.
Fadaee et al. (2017) followed a similar approach;
however, they constrained the replacements to
produce only fluent target sentences.

3 Experimental settings

We have conducted experiments for the translation
from English to German, Hebrew and Vietnamese,
and for the translation in the reverse direction, us-
ing corpora commonly used for evaluating DA tech-
niques in low-resource scenarios. We evaluated the
effect of using each of the MTL DA auxiliary tasks,
as well as the combination of the best performing
ones. We also evaluated two strong DA methods
that aim at extending the support of the empiri-
cal data distribution by replacing some words by
random samples from the vocabulary: SwitchOut
(applied on the source side), RAML (applied on
the target side), and the combination of both.

1If the number of aligned words is below α · t, all available
alignments are used.

Datasets. Following Gao et al. (2019) and Guo
et al. (2020), for English–German and English–
Hebrew we used the training data (speeches of
TED and TEDx talks) of the IWSLT 2014 text
translation track (Cettolo et al., 2014);2 for devel-
opment and testing we used the tst2013 and tst2014
datasets, respectively. Like Wang et al. (2018),
for English–Vietnamese we used the training data
(also TED talks) of the IWSLT 2015 text translation
track (Cettolo et al., 2015);3 datasets tst2012 and
tst2013 were used, respectively, for development
and testing.

To evaluate the impact of MTL DA when it is
combined with synthetic data obtained through
back-translation (Sennrich et al., 2016b) —that
is, by translating a target-language monolingual
corpus into the source language—, we collected ad-
ditional English monolingual data, back-translated
it into German, Hebrew and Vietnamese, and added
the resulting synthetic corpus to the training data
listed above. The monolingual data used consists
of all the available monolingual English sentences
in the IWSLT 2018 shared task on low-resource
MT of TED talks that were not present in the paral-
lel training data described above. Table 2 provides
the amount of sentences and tokens in the training
corpora used in our experiments.

In order to study the domain robustness of our
MTL DA approach, we also evaluated the systems
trained on some out-of-domain test sets. We chose
the IT, law and medical test sets released by Müller

2https://sites.google.com/site/
iwsltevaluation2014/data-provided

3https://wit3.fbk.eu/2015-01

https://sites.google.com/site/iwsltevaluation2014/data-provided
https://sites.google.com/site/iwsltevaluation2014/data-provided
https://wit3.fbk.eu/2015-01
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Pair # sent. # left tok. # right tok.
IWSLT parallel data only

en–de 174,443 3,575,407 3,353,855
en–he 187,817 3,862,985 2,958,136
en–vi 133,317 2,965,962 3,361,789
IWSLT parallel data + back-translated data
en–de 269,213 5,843,264 5,537,986
en–he 282,587 6,130,842 4,728,840
en–vi 228,087 5,413,428 6,232,006

Table 2: Number of sentences and tokens in the training
corpora used in our experiments.

et al. (2020)4 and also used by Wang and Sennrich
(2020) for English–German.

Corpora were tokenised and truecased with the
Moses scripts;5 then, sentences with more than
100 or less than 5 tokens were removed from the
training corpora. Afterwards, byte-pair encoding
(BPE) with 10,000 merge operations (Sennrich
et al., 2016c) was applied on the concatenation of
the source and target sides of the training corpora
to obtain the vocabulary. Finally, those sentence
pairs in the training corpora with more than 100
BPE tokens were removed.

One-to-many word alignments in both
translation directions were obtained using
mgiza++ (Gao and Vogel, 2008; Och and Ney,
2003).6 Source-to-target word alignments were
used for the mono transformations; the one-to-
one word alignments required by the replace
transformation were obtained by computing
the intersection between the one-to-many word
alignments in both translation directions. The
bilingual lexicon for the replace transformation
was built by associating to each source word the
target word it is most frequently aligned with in
the one-to-one word alignments.

