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Abstract

Zero-shot translations is a fascinating feature
of Multilingual Neural Machine Translation
(MNMT) systems. These MNMT models are
usually trained on English-centric data, i.e. En-
glish either as the source or target language,
and with a language label prepended to the
input indicating the target language. How-
ever, recent work has highlighted several flaws
of these models in zero-shot scenarios where
language labels are ignored and the wrong
language is generated or different runs show
highly unstable results. In this paper, we inves-
tigate the benefits of an explicit alignment to
language labels in Transformer-based MNMT
models in the zero-shot context, by jointly
training one cross attention head with word
alignment supervision to stress the focus on
the target language label. We compare and
evaluate several MNMT systems on three mul-
tilingual MT benchmarks of different sizes,
showing that simply supervising one cross at-
tention head to focus both on word alignments
and language labels reduces the bias towards
translating into the wrong language, improv-
ing the zero-shot performance overall. More-
over, as an additional advantage, we find that
our alignment supervision leads to more stable
results across different training runs.

1 Introduction

Multilingual Neural Machine Translation (MNMT)
focuses on translation between multiple language
pairs through a single optimized neural model, and
has been explored from different angles witness-
ing a rapid progress in recent years (Arivazha-
gan et al., 2019b; Wang et al., 2020; Dabre et al.,
2020; Lin et al., 2021). Besides the great flexibil-
ity MNMT models offer, they are also highlighted
by their so called zero-shot translation capabili-
ties, i.e., translating between all combinations of
languages available in the training data, including
those with no parallel data seen at training time
(Ha et al., 2016; Firat et al., 2016; Johnson et al.,

2017). Many studies have investigated this feature,
focusing on the impact of both, the model architec-
ture design (Arivazhagan et al., 2019a; Pham et al.,
2019) and data pre-processing (Lee et al., 2017;
Wang et al., 2019; Rios et al., 2020; Wu et al.,
2021). Broadly speaking, MNMT architectures are
categorized according to their degree of parameter
sharing, from fully shared (Johnson et al., 2017) to
the use of language-specific components (Vázquez
et al., 2020; Escolano et al., 2021; Zhang et al.,
2021). The Johnson et al. (2017) MNMT model is
widely used, due to its simplicity and good trans-
lation quality. It uses the fully shared parameters
setting, and relies on appending an artificial lan-
guage label to each input sentence to indicate the
target language. While this method allows for zero-
shot translation, several works have highlighted
two major flaws: i) its failure to reliably generalize
to unseen language pairs, ending up with the so
called off-target issue, where the language label is
ignored and the wrong target language is produced
as a result (Zhang et al., 2020), ii) its lack of stabil-
ity in translation results between different training
runs (Rios et al., 2020).

In this work, we investigate the role of guided
alignment in the Johnson et al. (2017) setting, by
jointly training one cross attention head to explic-
itly focus on the target language label. We show
that alignment supervision mitigates the off-target
translation issue in the zero-shot case. Our method
improves the zero-shot translation performance and
results in more stable results across different train-
ing runs.

2 Methodology

Alignment Methods. Given a bitext Bsrc =
(s1, ..., sj , ..., sN ) and Btrg = (t1, ..., ti, ..., tM )
where Bsrc is a sentence in the source language
and Btrg is its translation in the target language, an
alignment A is a mapping of words between Bsrc

and Btrg (Tiedemann, 2011), formally defined as
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Figure 1: English→ German example sentence with different alignment methods. Alignments in (a) show word
alignments between corresponding words in the two languages, (b) our introduced alignments between all target
words and the input language label, and (c) the union of the two.

a subset of the Cartesian product of the word posi-
tions (Och and Ney, 2003):

A ⊆ {(j, i) : j = 1, ..., N ; i = 1, ...,M} (1)

We study three different settings: (a) standard word
alignment between corresponding words, (b) align-
ments between all target words and the language
label in the input string, and (c) the union between
the former two. Figure 1 shows an example of
those approaches. To produce word alignments
between parallel sentences, i.e., Figure 1 (a), we
use the awesome-align tool (Dou and Neubig,
2021), a recent work that leverages multilingual
BERT (Devlin et al., 2019) to extract the links.1

Models. To train Many-to-Many MNMT models,
we use a 6-layer Transformer architecture (Vaswani
et al., 2017), prepending a language label in the in-
put to indicate the target language (Johnson et al.,
2017). Following Garg et al. (2019), given an align-
ment matrix AMM,N and an attention matrix com-
puted by a cross attention head AHM,N , for each
target word i, we use the following cross-entropy
loss La to minimize the Kullback-Leibler diver-
gence between AH and AM :

La(AH,AM) = − 1

M

M∑
i=1

N∑
j=1

AMi,j log(AHi,j)

(2)
The overall loss L is:

L = Lt + γLa(AH,AM) (3)

where Lt is the standard NLL translation loss, and
γ is a hyperparameter. We use γ = 0.05, supervis-
ing only one cross attention head at the third last

1We use the bert-base-multilingual-cased
checkpoint, without fine-tuning, and with softmax as a ex-
traction function.

layer.2 Given the sparse nature of the alignments,
we replace the softmax operator in the cross atten-
tion head with the α-entmax function (Peters et al.,
2019; Correia et al., 2019). Entmax allows sparse
attention weights for any α > 1. Following Peters
et al. (2019), we use α=1.5.

