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Abstract

With the advent of end-to-end deep learning
approaches in machine translation, interest in
word alignments initially decreased; however,
they have again become a focus of research
more recently. Alignments are useful for ty-
pological research, transferring formatting like
markup to translated texts and can be used
in the decoding of machine translation sys-
tems. At the same time, massively multilin-
gual processing is becoming an important NLP
scenario and pretrained language and machine
translation models that are truly multilingual
are proposed. However, most alignment algo-
rithms rely on bitexts only and do not leverage
the fact that many parallel corpora are multi-
parallel. In this work, we exploit multiparal-
lelity of corpora by representing an initial set
of bilingual alignments as a graph and then
predicting additional edges in the graph. We
present two graph algorithms for edge predic-
tion: one inspired by recommender systems
and one based on network link prediction. Our
experimental results show absolute improve-
ments of F1 of up to 28% over the baseline
bilingual word aligner in different datasets.

1 Introduction

Word alignment is a challenging NLP task that
plays an essential role in statistical machine trans-
lation and is useful for neural machine translation
(Alkhouli and Ney, 2017; Alkhouli et al., 2016;
Koehn et al., 2003). Other applications of word
alignments include bilingual lexicon induction, an-
notation projection, and typological analysis (Shi
et al., 2021; Rasooli et al., 2018; Müller, 2017;
Lewis and Xia, 2008). With the advent of deep
learning, interest in word alignment initially de-
creased. However, recently a new wave of publica-
tions has again drawn attention to the task (Jalili Sa-
bet et al., 2020; Dou and Neubig, 2021; Marchisio
et al., 2021; Wu and Dredze, 2020).

∗ Equal contribution - random order.

Figure 1: Bilingual alignments of a verse in English,
German, Spanish, and French. Two of the alignment
edges not found by the bilingual method are German
“Schritt” to French “pas” and Spanish “largo” to En-
glish “thousand miles”. By looking at the structure of
the entire graph, one can infer the correctness of these
two edges.

In this paper we propose MPWA (MultiParal-
lel Word Alignment), a framework that employs
graph algorithms to exploit the information latent
in a multiparallel corpus to achieve better word
alignments than aligning pairs of languages in iso-
lation. Starting from translations of a sentence
in multiple languages in a multiparallel corpus,
MPWA generates bilingual word alignments for all
language pairs using any available bilingual word
aligner. MPWA then improves the quality of word
alignments for a target language pair by inspect-
ing how they are aligned to other languages. The
central idea is to exploit the graph structure of an
initial multiparallel word alignment to improve the
alignment for a target language pair. To this end,
MPWA casts the multiparallel word alignment task
as a link (or edge) prediction problem. We explore
standard algorithms for this purpose: Adamic-Adar
and matrix factorization. While these two graph-
based algorithms are quite different and are used in
different applications, we will show that MPWA ef-
fectively leverages them for high-performing word
alignment.
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Link prediction methods are used to predict
whether there should be a link between two nodes
in a graph. They have various applications like
movie recommendations, knowledge graph comple-
tion, and metabolic network reconstruction (Zhang
and Chen, 2018). We use the Adamic-Adar index
(Adamic and Adar, 2003); it is a second-order link
prediction algorithm, i.e., it exploits the informa-
tion of neighbors that are up to two hops aways
from the starting target nodes (Zhou et al., 2009).
We use a second-order algorithm since a set of
aligned words in multiple languages (representing
a concept) tends to establish a clique (Dufter et al.,
2018). This means that exploring the influence of
nodes at a distance of two in the graph provides
informative signals while at the same time keeping
runtime complexity low.

Matrix factorization is a collaborative filtering
algorithm that is most prominently used in rec-
ommender systems where it provides users with
product recommendations based on their interac-
tions with other products. This method is especially
useful if the matrix is sparse (Koren et al., 2009).
This is true for our application: Given two transla-
tions of a sentence with lengths M and N , among
all possible alignment links (M ×N ), only a few
(O(M +N)) are correct. This is partly due to fer-
tility: words in the source language generally have
only a few possible matches in the target language
(Zhao and Gildea, 2010).

A multiparallel corpus provides parallel sen-
tences in more than two languages. This type of
corpus facilitates the study of multiple languages
together, which is especially important for research
on low resource languages. As far as we know, out
of all available multiparallel corpora, the Parallel
Bible Corpus (Mayer and Cysouw, 2014) (PBC)
provides the highest language coverage, supporting
1334 different languages, many of which belong to
categories 0 and 1 (Joshi et al., 2020) – that is, they
are languages for which no language technologies
are available and that are severely underresourced.