Training. Our neural model is a transformer-
based model as defined by Vaswani et al. (2017),
with the exception of the amount of warmup_steps,
which was set to 8,000. All the experiments were
carried out on a single GPU with mini-batches
made of 4,000 tokens. Validation was done ev-
ery 1,000 updates, and the patience based on the
BLEU score on the development set was set to 6

4https://github.com/ZurichNLP/
domain-robustness

5https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

6https://github.com/moses-smt/mgiza

validation cycles; we then kept the intermediate
model performing best on the development set. We
trained the systems with the fairseq toolkit (Ott
et al., 2019). For RAML and SwitchOut, we in-
tegrated into fairseq the sampling function re-
leased by Wang et al. (2018).7

Systems trained with MTL DA were fine-tuned
on the main (translation) task after being trained
on the combination of the main and auxiliary tasks.
When combining different auxiliary tasks, a differ-
ent special token was used for each one.

DA hyperparameters. The proportion of words
affected by the swap, token and replace transforma-
tions is controlled by a hyperparameter α, whereas
RAML and SwitchOut are governed by a tempera-
ture τ . For each language pair, we explored values
of α in [0.1, 0.9] at intervals of 0.1, and values of
τ around the best values reported by Wang et al.
(2018).8 The results reported are those obtained
with the model that maximizes BLEU on the de-
velopment set. The best hyperparameters obtained
for the experiments with the IWSLT parallel data
were reused for the experiments with the training
set extended with back-translated data.

4 Results and discussion

IWSLT parallel data. Table 3 reports the mean
and standard deviation of the translation perfor-
mance, measured in terms of BLEU (Papineni et al.,
2002),9 of three different executions for each of the
systems trained on the IWSLT parallel data. chrF++
scores (Popović, 2017), that show the same trend,
are available in Appendix B. The results show that
our MTL DA approach consistently outperforms
the baseline system in all language pairs and trans-
lation directions. In general, the auxiliary tasks
reverse (translation into the target language but in
the reverse order) and replace (random replace-
ment of target words and the source words they are
aligned with) are the best performing ones. swap
(random swapping of words) and source (copying
the source sentence) often perform worse than the
former tasks, which suggests that a non-systematic
word order or a completely different vocabulary in
the target could negatively influence the main task.

7Code available at https://github.com/
transducens/mtl-da-emnlp.

8τ−1 ∈ {0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1,
1.2, 1.3}

9sacrebleu (Post, 2018) version string:
BLEU+case.mixed+lang.vi-en+numrefs.1+
smooth.exp+tok.13a+version.1.5.0

https://github.com/ZurichNLP/domain-robustness
https://github.com/ZurichNLP/domain-robustness
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mgiza
https://github.com/transducens/mtl-da-emnlp
https://github.com/transducens/mtl-da-emnlp
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IWSLT parallel data only
Task en-de de-en en-he he-en en-vi vi-en
baseline 24.7± 0.2 30.0± 0.1 21.5± 0.3 32.4± 0.1 28.9± 0.1 27.5± 0.4
SwitchOut 25.3± 0.2 30.1± 0.2 21.6± 0.6 32.1± 0.4 28.5± 0.2 27.3± 0.6
RAML 25.4± 0.2 30.3± 0.1 21.9± 0.1 32.1± 0.1 28.6± 0.5 27.3± 0.5
SwitchOut+RAML 25.7± 0.4 30.3± 0.5 22.1± 0.4 32.1± 0.4 29.1± 0.4 27.5± 0.3
swap 25.1± 0.2 30.3± 0.1 22.1± 0.4 32.5± 0.6 28.8± 0.2 28.3± 0.6
token 25.4± 0.2 30.0± 0.3 21.5± 0.2 32.4± 0.8 29.3± 0.3 28.2± 0.3
source 25.3± 0.1 30.1± 0.4 21.5± 0.3 32.7± 0.2 28.9± 0.3 27.6± 0.2
reverse 26.1± 0.3 30.2± 0.1 22.4± 0.2 33.4± 0.3 29.4± 0.3 28.2± 0.4
mono 25.7± 0.1 30.4± 0.2 22.0± 0.1 32.5± 0.6 29.3± 0.4 27.7± 0.4
replace 25.8± 0.3 30.7± 0.2 22.5± 0.2 33.5± 0.3 29.5± 0.3 28.3± 0.9
reverse+replace 26.3± 0.1 31.1± 0.3 22.9± 0.2 33.9± 0.2 30.1± 0.5 28.8± 0.2
reverse+mono+replace 26.4± 0.6 31.4± 0.3 23.2± 0.3 33.9± 0.5 30.5± 0.2 29.4± 0.3

Table 3: Mean and standard deviation of the BLEU scores obtained when translating in-domain test sets with the
baseline system, three other reference systems, and our MTL DA approach, using different auxiliary tasks and
combinations of them. Systems were trained only on IWSLT parallel data. The best results for each language pair,
and those falling within one standard deviation from them, are highlighted in bold.

