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Abstract

Building neural machine translation systems to
perform well on a specific target domain is a
well-studied problem. Optimizing system per-
formance for multiple, diverse target domains
however remains a challenge. We study this
problem in an adaptation setting where the goal
is to preserve the existing system quality while
incorporating data for domains that were not
the focus of the original translation system. We
find that we can improve over the performance
trade-off offered by Elastic Weight Consolida-
tion with a relatively simple data mixing strat-
egy. At comparable performance on the new
domains, catastrophic forgetting is mitigated
significantly on strong WMT baselines. Com-
bining both approaches improves the Pareto
frontier on this task.

1 Introduction

The quality of Neural Machine Translation (NMT)
has improved considerably in recent years, mostly
due to improvements in model architecture (Bah-
danau et al., 2015; Cho et al., 2014; Vaswani et al.,
2017; Chen et al., 2018). Training NMT models
typically involves collecting parallel training data
from multiple sources to achieve high translation
quality and generalize well to unseen data (Barrault
et al., 2019). However, translation quality depends
strongly on the relevance of the training data to the
input text, which is why performance varies across
target domains (Koehn and Knowles, 2017a).

A popular method for domain adaptation of
NMT models is fine-tuning generic models on in-
domain data to yield a domain-specific model (Lu-
ong and Manning, 2015; Freitag and Al-Onaizan,
2016). When high quality output on more than one
target domain is required, multi-domain adaptation
methods aim to produce a single system that per-
forms well on multiple domains (Britz et al., 2017;
Pham et al., 2019; Currey et al., 2020).

∗Equal contributions.

Our goal is to train a single NMT system per lan-
guage pair that performs well across many different
domains. This is motivated by simplified deploy-
ment and maintenance in an industrial setting with
hundreds of supported language pairs. At any point
in the deployment cycle, new parallel training data
– often significantly smaller than the original train-
ing data – may become available for an additional
domain that the system has not yet been optimized
for. Depending on the size of this additional data,
fully retraining the NMT system may not be prac-
tical as it would require costly experimentation to
find the right level of upsampling which might in
turn lead to overfitting on that data. In addition, as
system stability is desirable in an industrial setting,
we want to maintain the status-quo performance –
or generic domain performance – of our models
which is easier to control in an adaptation setting.

In this paper, we explore the following research
question: given a strong general-purpose model,
how can we optimize the performance on multiple
new, diverse domains of interest without compro-
mising on generic domain performance?

A naive strategy would be to fine-tune on the
new domain data and stop as soon as performance
starts to decrease on the generic test set(s). How-
ever, this method allows for limited gains on
the new domains as we quickly start observing
catastrophic forgetting: performance on previously
learned tasks degrades while increasing on the
newly learned tasks (Kirkpatrick et al., 2017).

We therefore experiment with Elastic Weight
Consolidation (EWC) to preserve the generic per-
formance of our model during adaptation (Kirk-
patrick et al., 2017). We corroborate the finding of
Thompson et al. (2019) and Saunders et al. (2019)
that EWC helps to reduce catastrophic forgetting in
machine translation adaptation. However, we find
the quality trade-off in our multi-domain setting
to be unfavourable: when preserving most of the
generic performance, the gains on the new domains
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with EWC are limited. We further experiment with
data mixing strategies to mitigate catastrophic for-
getting and find that they are surprisingly effective.
In summary, we make the following contributions:

• We provide a thorough comparison between
data mixing and EWC to prevent catastrophic
forgetting in a multi-domain adaptation setup.

• We show that combining EWC and data mix-
ing outperforms EWC and provides a knob
for regulating the performance trade-off with
data mixing. Combining both approaches im-
proves the Pareto frontier, thus striking a bet-
ter balance than adaptation with EWC alone.

• We provide a theoretical analysis showing that
regularization in data space and in parameter
space are complementary within the Bayesian
formulation of continued learning.

2 Related work

Most previous work on multi-domain adaptation
focuses on a scenario with fixed training data. For
example, Currey et al. (2020) use knowledge dis-
tillation to build a single model from expert mod-
els optimized for the training domains, Britz et al.
(2017) train models that better distinguish between
the training domains and Pham et al. (2019) learn
domain-specific word embeddings for the domains
present in the training data. In contrast, we focus
on the adaptation setting where additional domain
data becomes available over time.

Thompson et al. (2019) apply EWC for adapta-
tion to a single new domain while Saunders et al.
(2019) use it for sequentially adapting to two new
domains. Both report positive results but at the
same time show a performance trade-off which our
work tries to address further.

Mixing out-of-domain and in-domain data for
fine-tuning was proposed by Chu et al. (2017) who
use tags to distinguish domains at test time while
our models are domain-agnostic. Data mixing is
also related to work on Episodic Memories for
continual learning. For example, Chaudhry et al.
(2019) show that a random sample of previous task
data can outperform EWC for image recognition.