MPWA has especially strong word alignment
improvements for distant language pairs for which
existing bilingual word aligners perform poorly.
Much work that addresses low resource languages
relies on the availabiliy of monolingual corpora.
Complementarily, MPWA assumes the existence
of a very small (a few 10,000s of sentences in our
case) parallel corpus and then takes advantage of
information from the other languages in the paral-

lel corpus. This is an alternative approach that is
especially important for low resource languages for
which monolingual data often are not available.

The PBC corpus does not contain a word align-
ment gold standard. To conduct the comparative
evaluation of our new method, we port three exist-
ing word alignment gold standards of Bible trans-
lations to PBC, for the language pairs English-
French, Finnish-Hebrew and Finnish-Greek. We
also create artificial multiparallel datasets for four
widely used word alignment datasets using ma-
chine translation. We evaluate our method with
all seven datasets. Results demonstrate substantial
improvements in all scenarios.

Our main contributions are:

1. We propose two graph-based algorithms for
link prediction (i.e., the prediction of word
alignment edges in the alignment graph), one
based on second-order link prediction and one
based on recommender systems for improving
word alignment in a multiparallel corpus and
show that they perform better than established
baselines.

2. We port and publish three word alignment
gold standards for the Parallel Bible Corpus.

3. We show that our method is also applicable,
using machine translation, to scenarios where
multiparallel data is not available.

4. We publish our code1 and data.

2 Related Work

Bilingual Word Aligners take different ap-
proaches. Some are based on statistical analysis,
like IBM models (Brown et al., 1993), Giza++ (Och
and Ney, 2003a), fast-align (Dyer et al., 2013) and
Eflomal (Östling and Tiedemann, 2016). Another
more recent group, including SimAlign (Jalili Sa-
bet et al., 2020) and Awesome-align (Dou and Neu-
big, 2021), utilizes neural language models. The
last group is based on neural machine translation
(Garg et al., 2019; Zenkel et al., 2020). While neu-
ral models outperform statistical models, for cases
where only a small parallel dataset is available, sta-
tistical models are still superior. In this paper we
use PBC, a corpus with 1334 languages, of which
only about two hundred are supported by multilin-
gual language models like Bert and XLM-R (De-
vlin et al., 2019; Conneau et al., 2020). MPWA can

1https://github.com/cisnlp/graph-align

https://github.com/cisnlp/graph-align
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leverage multiparallelism on top of any bilingual
word aligner; in this paper, we use Eflomal and
SimAlign.

Multiparallel corpus alignment. Most work
on word alignment has focused on bilingual cor-
pora. To the best of our knowledge, only one
method specifically designed for multiparallel cor-
pora was previously proposed: (Östling, 2014).2

However this method is outperformed by a “bipar-
allel” method by the same author, Eflomal (Östling
and Tiedemann, 2016). We compare with Eflomal
in our experiments.

Cohn and Lapata (2007) make use of multipar-
allel corpora to obtain more reliable translations
from small datasets. Kumar et al. (2007) show
that multiparallel corpora can be of benefit to reach
better performance in phrase-based statistical ma-
chine translation (SMT). Filali and Bilmes (2005)
present a multilingual SMT-based word alignment
model, extending IBM models, based on HMM
models and a two step alignment procedure. Since
the goal of this research is to tackle word alignment
directly without considering machine translation,
these works are not considered here.

In another line of research, Lardilleux and Lep-
age (2008a) introduce a corpus splitting method to
come up with a perfect alignment of multiwords.
Lardilleux and Lepage (2008b), and Lardilleux and
Lepage (2009) suggest to rely only on low fre-
quency terms for a similar purpose: sub-sentential
alignment. These methods solve a somewhat differ-
ent problem than what is addressed by us. Other us-
ages of multiparallel corpora are language compar-
ison (Mayer and Cysouw, 2012), typology studies
(Östling, 2015; Asgari and Schütze, 2017; Imani-
Googhari et al., 2021) and SMT (Nakov and Ng,
2012; Bertoldi et al., 2008; Dyer et al., 2013)

Matrix factorization and link prediction. Ma-
trix factorization is a technique that factors, in the
most typical case, a matrix into two lower-ranked
matrices in which the latent factors of the original
matrix are represented. Matrix factorization ap-
proaches have been widely used in document clus-
tering (Xu et al., 2003; Shahnaz et al., 2006), topic
modeling (Kuang et al., 2015; Choo et al., 2013)
information retrieval (Zamani et al., 2016; Deer-
wester et al., 1990) and NLP tasks like word sense
disambiguation (Schütze, 1998). In 2009, Netflix’s
recommender system competition revealed that this

2https://github.com/robertostling/
eflomal

technique effectively works for collaborative filter-
ing (Koren et al., 2009). Since then it has been a
state of the art method in recommender systems.