IWSLT parallel data + back-translated data
Task de-en he-en vi-en
baseline 31.3± 0.5 34.5± 0.1 29.3± 0.3
SwitchOut+RAML 31.7± 0.8 34.1± 0.7 29.9± 0.5
reverse+mono+replace 32.3± 0.1 35.3± 0.3 30.4± 0.7

Table 4: Mean and standard deviation of the BLEU scores obtained when translating in-domain test sets with
the baseline system, the combination of SwitchOut and RAML, and the best combination of auxiliary task in our
MTL DA approach. Systems were trained on a combination of parallel and back-translated data. The best results
for each language pair, and those falling within one standard deviation from them, are highlighted in bold.

Interestingly, using the three best auxiliary tasks
together further improves the performance, achiev-
ing the best results in all translation tasks with
BLEU scores between 1.1 and 1.9 points over the
baseline.10 This suggests that different auxiliary
tasks affect the encoder in different ways and are
somehow complementary.

A comparison of our MTL DA approach
with RAML, SwitchOut and their combination
(SwitchOut+RAML) shows that our approach, be-
ing much simpler in nature, also outperforms them.

Back-translated data. Table 4 shows the results
obtained with the training set extended with back-
translated data. In these experiments, we only
evaluated MTL DA with the best performing com-
bination of auxiliary tasks. As for SwitchOut

10Even though MTL DA is intended for low-resource
language pairs, we conducted preliminary experiments on
large training data using the English–German WMT 2014
dataset (Gao et al., 2019), which contains around 4.5M train-
ing parallel sentences. The results show a gain of around
1 BLEU point over the baseline for German–English and the
same performance for English–German. In any case, the per-
formance of MTL DA on large data sets remains to be studied.

and RAML, we only evaluated their combination,
which according to Table 3 performs better than any
method in isolation. Although the differences are
slightly smaller, we can observe the same trend in
the results: MTL DA still outperforms the baseline
and the combination of SwitchOut and RAML. In
addition, the results show that MTL DA and back-
translation are two complementary DA approaches.

Domain robustness. Concerning the out-of-
domain evaluation, Table 5 shows the BLEU scores
obtained by each system; chrF++ scores show the
same trend and are provided in Appendix B. We
restricted the MTL DA evaluation to the reverse
task and the combination of the best three auxil-
iary tasks, and only report the results obtained with
systems trained on the IWSLT parallel data.

As can be seen, MTL DA outperforms the base-
line system and RAML/SwitchOut. Even the re-
verse auxiliary task, which does not modify the
vocabulary of the target sentence in any way and
does not add infrequent words to the training cor-
pus, enhances the domain robustness of the system.
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Domain IT Law Medical
Direction en-de de-en en-de de-en en-de de-en
baseline 3.0± 0.3 6.2± 1.9 6.0± 0.7 8.1± 0.8 9.5± 0.6 10.7± 1.5
SwitchOut 5.1± 0.8 5.3± 2.5 7.6± 0.2 7.8± 0.5 11.8± 0.2 10.1± 1.2
RAML 5.0± 1.4 6.3± 3.1 7.8± 0.3 8.5± 0.7 11.7± 1.0 11.6± 1.6
SwitchOut+RAML 8.0± 0.5 6.8± 0.7 7.8± 0.2 7.5± 1.2 12.5± 1.1 10.1± 1.0
reverse 10.2± 0.6 10.7± 0.6 7.6± 0.4 8.0± 0.6 12.8± 0.4 12.1± 0.5
reverse+mono+replace 13.2± 1.5 11.3± 0.9 10.2± 0.4 9.9± 0.8 15.9± 1.0 14.3± 0.8

Table 5: Mean and standard deviation of the BLEU scores obtained when translating out-of-domain texts in the IT,
law and medical domains. The best results for each language pair, and those falling within one standard deviation
from them, are highlighted in bold.