3 Experimental Setup

We use three highly multilingual MT benchmarks:

• TED Talks (Qi et al., 2018). An English-
centric parallel corpus with 10M training sen-
tences across 116 translation directions. Fol-
lowing Aharoni et al. (2019), we evaluate on a
total of 16 language directions, while as zero-
shot test we evaluate on 4 language pairs.

• WMT-2018 (Bojar et al., 2018).3 A parallel
dataset provided by the WMT-2018 shared
task on news translation. We use all available
language pairs, i.e. 14, up to 5M training
sentences for each language pair. We evaluate
the models on the test sets of the shared task,
i.e. newstest2018. As there are no zero-shot
test sets provided by the competition, we use
the test portion from the Tatoeba-challenge
(Tiedemann, 2020),4 in all possible language
pair combinations included in the challenge.

• OPUS-100 (Zhang et al., 2020). An English-
centric multi-domain benchmark, built upon
the OPUS parallel text collection (Tiedemann,
2012). It covers a total of 198 language di-
rections, with up to 1M training sentence per

2As we use the OpenNMT-py (Klein et al., 2017)
toolkit, it is recommended to supervise the third last layer.
See https://github.com/OpenNMT/OpenNMT-py/
issues/1843.

3http://data.statmt.org/wmt18/
translation-task/preprocessed/

4release v2020-07-28.

https://github.com/OpenNMT/OpenNMT-py/issues/1843
https://github.com/OpenNMT/OpenNMT-py/issues/1843
http://data.statmt.org/wmt18/translation-task/preprocessed/
http://data.statmt.org/wmt18/translation-task/preprocessed/
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ID Model #Param. EN→ X (16) X→ EN (16) BLEUzero (4) ACCzero (4)

Aharoni et al. (2019)-103 473M 20.11 29.97 9.17 -
Aharoni et al. (2019) 93M 19.54 28.03 - -

1 Transformer 93M 18.93 ±0.15 27.56 ±0.25 6.81 ±0.86 72.38 ± 7.18
2 1 + 1.5-entmax 93M 18.90 ±0.25 27.21 ±0.38 10.02 ±1.50 87.81 ± 8.80
3 2 + (a) 93M 18.99 ±0.07 27.58 ±0.12 8.38 ±5.37 73.12 ±41.14
4 2 + (b) 93M 18.98 ±0.08 27.48 ±0.13 6.35 ±0.87 65.01 ± 6.10
5 2 + (c) 93M 19.06 ±0.11 27.37 ±0.19 11.94 ±0.86 97.25 ± 2.66

Table 1: Results on the Many-to-Many TED Talks benchmark. The baselines consist of 1 our replication of the

standard 6-layer Transformer model by Aharoni et al. (2019), and 2 its variant with a 1.5-entmax function on
the cross attention heads as in Correia et al. (2019). The labels (a), (b), (c) denote the use of different alignment
supervision (see Section 2). “#Param.”: trainable parameter number. “EN -> X (16)” and “X-> EN (16)”: average
BLEU scores for English to Non-English languages and for Non-English languages to English on 16 language
pairs respectively. “BLEUzero (4)” and “ACCzero (4)”: average BLEU scores and target language identification
accuracy over 4 zero-shot language directions. We report average BLEU and accuracy scores, plus the standard
deviation over 3 training runs with different random seeds.

language pair. It provides supervised trans-
lation test data for 188 language pairs, and
zero-shot evaluation data for 30 pairs.

Following related work (Aharoni et al., 2019;
Zhang et al., 2020), we apply joint Byte-Pair En-
coding (BPE) segmentation (Sennrich et al., 2016;
Kudo and Richardson, 2018), with a shared vo-
cabulary size of 32K symbols for TED Talks and
64K for WMT-2018 and OPUS-100. As evaluation
measure, we use tokenized BLEU (Papineni et al.,
2002) to be comparable with Aharoni et al. (2019)
for the TED Talks benchmark, and SACREBLEU
5 (Post, 2018) for WMT-2018 and OPUS-100.6

As an additional evaluation, we report the target
language identification accuracy score for the zero-
shot cases (Zhang et al., 2020), called ACCzero.
We use fasttext as a language identification tool
(Joulin et al., 2017), counting how many times the
translation language matches the reference target
language.

The Transformer models follow the base setting
of Vaswani et al. (2017), with three different ran-
dom seeds in each run. All of them are trained on
the Many-to-Many English-centric scenario, i.e.,
on the concatenation of the training data having En-
glish either as the source or target language. Details
about data and model settings in the Appendix.

5Signature: BLEU+case.mixed+numrefs.1+smooth.exp+
tok.{13a,ja-mecab-0.996-IPA,zh}+version.1.5.0

6We report average BLEU over all test sets. Scores for
each language pair are available in the supplementary material.