Link prediction algorithms are widely used in
different areas of science since many social, biolog-
ical, and information systems can be described as
networks with nodes and connecting links (Zhou
et al., 2009). Link prediction algorithms compute
the likelihood of links based on different heuris-
tics. One can categorize available methods based
on the maximum number of hops they consider
in their computations for each node (Zhang and
Chen, 2018). First order algorithms, such as com-
mon neighbors (CN), only consider one hop neigh-
borhoods, e.g., (Barabási and Albert, 1999). Sec-
ond order methods consider two hops, e.g., (Zhou
et al., 2009). Finally, higher order methods take
the whole network into account for making predic-
tions (Brin and Page, 1998; Jeh and Widom, 2002;
Rothe and Schütze, 2014). In this paper, we use
a two-hop method since it offers a good tradeoff
between effectiveness and efficiency.

3 Methods

3.1 The MPWA framework

While a bilingual aligner considers each language
pair separately, MPWA utilizes the synergy be-
tween all language pairs to improve word align-
ment performance. In Figure 1, Eflomal alignments
of a sentence from PBC in four different languages
are depicted. Although Eflomal has failed to find
the link between German “Schritt” and French
“pas”, we can easily find this relation by observ-
ing that the four nodes “step”, “Schritt”, “paso”,
and “pas” are fully connected, except for the edge
from “Schritt” to “pas”. In this case, the inference
amounts to a completion of a clique. However,
most cases are not that simple. In the figure, En-
glish “thousand miles” is mistakenly aligned to
Spanish “siempre” although its alignments to Ger-
man “lange” and French “mille” are correct. We
would like to infer that “thousand miles” should be
aligned to “largo”, but in this case creating a fully
connected subgraph, i.e., a clique (which would in-
clude “siempre”), would add many incorrect edges.
Given the complexity and error-proneness of ini-
tial bilingual alignments, inferring an alignment
between two languages from a multiparallel align-
ment in general is a complex problem.

Starting from a multiparallel corpus, we first gen-
erate bilingual alignments for all language pairs.

https://github.com/robertostling/eflomal
https://github.com/robertostling/eflomal
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MPWA then employs a prediction algorithm to find
and add new alignment links. In this paper, we
focus on two prediction algorithms: non-negative
matrix factorization and Adamic-Adar link predic-
tion.

3.2 Non-negative matrix factorization

Non-negative matrix factorization (NMF) has been
used in many different applications. After discov-
ery of its effectiveness for collaborative recommen-
dation (Koren et al., 2009), it was widely accepted
as a standard method for recommender systems.

In a standard recommender system with m users
and n items, ratings (a number from 1 to 5) from
each user for the items they have seen so far are
known. The aim is to predict the ratings the user
would give to unseen items and, based on these
predictions, recommend new items to the user. As
described by (Luo et al., 2014), let W = [wu,i] ∈
Rm×n be the matrix of ratings. For NMF to work
it is essential that the matrix be sparse, thus if a
user’s rating for an item is unknown, the corre-
sponding cell is zeroed. The matrix W is then
decomposed into two low-rank non-negative ma-
trices, T = [tu,k] ∈ Rm×r and V = [vk,i] ∈ Rr×n

such that TV ≈ W and r � min(m,n). r is a
hyperparameter. By multiplication of these two ma-
trices we end up with a reduced matrix W ′ = TV
in which each zeroed cell wu,i from matrix W is
replaced with a value w′u,i that represents a predic-
tion for the rating that user u would give to item i.
NMF solves the following optimization program:

argmin
T,V

(
‖W − TV ‖2

)
subject to T, V > 0

This optimization problem can be solved by gra-
dient descent using the following updates:

tu,k ← tu,k + ηu,k((WV T )u,k − (TV V T )u,k)

vk,i ← vk,i + ηk,i((T
TW )k,i − (T TTV )k,i)

In this equation, η is the learning rate. To guar-
antee non-negativity, it is defined as:

ηu,k =
tu,k

(TV V T )u,k
, ηk,i =

vk,i
(T TTV )k,i

Note that the objective function only takes ac-
count of non-zero cells. Luo et al. (2014) propose
an approach that takes advantage of the sparseness
of the matrix for faster computation. In addition,
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I 5 1 5 1 5 1
can 5 1 5 1
see 1 1 5 1 5 1 5
ich 5 1 5 1 5 1
kann 1 5 1 5
es 5 1
sehen 1 5 1 5 1
je 5 1 5 1 5 1
vois 1 5 1 5 1 5

Figure 2: An example of how the original matrix is
filled for a sentence in three languages. Zero entries
are left blank for readability.