5 Explainability

To confirm that the systematic improvements in
translation quality and enhanced domain robust-
ness are related to the encoder being exposed dur-
ing training to more situations where a good source
representation is crucial, we carried out an analysis
of the relative source and target contributions to
the generation decisions of the NMT system. Ac-
cording to Voita et al. (2021), systems trained with
more data tend to rely more on source information;
we expect MTL DA to produce the same effect.

Another aspect that will account for the posi-
tive impact of MTL DA in the system’s encoder is
the generation of hallucinations (Lee et al., 2018):
completely inadequate translations that usually oc-
cur under domain shift (Müller et al., 2020), due
to the system relying too much on the target con-
text (Voita et al., 2021). We expect systems trained
with MTL DA to produce less hallucinations. To
validate this last hypothesis, we carried out an hal-
lucination analysis on the results of the domain
shift experiments.

Relative source and target contributions. We
used layer-wise relevance propagation (LRP), as
adapted to transformers by Voita et al. (2021), to
compute the relative contribution of source and
target tokens to each prediction made by the system.
LRP allows us to compute Rt(xi) and Rt(yj), the
relative contribution of source token xi and target
token yj , respectively, to the prediction emitted
by the network at time t. The total relevance at
each time step is 1, i.e. for all time steps t the
following equation holds, where Rt(x) and Rt(y)
stand for the total contribution of the source tokens
and target tokens, respectively:

∑
i

Rt(xi) +
∑
j

Rt(yj) = Rt(x) +Rt(y) = 1

To have reliable comparisons, we also follow
Voita et al. (2021) and evaluate the relative source
and target contributions on a subset of sentences
from a held-out corpus with the same source length
and the same target length. In this way, we
can fairly compare different strategies, since we
teacher-force the reference translations when com-
puting LRP so as to obtain translations with exactly
the same length. The held-out corpus used is the
concatenation of all the development corpora re-
leased for the corresponding IWSLT task,11 while
the subset chosen is the largest set of parallel sen-
tences with the same source length and the same tar-
get length, as long as there are at least 16 tokens in
each side.12 To compute the relative contributions,
we retrained the baseline and the MTL DA systems
featuring the best performing auxiliary tasks on
the IWSLT parallel data with the toolkit released
by Voita et al. (2021).13 Figure 1 depicts the total
source contribution at each generation time step
t for the different translation tasks and systems.
We skip the first time step, when there is no target
prefix available, and show the source contribution
for the EOS token too. For MTL DA models, the
source contains the special token corresponding to
the main task.

For the translation tasks with English as source
language, we can observe the same trends as Voita
et al. (2021): source influence decreases as decod-
ing progresses. There is also a peak in the penulti-

11English–German: dev2010, dev2012, tst2010, tst2011,
tst2012, tst2013, tst2014; English–Hebrew: dev2010, tst2010,
tst2011, tst2012, tst2013, tst2014; English–Vietnamese:
dev2010, tst2010, tst2011, tst2012, tst2013.

12It contains 48 en–de sentences (768 en tokens and 816
de tokens), 28 en–he sentences (448 en tokens and 560 he
tokens), and 28 en–vi sentences (448 en tokens and 560 vi
tokens). Similar trends in source contribution were observed
when selecting a larger subset with shorter sentences.

13https://github.com/lena-voita/
the-story-of-heads

https://github.com/lena-voita/the-story-of-heads
https://github.com/lena-voita/the-story-of-heads
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(a) English–German (b) English–Hebrew (c) English–Vietnamese

(d) German–English (e) Hebrew–English (f) Vietnamese–English

Figure 1: For each translation task, total contribution of the source tokens Rt(x) to the production of the target
tokens. best2 stands for the combination of the two best auxiliary tasks within our MTL DA framework: reverse
and replace. best3 stands for the combination of the three best ones: reverse, replace and mono.

mate token, which may express that the decoder is
checking whether it has translated all the content
from the source sentence before emitting the full
stop at the end of the sentence. When English is the
target language, plots are flatter: source influence
does not decrease as decoder advances. The fact
that English grammar is simpler, lacking gender
and case agreements, could explain that the decoder
needs to check previous tokens less.