3 Multi-domain adaptation

Our goal is to optimize translation quality for sev-
eral new domains represented by small amounts of
parallel data while maintaining the performance of

a high-quality, general-purpose NMT model. We
focus on the scenario where only small amounts
of additional data are available since it is suitable
for an adaptation setup. For large amounts of addi-
tional data, retraining the model from scratch might
be a more suitable approach.

3.1 Elastic Weight Consolidation

Kirkpatrick et al. (2017) study the problem of catas-
trophic forgetting in sequential machine learning
settings. They propose EWC as a method to pre-
serve model performance during sequential learn-
ing of task B by selectively slowing down learning
on the weights that are important for the original
task A learned by the model. This goal is achieved
by adding a loss term to the training objective as
shown in Equation 1:

L = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2, (1)

where θ is a set of model parameters, LB(θ) is the
loss for task B and task A is represented by the
parameters θ∗A and the diagonal of the Fisher infor-
mation matrix F. The strength of the regularization
is controlled by λ which can be used to balance the
performance on task A versus task B. Intuitively,
this loss encourages updates to the model in a di-
rection that improves the performance on task B
without altering the crucial parameters for task A
too much. In our setting, task A represents the
generic training, while task B represents the spe-
cific domains we adapt to.

3.2 Data mixing

A simple, data-driven strategy to counteract catas-
trophic forgetting is to interleave weight updates
according to the new domain gradients with weight
updates according to the original training data gra-
dients. This can be implemented by combining the
domain-specific adaptation set with a sample of
the original training data. We can increase the im-
portance of the training data sample by increasing
its size, thereby changing the ratio of training data
and domain data to influence the trade-off between
generic and domain performance. Conceptually,
data mixing is similar to Episodic Memories where
a memory of examples from all previous tasks is
kept during continual learning (Lopez-Paz and Ran-
zato, 2017; Chaudhry et al., 2019). Different from
the mixed fine-tuning of Chu et al. (2017), the do-
main is not known at test time in our case.
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3.3 EWC + data mixing

Combining EWC and data mixing is motivated by
the need to improve the quality trade-off offered
by EWC while retaining the ability to control a
hyperparameter that does not affect the size of the
adaptation set and thereby the number of training
steps in an epoch. From a theoretical perspective,
this can be justified as follows: EWC approximates
log p(θ|A,B) under the strict conditional indepen-
dence assumption P (B|A, θ) = P (B|θ), i.e. A
and B are conditionally independent given θ. This
may be too harsh for the case where A and B are
language domains. Suppose that A is partitioned
into two sets A1 and A2 where A1 is a random
sample of A, much smaller than A2. This allows
the more relaxed conditional independence approx-
imation P (B|A1, A2, θ) = P (B|A1, θ), which as-
sumes the sampleA1 says enough about the generic
domain A that A2 can be discarded given θ and A1.
It can be shown that under this assumption the
EWC objective becomes

L′ = LB(θ)+LA1(θ)+
∑
i

λ

2
Fi(θi−θ∗A,i)

2 (2)

which is equivalent to mixing the sampled set A1

into the new domain data B as described here. See
Appendix A for the full derivation.

4 Experiments

We evaluate multi-domain adaptation on top of
two strong WMT baselines: German→English
(DE→EN ) and English→French (EN→FR).

4.1 Experimental setup

Train details We train Transformer models us-
ing the Sockeye 2 toolkit (Domhan et al., 2020)
in the big variant with six encoder and decoder
layers (Vaswani et al., 2017), using Adam opti-
mizer (Kingma and Ba, 2015) with an initial learn-
ing rate of 0.06325 and a linear warmup over 4000
training steps. We use the constrained data settings
from WMT20 (Barrault et al., 2020) and WMT15
(Stanojević et al., 2015) respectively (for EN→FR,
we add newstest2008-2013 as additional training
data) and train until convergence determined on
a held-out validation set. We remove noisy pairs
based on heuristics (length ratio > 1.5, > 70% to-
ken overlap, > 100 BPE tokens) and those where
source or target language does not match according
to LangID (Lui and Baldwin, 2012). We tokenize

Domain adapt dev test

DE→EN
TED 9355 500 1305
Tanzil 10000 500 3000
WMT20chat 11279 500 2100

EN→FR
EMEA 10000 500 3000
law 10000 500 3000
IT 10000 500 3000

Table 1: Number of (subsampled) adaptation, develop-
ment and test examples for multi-domain adaptation.

the data using sacremoses1, truecase the data, then
apply Byte Pair Encoding (BPE) (Sennrich et al.,
2016) with 32,000 merge operations. For EN→FR,
we apply an additional normalization step after
detokenization replacing single curly quotes sur-
rounded by spaces with a single straight quote. This
is to avoid conflating the actual domain translation
quality gains with punctuation differences.