Tikhonov regularization is integrated to improve
precision, recall, and convergence rate.

We use the implementaion of NMF provided by
the Surprise3 library, with default hyperparameters
(r = 15, n_epochs = 50).

3.2.1 NMF in MPWA framework
We create a separate matrix W for each sentence
in the multiparallel corpus. Tokens in the sentence
play the role of both users and items, i.e., we con-
sider each token both as a row and as a column.
Figure 2 shows an example of a sentence in a toy
English-German-French multiparallel corpus. If
two tokens are aligned using the bilingual aligner,
we fill the corresponding cell with the highest rat-
ing (5). To give a few negative examples to the
algorithm, if a token x from language L1 is aligned
to token y in language L2, we pick another ran-
dom token z from L2 and fill the corresponding
cell of x to z with the lowest rating (1). We zero
out all other cells. Next we apply the matrix fac-
torization algorithm to this matrix and then com-
pute the reduced matrix W ′ from the factors. Now
we grab the predicted alignment scores between
source and target languages from W ′. To extract
new alignment edges we apply the Argmax algo-
rithm (Jalili Sabet et al., 2020). Argmax creates an
alignment edge between word wi from language
L1 and word wj from language L2 if among all
words from L2, wi has the highest alignment score
with wj , and among all words from L1, wj has the
highest alignment score with wi.

3.3 Link Prediction

A multiparallel sentence annotated with bilingual
word alignments can be considered to be a graph
with words from all translations as nodes and the

3http://surpriselib.com/

http://surpriselib.com/
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word alignments as edges. Link prediction al-
gorithms such as Common Neighbors (CN) and
Adamic-Adar (AdAd) estimate the likelihood of
having an edge between two nodes x and y in the
graph based on the similarity of their neighbor-
hoods. The CN index weights all common neigh-
bors equally. In contrast, AdAd gives higher weight
to neighbors with low degrees because sharing a
neighbor that in turn has few neighbors is more
significant. Therefore, we use the AdAd index. It
is defined as:

AdAdx,y =
∑

z∈Γ(x)∩Γ(y)

1

log |Γ(z)|
(1)

where Γ(x) is the neighborhood of x.
If we use a word aligner that produces a score for

each alignment edge, we can use Weighted Adamic-
Adar (Lü and Zhou, 2010):

WAdAdx,y =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(z, y)

log(1 + S(z))
(2)

wherew(x, z) is the similarity score of x and z gen-
erated by the aligner and S(x) =

∑
z∈Γ(x)w(x, z).

For embedding-based aligners we use embedding
similarity as the score w(x, z). If an aligner does
not provide scores, we set all weights to 1.0.

Given a scored word alignment, we create a mul-
tilingual word alignment matrix W for each sen-
tence as shown in Figure 2. Each cell contains 0
or 1 for Adamic-Adar or the alignment score for
Weighted Adamic-Adar. We again apply Argmax
to extract new alignment edges and then add them
to the original alignment.

4 Experimental setup

4.1 PBC
The PBC corpus (Mayer and Cysouw, 2014) con-
tains 1758 editions of the Bible in 1334 languages.
The editions are aligned at the verse level and to-
kenized. A verse can contain more than one sen-
tence, but we treat it as one unit in the parallel
corpus since a true sentence level alignment is not
available. There are some errors in tokenization
(e.g., for Tibetan, Khmer and Chinese), but the
overall quality of the corpus is good. For the ma-
jority of languages one edition is provided, while a
few languages (in particular, English, French and
German) contain up to dozens of editions. The
verse coverage also differs from language to lan-
guage. Some languages have translations of both

New Testament and Hebrew Bible while others
contain only one. Table 2 gives corpus statistics.