These results confirm the utility of MTL DA: the
baseline system is systematically the one where
the source has the smallest influence, and auxil-
iary tasks increase source influence in all transla-
tion tasks. Differences are larger at the beginning
of decoding, but remain throughout the sentence.
MTL DA achieves, only with artificially augmented
data, an increase in source influence comparable
to that reported by Voita et al. (2021, Fig. 6) when
the size of genuine parallel data increases.

Finally, no consistent differences in source in-
fluence could be found between the reverse and
replace auxiliary tasks. The systems combining
multiple auxiliary tasks, however, are consistently
the ones with the highest source influence, thus
confirming the complementarity of the tasks.

Hallucinations. To estimate the number of hal-
lucinations produced by the systems evaluated, we

follow the procedure proposed by Lee et al. (2018)
and used by Raunak et al. (2021). Although their in-
terest was in detecting those sentences that induced
the generation of hallucinations after introducing
spurious tokens in the input, we adapted it to auto-
matically measure the number of input sentences
in a test set for which the corresponding output
seems to be an hallucination. To this end, we use
an adjusted version of BLEU which only takes
into account the precision of unigrams and bigrams
with weights 0.8 and 0.2, respectively, as proposed
by Lee et al. (2018). If the sentence-level adjusted
BLEU of the lowercased emitted translation is be-
low a certain threshold (10 in our experiments), it
is taken as a sign of hallucination.

We evaluate the tendency to produce hallucina-
tion of the baseline as compared to our MTL DA
approach combining the auxiliary tasks reverse,
mono and replace, and to the SwitchOut, RAML
and SwitchOut+RAML systems. Sentences whose
translations cannot be regarded as hallucinations
are not relevant to our study, neither are those for
which the baseline and the system to which it is
compared to both hallucinate. We therefore count
the number of sentences that induce an hallucina-
tion on one of the systems but not on the other.14

14As an example, the evaluation corpus contains the pair
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(a) English–German

(b) German–English

Figure 2: Number of disjoint hallucinations of the
baseline system (in grey) and the systems trained
with different DA methods. Our MTL DA approach
(in blue) corresponds to the system labeled as re-
verse+mono+replace in Table 3.

We consider that the other system is not hallucinat-
ing if its adjusted BLEU is at least 20 BLEU points
higher. Fig. 2 represents these data for the English–
German translation tasks for the same domains (in-
domain, IT, legal and medical) and corpora used for
the domain robustness evaluation reported in Sec. 4.
The grey bar represents the number of hallucina-
tions of the baseline that are not labeled as such
by the corresponding DA system; consequently,
higher values are better. Additionally, the color
bars represent the number of hallucinations of the
DA system that cannot be labeled as such in the
baseline system (shorter bars are better).

As can be seen, disjoint hallucinations barely
happen with in-domain data, but they can be easily
found when considering out-of-domain data. In
every domain and in both translation directions,
the blue bar (the one representing our MTL DA
method) is clearly the shortest one in almost all
cases, while at the same time the grey bar is the
largest one. This is a clear sign of reduction of hal-
lucinations in the systems trained with MTL DA.
Appendix C presents supplementary details on the
BLEU thresholds and the smoothing technique con-
sidered when computing the scores.

(“To Select an Object”, “Objekt auswählen”). The German–
English baseline produces “Ein Objekt auszuwählen, um ein
Objekt auszuwählen.” which shows an hallucination in the
form of a repetition, whereas the MTL DA method gives a
better “Um ein Objekt auszuwählen.”.

6 Related work

The back-translation (Sennrich et al., 2016b) ap-
proach for leveraging additional target monolin-
gual data to produce additional training samples is
probably the most popular DA approach for NMT.
The set of related approaches covered in this sec-
tion, however, mainly focus on methods that, as
MTL DA, do not require additional resources be-
sides the training parallel corpus.

Li et al. (2019) evaluate back- and forward-
translation in such a setting. They train forward
and backward NMT systems on the available par-
allel data and use them to produce new synthetic
samples by translating either the target side (Sen-
nrich et al., 2016b) or the source side (Zhang and
Zong, 2016) of the original training corpus.

The approaches we have evaluated in our exper-
iments, RAML (Norouzi et al., 2016) and its ex-
tension to the source language, SwitchOut (Wang
et al., 2018), aim at extending the support of the
empirical data distribution and keeping it smooth
(similar sentence pairs have similar probabilities).
To that end, they replace words with other words
sampled from a uniform distribution over the vo-
cabulary, which, in practice, results in infrequent
words being overrepresented. Guo et al. (2020)
presented a related approach to encourage com-
positional behaviour: replaced words are selected
from another sentence and not from the vocabulary.