The baseline performance is 42.7 BLEU on new-
stest2019 and 41.8 BLEU on newstest2020 for our
DE→EN system. Our EN→FR system yields 41.2
BLEU on newstest2014 and 39.2 BLEU on new-
stest2015. We evaluate using SacreBLEU (Post,
2018)2 on detokenized outputs.

Adaptation details We use TED (Cettolo
et al., 2016), Tanzil (Tiedemann, 2012) and
WMT20chat (Farajian et al., 2020) corpora as addi-
tional target domains for DE→EN and EMEA, law
and IT corpora (Tiedemann, 2012) for EN→FR.
IT is a combination of the GNOME, KDE, PHP,
Ubuntu, and OpenOffice corpora (Koehn and
Knowles, 2017b). For EMEA, law, IT and Tanzil
we randomly sample 10k, 500 and 3k sentences for
adaptation, development and test data, respectively.
For TED we use 2010-2014 TED/TEDX develop-
ment and test sets, except for test2014, for sam-
pling adaptation and development sets and test on
test2014. The adaptation sets consist of examples
from all target domains, roughly balanced in size.
We choose ∼10k examples to match our scenario
of adaptation with little parallel data. Adaptation
set sizes are shown in Table 1. For the adaptation
step, we use dev set BLEU on the concatenation
of domain-specific development sets for early stop-
ping and checkpoint selection. After preliminary
experiments, we chose a reduced initial adaptation
learning rate of 2e-5 without warmup since adapta-

1https://github.com/alvations/
sacremoses

2With identifier BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+tok.13a+version.1.4.14.

https://github.com/alvations/sacremoses
https://github.com/alvations/sacremoses
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Figure 1: Adaptation results varying λ for EWC (left to right from 10−1 to 10−5) and the train sample/domain data
ratio (100:1, 10:1 and 1:1) for data mixing. For EWC + data mixing, the train sample/domain data ratio is 1:1.

tion starts from a fully trained model.
Training data samples For data mixing, we con-

catenate a sample from the training data of the base-
line system to the adaptation data. This training
sample is of equal size to the domain-specific set
by default. In order to avoid overfitting to the train-
ing data sample during adaptation, we upsample
the domain-specific adaptation set 20x and concate-
nate a training sample of the increased size for a
1:1 train sample and domain data ratio.

EWC We compute the diagonal of the empirical
Fisher information matrix using accumulated, aver-
aged gradients from the original training data over
200 training steps after convergence. We validated
empirically that increasing the number of steps to
2,000 or 20,000 does not significantly change the
results. The Fisher information values are normal-
ized and we vary the strength of the EWC loss by
setting λ = {10−1, 10−2, 10−3, 10−4, 10−5}.

4.2 Experimental results

Figure 1a shows DE→EN adaptation results where
the adapted performance on the additional domains
is represented as mean BLEU score across all target
domains (x-axis) and generic performance is repre-
sented as mean BLEU score across newstest2018
and newstest2019 test sets (y-axis). Adapt de-
notes vanilla fine-tuning and for λ → 0, EWC
approaches vanilla fine-tuning. Although EWC
succeeds in mitigating catastrophic forgetting, as
seen by the reduced drop in BLEU on the news test
sets, this comes at a considerable cost in terms of
domain quality. In comparison, data mixing with a
1:1 ratio of train sample/adaptation data allows for
high quality on the adapted domains while retain-
ing substantially higher generic performance than

33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0
mean TED, Tanzil, Chat BLEU
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adapt lr=2e-6
adapt lr=2e-5
adapt lr=2e-4
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Figure 2: DE→EN adaptation results varying the learn-
ing rate (lr) and the size of the training data sample
while maintaining a 1:1 train/domain ratio. The dots on
each curve correspond to varying λ values.

EWC (rightmost point on the data mixing curve).
However, generic performance is not fully restored
when increasing the ratio from 10:1 to 100:1, thus,
altering the ratio does not reliably interpolate be-
tween generic and adapted domain performance3.
Thanks to the strength parameter λ, the combina-
tion of EWC and data mixing is able to provide
this interpolation and yields an improved Pareto
frontier for this task. For similar BLEU scores on
the adapted domains (40.0 vs 40.2), EWC + data
mixing with a 1:1 training sample/domain data ra-
tio yields an improvement of 2 BLEU on news over
EWC with λ=10−5 (44.0 vs 42.0) .

The EN→FR results in Figure 1b follow a sim-
ilar trend. Here the improvement of EWC + data
mixing over EWC is 0.8 BLEU on news (39.5 vs
38.7) for similar scores on the adapted domains of
47.2 (data mixing + EWC) and 47.1 (EWC) BLEU.