4.2 Word alignment datasets

PBC does not provide gold word alignments. To
evaluate MPWA, we port two word alignment gold
datasets of the Bible to PBC: Blinker (Melamed,
1998) and the recently published HELFI (Yli-Jyrä
et al., 2020). We further experiment with bilin-
gual datasets, using Machine Translation (MT) to
create multiparallel corpora. Table 1 gives dataset
statistics.

The HELFI dataset consists of the Greek New
Testament, the Hebrew Bible and translations of
both into Finnish. In addition, morpheme align-
ments are provided for Finnish-Greek and Finnish-
Hebrew. We reformatted this dataset to the format
used by PBC. In more detail, we added three new
editions for the three languages to PBC. We iden-
tified the PBC verse identifier for each verse of
HELFI to ensure proper verse alignment of these
three new editions. The Finnish-Hebrew dataset
has 22,291 verses and the Finnish-Greek dataset
7,909. We split these datasets 80/10/10 into train,
validation and test.

The Blinker Bible dataset provides word level
alignments of 250 Bible verses between English
and French. The French side of this dataset matches
with the edition Louis Segond 1910 in PBC. How-
ever, the tokenizations (Blinker vs PBC) are differ-
ent. We therefore create a mapping of the tokens
using character n-gram matching. For English,
we created and added a new edition to PBC.

MT datasets. To more broadly evaluate MPWA,
we also create multiparallel datasets for four non-
Bible word alignment gold standards; these are
listed in Table 1 as “Non-Bible” corpora. For these
gold standards, we translate from English to all lan-
guages available in Google Translate, using their
API.4 For the added languages, we create align-
ments for the gold standard sentences using SimA-
lign.

4.3 Initial word alignments

We compare with two state of the art models, one
statistical, one neural. Eflomal (Östling and Tiede-
mann, 2016) is a Bayesian statistical word aligner
using Markov Chain Monte Carlo inference. SimA-
lign (Jalili Sabet et al., 2020) obtains word align-

4https://cloud.google.com/translate/
docs/basic/translating-text

https://cloud.google.com/translate/docs/basic/translating-text
https://cloud.google.com/translate/docs/basic/translating-text
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Language Pair Name # Sentences (train/valid./test)

Bible

FIN-HEB HELFI (Yli-Jyrä et al., 2020) 22291 (17832/2229/2230)
FIN-GRC HELFI (Yli-Jyrä et al., 2020) 7909 (6327/791/791)
ENG-FRA BLINKER (Melamed, 1998) 250

Non-
Bible

ENG-DEU EuroParl-baseda 508
ENG-FAS (Tavakoli and Faili, 2014) 400
ENG-HIN WPT2005b 90
ENG-RON WPT2005b 203

a www-i6.informatik.rwth-aachen.de/goldAlignment/
b http://web.eecs.umich.edu/~mihalcea/wpt05/

Table 1: Overview of datasets. We use ISO 639-3 language codes. # Sentences: the number of available verses
(i.e., sentences). FIN-HEB and FIN-GRC datasets split into train, validation and test.

# editions 1758
# languages 1334
# verses 20,470,892
# verses / # editions 11,520
# tokens / # verses 28.6

Table 2: PBC corpus statistics

ments from multilingual pretrained language mod-
els with no need for parallel data. For the sym-
metrization of Eflomal, we use grow-diag-final-and
(GDFA) and intersection, and for SimAlign we use
Argmax and Itermax. Intersection and Argmax gen-
erate accurate alignments while GDFA and Itermax
are less accurate but have better coverage (Jalili Sa-
bet et al., 2020).

We evaluate on a target language pair parallel
sentence as follows: First, we create the matrix
(Figure 2) for this sentence for all languages in the
multiparallel corpus. Then we run link prediction
on the matrix – this accumulates evidence from a
set of languages in the multiparallel corpus. Finally,
we take the predictions for the target language pair
and add them to the original (bilingual) alignment.

NMF works best if it starts with high-accuracy
(i.e., non-noisy) bilingual alignments – errors can
result in incorrectly predicted alignment edges. We
therefore use SimAlign Argmax and Eflomal In-
tersection, two word alignment methods with high
precision, to create the initial alignments that are
then fed into NMF. We then add the predictions to
any desired original alignments; e.g., NMF (GDFA)
uses Eflomal Intersection as the initial alignments
and adds the predictions to Eflomal GDFA. See the
Appendix for more details.