Some of our auxiliary tasks have already been
used for DA, but mostly on the source side and
rarely in an MTL framework. Replacing tokens
with placeholders (as we do in token) has already
been applied by Zhang et al. (2020) to the source
language, in combination with auxiliary tasks in-
volving detecting replaced and dropped tokens. Xie
et al. (2017) also evaluate the impact of replace-
ments on the target data, but do not follow an MTL
approach. Word dropout (Sennrich et al., 2016b;
Gal and Ghahramani, 2016; Shen et al., 2020) can
also be considered a related approach.

Regarding changes to word order, in addition to
the proposals by Artetxe et al. (2018) and Lample
et al. (2018), it is worth highlighting the strategy
proposed by Zhang et al. (2019) who apply a self-
translation approach using a right-to-left decoder.
Unlike our MTL DA framework, they need to gen-
erate translations from the model during training
and adjust multiple terms in the training loss.

There are more DA approaches based on replac-
ing words which are worth mentioning. Xie et al.
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(2017) randomly replace words in the source side
of the training samples. Gao et al. (2019) replace
words selected at random with soft words whose
representations are obtained from the probability
distribution provided by a language model. Fadaee
et al. (2017) replace a number of words in their
training samples by infrequent words in order to
improve the performance of the NMT model when
dealing with them at translation time. Words to
be replaced are identified using a large source lan-
guage model. Once the source words to be re-
placed are identified, a word-alignment model and
a probabilistic dictionary are used to also replace
the corresponding counterpart by the most probable
translation of the new source word. In our MTL DA
framework, the replace transformation, which is
similar to Fadaee et al. (2017)’s work, does not
require any language model.

Regarding back-translation, Edunov et al. (2018)
apply several simple transformations (word dele-
tion, replacement, swapping) to back-translated
data reporting a noticeable improvement. In rela-
tion with the special token we use to prevent neg-
ative transfer between tasks, Caswell et al. (2019)
propose a similar strategy to identify synthetic sam-
ples when combining actual parallel data and back-
translated data for training. Yang et al. (2019) ex-
tends this work by including forward-translated
data for training using two different special tokens
to distinguish the two types of synthetic data.

7 Concluding remarks

In this paper, we have presented a multi-task learn-
ing approach for data augmentation (MTL DA)
in NMT. We deviate from common approaches
that aim at extending the support of the empiri-
cal data distribution by generating new samples
that are likely under such distribution. We propose
instead to carry out DA in a MTL manner, by artifi-
cially generating new sentence pairs with aggres-
sive transformations, such as reversing the order of
the target sentence, which may make the target sen-
tence completely unfluent. Translating into these
augmented sentences constitute new tasks that pro-
vide new contexts during training where the target
prefix is not informative enough to predict the next
word, thus strengthening the encoder and forcing
the system to rely more on it.

Experiments carried out on six low-resource
translation tasks that usually serve as benchmark
for DA show consistent improvements over a base-

line system (on average around 1.6 BLEU points)
and over strong DA methods that aim at extending
the support of the empirical data distribution with-
out MTL. Moreover, additional analyses show that
the systems trained with MTL DA rely more on the
source tokens, are more robust against domain shift
and suffer less hallucinations.

MTL DA is agnostic to the NMT model architec-
ture and does not require elaborated preprocessing
steps, training additional systems, or data besides
the available training parallel corpora. Furthermore,
it could be combined with existing DA methods,
in addition to back-translation, specially those that
operate on the source side (Wang et al., 2018; Gao
et al., 2019), since our transformations mainly ad-
dress the target.