3One explanation for this could be that for large data sets,
finding a representative data sample is more difficult.
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Figure 3: DE→EN adaptation results per domain varying λ for EWC (decreasing from left to right) and the train
sample/domain data ratio (100:1, 10:1 and 1:1) for data mixing. For EWC + data mixing, the train sample/domain
data ratio is 1:1.
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Figure 4: EN→FR adaptation results per domain varying λ for EWC (decreasing from left to right) and the train
sample/domain data ratio (100:1, 10:1 and 1:1) for data mixing. For EWC + data mixing, the train sample/domain
data ratio is 1:1.

Adaptation scores per domain Figures 3 and 4
show the results for each domain individually.
Overall, the trends are similar across all domains,
with the combination of EWC and data mixing
offering the best trade-off between generic and do-
main performance. For all domains except TED
for DE→EN we observe that the domain perfor-
mance of EWC + data mixing is similar or better
than vanilla adaptation while preserving more of
the translation quality on news.

4.3 Robustness of data mixing & learning rate

Data mixing uses a random sample of the original
training data. We check its robustness by sam-
pling with different random seeds. The mean of the
BLEU standard deviations across all generic and
domain-specific test sets is 0.2, showing that the
results are sufficiently robust to different random
samples. Figure 2 shows the effect of upsampling
the adaptation data and training sample 20x com-
pared to 1x (no upsampling), i.e. using a smaller
training sample that matches the original size of
the adaptation data. While we achieve good results
even without upsampling, it yields slightly higher
scores on the generic sets.

We also show the effect of increasing or de-
creasing the learning rate of 2e-5 for EWC with
and without data mixing. As expected, increasing
the learning rate (lr=2e-4) yields more forgetting
on the generic sets while decreasing it (lr=2e-6)
yields smaller improvements on the adapted do-
mains. The improvement of EWC + data mixing is
robust to those changes, though, as the setting with
20x upsampling and lr=2e-5 still yields the best
results compared to EWC with different learning
rates. For completeness, we also show that varying
the learning rate for vanilla adaptation does not
yield stronger results.

5 Conclusion

We investigated techniques to mitigate catastrophic
forgetting during NMT model adaptation in order
to optimize for new domains while maintaining the
quality of already deployed systems. We found that
data mixing provides a favourable quality trade-off
and improves the Pareto frontier when combined
with EWC. We showed that data mixing is robust
to random sampling and sample size and that our
reported gains persist for different learning rates.
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A Combining Elastic Weight Consolidation (EWC) and data mixing

EWC

• EWC attempts to maximize log p(θ|A,B) for sets A and B, assuming B follows A.

• EWC uses the Laplace approximation p(θ|A) ∝ N (θ ; θ∗, F−1) so that, ignoring terms that do not
depend on θ,

log p(θ|A) =
∑
i

λ

2
Fi(θi − θ∗A,i)

2

• EWC makes the assumption that p(B|A, θ) = p(B|θ), i.e. that B is conditionally independent of A
given θ

p(θ|A,B) =
p(B,A, θ)

p(A,B)

= p(B|A, θ) p(θ|A) p(A)

p(A,B)

= p(B|θ) p(θ|A) p(A)

p(A,B)
assuming P (B|A, θ) = P (B|θ)

• Ignoring terms that do not depend on θ, the EWC criterion is

L(θ) = log p(θ|A,B) = logP (B|θ) + log p(θ|A) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2

EWC + data mixing

• Suppose A is partitioned into A1, A2, via a random sampling, with A1 much smaller than A2.

• Replacing A by A1, A2 in the EWC derivation above leads to

p(θ|A1, A2, B) =
p(B,A1, A2, θ)

p(A1, A2, B)
=

p(B,A1, A2, θ)

p(A,B)

= p(B|A1, A2, θ) p(A1|A2, θ) p(θ|A2)
p(A2)

p(A,B)

= p(B|A1, θ) p(A1|A2, θ) p(θ|A2)
p(A2)

p(A,B)
assuming p(B|A1, θ) = p(B|A1, A2, θ)

= p(B|A1, θ) p(A1|θ) p(θ|A2)
p(A2)

p(A,B)
assuming p(A1|A2, θ) = p(A1|θ) (i.i.d. over A)

= p(B,A1|θ) p(θ|A2)
p(A2)

p(A,B)

= p(B,A1|θ) p(θ|A)
p(A2)

p(A,B)
assuming p(θ|A2) = p(θ|A)

• Ignoring terms that do not depend on θ, the EWC + mixing criterion is

L′(θ) = log p(B,A1|θ) + log p(θ|A) = LB,A1(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2