SimAlign offers high quality word alignments
for well-represented languages from pretrained lan-
guage models; however, our experiments show
that its performance is far behind Eflomal for less
well resourced languages like Biblical Hebrew and
Koine Greek. Also, Eflomal is a better match for

MPWA because it can provide word alignments
for all languages available in a multiparallel cor-
pus. In contrast, SimAlign is limited to languages
supported by pretrained multilingual embeddings.

To feed Eflomal with enough training data for a
target language pair, we use all available data from
different translations of the language pair. For ex-
ample if one language has two translations and the
other one has three translations, Eflomal’s training
data will contain six aligned translation pairs for
these two languages.

We use the standard evaluation measures for
word alignment: precision, recall, F1 and Align-
ment Error Rate (AER) (Och and Ney, 2003b;
Östling and Tiedemann, 2016; Jalili Sabet et al.,
2020).

5 Results

5.1 Multiparallel corpus results

We perform the first set of experiments on the
Blinker Bible and the HELFI gold standards in
the PBC. The baseline results are calculated on the
original language pairs. MPWA can be applied
to both Eflomal and SimAlign alignments. Since
the default version of SimAlign can only generate
alignments for the 84 languages that multilingual
BERT supports,5 for a better comparison, we use
the same set of languages in the alignment graph
for both SimAlign and Eflomal.

Table 3 shows the results for our methods ap-
plied on SimAlign and Eflomal baselines.6 AdAd,
NMF and WAdAd substantially improve the per-
formance for all language pairs. SimAlign gener-
ates high-quality alignments for the English-French
dataset, but cannot properly align underresourced
languages like Biblical Hebrew and Koine Greek.

5https://github.com/google-research/
bert/blob/master/multilingual.md

6We only consider SimAlign IterMax, not SimAlign
ArgMax, because IterMax performed better throughout.

www-i6.informatik.rwth-aachen.de/goldAlignment/
http://web.eecs.umich.edu/~mihalcea/wpt05/
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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FIN-HEB FIN-GRC ENG-FRA
Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

Baseline

Eflomal (intersection) 0.818 0.269 0.405 0.595 0.897 0.506 0.647 0.353 0.971 0.521 0.678 0.261
Eflomal (GDFA) 0.508 0.448 0.476 0.524 0.733 0.671 0.701 0.300 0.856 0.710 0.776 0.221
SimAlign 0.190 0.113 0.142 0.858 0.366 0.265 0.307 0.693 0.886 0.692 0.777 0.221

Init SimAlign
AdAd 0.199 0.127 0.155 0.845 0.402 0.289 0.336 0.664 0.878 0.731 0.798 0.200
WAdAd 0.186 0.165 0.175 0.825 0.353 0.350 0.351 0.649 0.856 0.752 0.801 0.197
NMF 0.122 0.100 0.110 0.890 0.396 0.337 0.364 0.636 0.835 0.700 0.762 0.236

Init Eflomal

WAdAd (intersection) 0.781 0.612 0.686 0.314 0.849 0.696 0.765 0.235 0.938 0.689 0.794 0.203
NMF (intersection) 0.78 0.576 0.663 0.337 0.864 0.669 0.754 0.248 0.948 0.624 0.753 0.245

WAdAd (GDFA) 0.546 0.693 0.611 0.389 0.707 0.783 0.743 0.257 0.831 0.796 0.813 0.186
NMF (GDFA) 0.548 0.646 0.593 0.407 0.72 0.759 0.739 0.261 0.844 0.767 0.804 0.195

Table 3: Comparison of results from different methods on PBC. The best results in each column are in bold. The
three methods exploiting multiparallelism (AdAd, WAdAd, NMF) generally outperform the baselines on F1 and
AER.

In such cases, MPWA uses the accumulated infor-
mation from all other language pairs in the graph
to improve the performance. When starting with
the SimAlign alignment (“Init SimAlign”), both
methods improve the result for both FIN-HEB and
FIN-GRC.

Eflomal generates better alignments for FIN-
HEB and FIN-GRC. This means that Eflomal also
generates better alignments between FIN, HEB and
GRC on the one hand and the other languages in
the graph on the other hand and therefore can pro-
vide a better signal for MPWA. The improvements
of our models applied on Eflomal are higher than
the ones applied on SimAlign for these language
pairs.

When changing the initial alignments from Eflo-
mal (intersection) to Eflomal (GDFA), we see dif-
ferent behaviors: GDFA improves the results for
Blinker while it does not help for HELFI. We be-
lieve this is caused by the different ways the two
datasets were annotated. In Blinker, many phrases
are “exhaustively” aligned: if a phrase DE in En-
glish is aligned with FG in French then all four
alignment edges (D-F, D-G, E-F, E-G) are given as
gold edges.7

So Blinker contains a lot of many-to-many links.
In contrast, most alignments are one-to-one in
HELFI. This partially explains why intersection
as initial alignment works much better for HELFI
than GDFA and vice versa for Blinker.