We expect this strategy to inspire the imple-
mentation of new auxiliary tasks to be used for
MTL DA, specially those aimed at improving the
training dynamics of the system. We believe that
further improvements could be obtained by fol-
lowing more elaborated strategies for multi-task
learning, such as changing the proportion of data
for the different tasks, evaluating different ways
of parameter sharing between the different tasks
(e.g. sharing the encoder but not the decoder), and
using other training schedules (Chen et al., 2018).
Finally, we conclude that making the encoder rep-
resentation essential to minimize the loss during
training should be embraced as a potential way of
boosting NMT quality.
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A Training details

The DA hyperparameters that maximized BLEU
on the development set on the first training run are
depicted in Table 6. Subsequent training runs were
executed only with these best values. For the com-
bination of SwitchOut and RAML, following Wang
et al. (2018), firstly the best τx for SwitchOut was
determined and, afterwards, the best τy for RAML
was sought by fixing τx. For Switchout/RAML,
the table depicts the value of τ−1, while for the
MTL DA tasks, it shows the value of α.

B Results with chrF++

Tables 7 and 8 show the chrF++ scores (Popović,
2017) for the in-domain automatic evaluations
based on IWSLT parallel training data and on ex-
tended training data with back-translation, respec-
tively; they are the counterpart to tables 3 and 4.
Table 9 shows the chrF++ scores for the out-of-
domain automatic evaluations whose correspond-
ing BLEU scores are reported in Table 5. Scores
were computed with SacreBLEU (Post, 2018).15

C Hallucinations

We motivate here the choice of thresholds used in
the hallucination detection approach discussed in
Sec. 5. Figure 3 shows an histogram with the nor-
malized frequencies of the values of the adjusted
BLEU with the concatenation of all the test data
used (for English–German and German–English)
in Fig. 2. It can be seen that more than 20% of
the sentences would be regarded as hallucinations
by our identification approach; our empirical ob-
servations corroborate this point, which may be
explained by the low-resource scenario in which
our experiments are run.

Table 10 shows some examples of references and
generated translations together with the correspond-
ing adjusted BLEU scores. It includes two output
sentences which are regarded as hallucinations and
one that is not.

The sentence-level smoothing approach used
when computing the adjusted BLEU scores was
based on the common technique (Chen and Cherry,
2014) of adding 1 to the matched n-gram count
and the total n-gram count for n ranging from 2 to
the maximum order of n-grams N (N is usually 4,
but it is 2 in our case). Notice that this implies that

15Version string: chrF2+lang.vi-en+numchars.6+
space.false+version.1.5.0

if no unigram is matched, the resulting BLEU is 0.
We thus consider that if no single token co-occurs,
an hallucination is happening. However, bigram
counts are smoothed as we do not want them to
excessively affect the score. In fact, instead of
adding 1 to both counts, we add 0.1. This is in
line with weighting the precision ratio for bigrams
with a weight (0.2) four times smaller than that of
unigrams (0.8).
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Hyperparam. Task en-de de-en en-he he-en en-vi vi-en
τ−1
x SwitchOut 1.1 0.85 0.9 0.6 0.95 1.0
τ−1
y RAML 0.7 1.1 0.5 0.95 0.85 0.8
τ−1
y SwitchOut+RAML 0.7 1.0 0.95 1.0 0.5 0.8

α swap 0.2 0.1 0.4 0.2 0.2 0.1
α token 0.8 0.8 0.1 0.7 0.3 0.6
α replace 0.2 0.5 0.3 0.2 0.3 0.2

Table 6: Data augmentation hyperparameters that maximized BLEU on the development set.

IWSLT parallel data only
Task en-de de-en en-he he-en en-vi vi-en
baseline 52.0± 0.1 53.1± 0.2 47.7± 0.2 54.6± 0.1 48.6± 0.3 49.2± 0.1
SwitchOut 52.2± 0.4 53.1± 0.2 47.6± 0.4 54.5± 0.3 48.1± 0.2 49.7± 0.6
RAML 52.5± 0.2 53.3± 0.2 48.2± 0.3 54.6± 0.1 48.7± 0.1 49.8± 0.3
SwitchOut+RAML 52.5± 0.1 53.3± 0.5 48.0± 0.1 54.6± 0.3 48.7± 0.3 49.6± 0.5
swap 52.4± 0.1 53.5± 0.1 48.1± 0.2 55.1± 0.2 48.5± 0.1 50.3± 0.3
token 52.6± 0.4 53.1± 0.4 47.7± 0.3 54.7± 0.4 48.9± 0.2 50.2± 0.1
source 52.4± 0.2 53.6± 0.4 47.5± 0.3 54.9± 0.3 49.2± 0.2 49.9± 0.4
reverse 53.1± 0.3 53.7± 0.2 48.4± 0.2 55.5± 0.1 49.1± 0.5 50.6± 0.0
mono 52.6± 0.3 53.8± 0.3 48.1± 0.1 54.9± 0.4 49.0± 0.1 49.9± 0.2
replace 53.4± 0.2 54.2± 0.2 48.6± 0.1 55.8± 0.4 49.5± 0.2 50.7± 0.5
reverse+replace 53.7± 0.4 54.5± 0.3 49.3± 0.2 56.1± 0.3 49.9± 0.4 51.2± 0.2
reverse+mono+replace 53.8± 0.3 54.8± 0.2 49.3± 0.2 56.1± 0.3 50.0± 0.2 51.5± 0.4