In summary, compared to the baselines, we see
very large improvements through exploiting mul-
tiparallelism for one type of alignment methodol-
ogy (HELFI, F1 improved by up to 20% for FIN-

7For example, the alignment of the phrases “trembled vio-
lently” and “fut saisi d’und grande, d’une violente émotion”
consists of 2 · 8 gold edges.

HEB) and improvements of up to 3.5% for the other
(ENG-FRA).

5.2 MT dataset results

We perform the second set of experiments on gold
standard alignments for language pairs that are not
part of a multiparallel corpus such as PBC. To this
end, we create artificial multiparallel corpora by
translating the English side to all languages avail-
able in the Google Translate API. The main goal
is to give broader evidence for the effectiveness of
our method, beyond the specialized domain of the
Bible.

Eflomal’s alignments generally have good qual-
ity. However, they get worse when less parallel
data is available (Jalili Sabet et al., 2020). Since
the size of the multiparallel corpus created by ma-
chine translation is rather small, we use SimAlign
for generating initial alignments. SimAlign has
been shown to have good performance even for
very small parallel corpora; in fact, it does not need
any parallel data at all.

Table 4 shows the results of the experiments.
Both NMF and WAdAd, improve the performance
of the baseline by using the alignment graph. Im-
provements range from 0.8% (ENG-DEU) to 3.3%
(ENG-HIN). This again demonstrates the utility of
exploiting multiparallelism for word alignment. It
is worth mentioning that in this case the translations
are noisy since they were automatically generated.
But even with these noisy translations (instead of a
“true” multiparallel corpus), our models effectively
leverage multiparallelism.
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ENG-PES ENG-HIN ENG-RON ENG-DEU
Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

Baseline SimAlign 0.756 0.645 0.696 0.304 0.709 0.493 0.582 0.418 0.807 0.663 0.728 0.272 0.829 0.795 0.812 0.188

Init SimAlign
AdAd 0.751 0.700 0.725 0.276 0.693 0.544 0.610 0.390 0.799 0.696 0.744 0.256 0.818 0.823 0.820 0.179
WAdAd 0.705 0.740 0.722 0.278 0.643 0.574 0.607 0.394 0.725 0.717 0.721 0.279 0.749 0.844 0.794 0.207
NMF 0.734 0.698 0.716 0.284 0.684 0.559 0.615 0.385 0.780 0.696 0.736 0.265 0.804 0.827 0.815 0.185

Table 4: Results with gold standards translated into other languages using machine translation. The best results in
each column are in bold. The three methods exploiting multiparallelism (AdAd, WAdAd, NMF) outperform the
baselines on F1 and AER.

Figure 3: F1 of MPWA for the target language pair
FIN-HEB as a function of the number of additional lan-
guages. There is a clear rise initially. The curve flattens
around 75.

5.3 Analysis

5.3.1 Effect of number of languages

The effect of adding more languages to the align-
ment graph is depicted in Figure 3. This plot shows
F1 for FIN-HEB. As seen in the figure, the slope
is pretty steep up to 25 languages, but even adding
just three languages can still improve the results.
For 75 languages we have almost reached the peak
and after 100, adding more languages is not im-
proving the results. This means that MPWA can
also be helpful for corpora with a smaller number
of languages – a massively parallel corpus with
thousands of languages is not required.

5.3.2 Size of the training set

To assess the effect of dataset size on the perfor-
mance of MPWA, we perform a set of experiments
on ENG-FRA and NMF. To this end, we take the
training data for ENG-FRA and train models on
subsets of it. The training data consists of 6.4M
sentence pairs – this number is so high because we
use the crossproduct of all editions in English and
French (§4.3).

The results are shown in Figure 4. Eflomal per-
formance increases with training set size initially

Figure 4: Word alignment F1 on ENG-FRA as a func-
tion of the size of the training set, ranging from 30K to
6.4M training sentence pairs

and is then less predictable. NMF consistently im-
proves the scores.

5.3.3 Effect of task difficulty
Table 3 shows large improvements for all datasets,
and especially for FIN-HEB and FIN-GRC. To get
more insight into the reasons for this improvement,
we stratify FIN-HEB verses by dividing the interval
[0, 1] of initial F1 performance of Eflomal into five
equal-sized subintervals: [0, 0.2], . . . , (0.8, 1].

Figure 5 indicates that MPWA is most effective
for difficult verses, but brings little improvement
for easy verses. We attribute this to two reasons:

1. An easy to align verse in a language pair can-
not use help from other languages since it al-
ready has good alignment links (although the
language pair would still be of benefit in im-
proving alignments for the sentence in other
languages). So there is no way for MPWA to
get better results in this scenario.

2. MPWA only tries to get better results by
adding new alignments, and as an easy verse
already has many alignment links, adding new
links almost inevitably results in a drop in pre-
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Figure 5: How helpful is MPWA for different difficulty
levels? For this analysis, FIN-HEB verses were strat-
ified according to Eflomal F1 (x-axis). We see that
MPWA brings the largest improvements for difficult
sentences.

ENG-FRA FIN-HEB FIN-GRC
Lang. ∆ Lang. ∆ Lang. ∆

SPA +2.0% TGL +17.7% LAT +7.5%
ITA +1.9% FRY,ELL +17.3% ELL +6.6%
DEU +1.8% SWE +17.3% ENG +6.1%
NLD +1.4% NLD +16.8% FRY +5.8%
AFR +1.3% YOR +14.2% BEL +5.7%

Table 5: The five most helpful languages and WAdAd’s
absolute improvements in F1 over the initial bilingual
aligner SimAlign. For example, MPWA improves the
bilingual FIN-GRC alignment by 7.5% if applied to
the trilingual corpus FIN-GRC-LAT, i.e., Latin can be
viewed as the best bridge between Finnish and Greek.

cision. It may also be possible to inspect and
prune existing Eflomal links using MPWA to
get better results in this scenario.

5.3.4 Most helpful languages
For each dataset, the five most helpful languages
with their corresponding improvements are listed
in Table 5. We hypothesize that these languages
serve to bridge the typological gap between the two
target languages. Table 5 suggests one should be
able to achieve excellent results – even for a corpus
with a small number of languages – if we utilize an
intelligent selection of languages.

5.3.5 Multiple translations in two languages
There are some datasets that contain few languages,
but many translations of a text in one language.
PBC is one example of such a dataset, many liter-
ary works another (e.g., many novels have many
translations in English). To see whether MPWA
can also help in this scenario, we picked all avail-
able 49 English and French editions from PBC and
used them as additional translations for the ENG-
FRA dataset. The outcome of this experiment is

Prec. Rec. F1 AER

Eflomal (intersection) 0.971 0.521 0.678 0.319
Eflomal (GDFA) 0.856 0.710 0.776 0.221

NMF (target languages) 0.830 0.749 0.787 0.213
NMF (other languages) 0.837 0.753 0.793 0.205

Table 6: F1 for ENG-FRA. MPWA can exploit a mul-
tiparallel corpus with languages different from the tar-
get languages (“other languages”) better than one that
contains additional translations in the target languages
(“target languages”).

compared with the outcome of the same setup, but
with translations from languages other than French
and English in Table 6. From this table we can
conclude that translations from the target language
pair can also assist, but not as much as translations
from other languages.

6 Conclusion and Future Work

We presented MPWA, a framework for leverag-
ing multiparallel corpora for word alignment. We
used two prediction methods, one based on recom-
mender systems and one based on link prediction
algorithms. By adding new alignment edges to the
output of bilingual aligners, both methods show
large improvements over the bilingual baselines,
with absolute improvements of F1 of up to 20%.
We have also ported Blinker and HELFI word align-
ment gold standards to the Parallel Bible Corpus
in the hope that this will help foster more work on
exploiting multiparallel corproa.

Future work. In this paper, we have mainly fo-
cused on adding new alignment edges to baseline
word alignments based on properties of the mul-
tiparallel alignment graph. This increases recall,
but can harm precision. In future work, we plan to
expand on the possibility of deleting edges based
on evidence from the multiparallel alignment graph
(cf. 5.3.3), thereby potentially improving both pre-
cision and recall.
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A Pipeline Details

There are several elements of the MPWA pipeline
that can be configured by the user, e.g., depending
on whether precision or recall are more important
for an application. Here we show in Figures 6 and
7 the two pipeline configurations we used for the
results in the paper.

Figure 6: The pipeline for NMF alignments
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Figure 7: The pipeline for AdAd and WAdAd align-
ments