Table 7: Mean and standard deviation of the chrF++ scores obtained when translating in-domain test sets with
the baseline system, three other reference systems, and our MTL DA approach, using different auxiliary tasks and
combinations of them. Systems were trained only on IWSLT parallel data. The best results for each language pair,
and those falling within one standard deviation from them, are highlighted in bold.

IWSLT parallel data + back-translated data
Task de-en he-en vi-en
baseline 54.7± 0.4 56.6± 0.0 51.7± 0.2
SwitchOut+RAML 54.9± 0.6 56.3± 0.2 52.2± 0.1
reverse+mono+replace 55.8± 0.1 57.4± 0.2 52.6± 0.7

Table 8: Mean and standard deviation of the chrF++ scores obtained when translating in-domain test sets with
the baseline system, the combination of SwitchOut and RAML, and the best combination of auxiliary task in our
MTL DA approach. Systems were trained on a combination of parallel and back-translated data. The best results
for each language pair, and those falling within one standard deviation from them, are highlighted in bold.

Domain IT Law Medical
Direction en-de de-en en-de de-en en-de de-en
baseline 25.4± 2.7 31.6± 4.4 33.4± 0.8 33.7± 0.4 34.6± 0.5 34.5± 0.8
SwitchOut 29.7± 3.2 29.7± 4.8 34.0± 0.4 32.8± 0.8 35.6± 0.7 34.3± 0.4
RAML 31.3± 1.8 31.8± 4.2 34.6± 0.5 34.2± 0.1 35.6± 0.6 36.0± 0.6
SwitchOut+RAML 33.3± 0.6 32.8± 3.1 34.1± 0.3 33.1± 0.6 36.3± 0.9 34.7± 0.4
reverse 35.1± 0.4 38.2± 0.2 34.6± 0.4 33.7± 0.6 36.9± 0.1 36.1± 0.3
reverse+mono+replace 37.6± 0.3 39.7± 0.7 36.6± 0.5 35.5± 0.8 39.4± 0.8 38.5± 0.4

Table 9: Mean and standard deviation of the chrF++ scores obtained when translating out-of-domain texts in the IT,
law and medical domains. The best results for each language pair, and those falling within one standard deviation
from them, are highlighted in bold.
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(a) English–German (b) German–English

Figure 3: Adjusted BLEUs for the test data used in the hallucination analysis of Sec. 5.

Adjusted BLEU Type Sentence

1.74
input artikel 1 der verordnung (eg) nr. 1002/2004 erhält folgende fassung:
reference article 1 of regulation (ec) no 1002/2004 shall be amended as follows:
output articles one of the figure-to-vis-it-vis-vis-a-vis-vis-vis-a-vis-vis-vis-vis-

vis-vis-vis-vis-vis-vis-a-vis-vis-vis-vis-a-vis-vis-vis.

28.89
input artikel 1 der verordnung (eg) nr. 1002/2004 erhält folgende fassung:
reference article 1 of regulation (ec) no 1002/2004 shall be amended as follows:
output articles 1 the requirement (eg) number 1002 / 2004 receives the following

framework.

0
input verfalldatum
reference expiry date
output dr: why don’t you think about this?

Table 10: An output sentence, emitted by the baseline system, which was labelled as an hallucination (adjusted
BLEU of 1.74). Below that, a non-hallucinated translation (adjusted BLEU of 28.89) generated by one of the DA
systems. At the bottom, a more extreme example of hallucination with an adjusted BLEU of 0.