4 Results and Discussion

Throughout this section we refer to our baseline
MNMT models by the labels 1 and 2 , while
3 , 4 , and 5 mark the models trained with the

auxiliary alignment supervision task, (a), (b), (c)
from Figure 1 respectively (see Section 2).

TED Talks. Table 1 shows the results on the
TED Talks benchmark. Regarding translation qual-
ity on the language pairs seen during training (EN
→ X and X→ EN columns), average BLEU scores
from all models end up in the same ballpark. In con-
trast, zero-shot results vary across the board, with
5 attaining the best performance, with almost 2

BLEU points better than its baseline 2 . More-
over, 5 considerably improves target language
identification accuracy (ACCzero), with more sta-
ble results, i.e. lower standard deviation, than coun-
terparts. Surprisingly, the addition of alignment
supervision (a) and (b) as an auxiliary task has
an overall detrimental effect on the zero-shot per-
formance, even though model 4 results in more
stable results than 2 .

WMT-2018. Table 2 reports the results on the
WMT-2018 benchmark. As expected, in a high-
resource scenario bilingual baselines are hard to
beat. Among multilingual models, the overall per-
formance follows a similar trend as before. En-
riching the model with alignment supervision (c)
results in the best system overall, with an improve-
ment of more than 3 BLEU points in the zero-shot
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ID Model #Param. EN→ X (7) X→ EN (7) BLEUzero (24) ACCzero (24)

Transformer, Bilingual 127M 18.28 19.25 - -
1 Transformer 127M 15.18 ±0.54 18.39 ±0.65 9.78 ±0.61 74.17 ±4.78
2 1 + 1.5-entmax 127M 15.17 ±0.41 18.33 ±0.56 8.55 ±0.61 65.31 ±4.46
3 2 + (a) 127M 11.99 ±0.37 16.42 ±0.73 6.38 ±0.83 73.78 ±7.84
4 2 + (b) 127M 15.46 ±0.16 18.66 ±0.31 11.72 ±0.76 85.64 ±3.37
5 2 + (c) 127M 15.50 ±0.18 18.70 ±0.23 11.98 ±0.12 85.68 ±0.82

Table 2: Results on the Many-to-Many WMT-2018 benchmark. Average BLEU, target language identification
accuracy and standard deviation of 3 training runs.

ID Model #Param. EN→ X (94) X→ EN (94) EN→ X (4) X→ EN (4) BLEUzero (30) ACCzero (30)

Transformer, Bilingual† 110M - - 20.28 21.23 - -
Transformer+MATT† 141M 20.77 29.15 16.08 24.15 4.71 39.40

MATT+LALN+LALT† 173M 22.86 29.49 19.25 24.53 5.41 51.40
1 Transformer 142M 18.50 ±0.08 26.85 ±0.13 18.37 ±0.39 25.70 ±0.05 4.59 ±0.21 30.91 ±2.05
2 1 + 1.5-entmax 142M 18.47 ±0.15 26.83 ±0.14 18.42 ±0.38 25.67 ±0.10 4.39 ±0.86 30.51 ±5.62
3 2 + (a) 142M 17.80 ±0.23 26.21 ±0.40 17.53 ±0.34 25.18 ±0.39 3.96 ±0.43 28.95 ±2.61
4 2 + (b) 142M 18.56 ±0.04 26.91 ±0.18 18.32 ±0.36 25.47 ±0.10 4.63 ±0.48 31.05 ±5.93
5 2 + (c) 142M 18.63 ±0.07 26.69 ±0.09 18.51 ±0.18 25.39 ±0.01 4.73 ±0.16 32.00 ±0.96

Table 3: Results on the Many-to-Many OPUS-100 benchmark. Results marked with † are taken from Zhang et al.
(2020). MATT denotes the use of merged attention (Zhang et al., 2019). LALN and LALT indicate the use of
language-aware components. Average BLEU, target language identification accuracy and standard deviation of 3
training runs.

testbed compared to baseline 2 , and with stable
results across three training runs (standard devia-
tions of 0.12 and 0.82).

OPUS-100. As one can see from Table 3, we
confirm the positive effect of adding the align-
ment strategy (c) both as translation quality and
as a mechanism to produce stable results even in a
highly multilingual setup, i.e., training on 198 lan-
guage directions. The average score over 30 zero-
shot language pairs is low but the individual results
range from 0.3 to 17.5 BLEU showing the poten-
tials of multilingual models in this challenging data
set as well.7 Even though the results from our
best model still lag behind models with language-
specific components, i.e. MATT+LALN+LALT

from Zhang et al. (2020), we note that our results
demonstrate the positive effect of alignment on
zero-shot translation.8

Overall, our experiments show consistent results
across different benchmarks, providing quantita-
tive evidence on the utility of guided alignment
in highly multilingual MT scenarios. Supervising

7Individual scores available in the supplementary material.
8Also note that Zhang et al. (2020) average the last 5

checkpoints whereas we report single checkpoints per run.

a single cross attention head with the alignment
method (c) substantially reduces the instability be-
tween training runs, mitigating the off-target trans-
lation issue in the zero-shot evaluation. Zero-shot
improvements, i.e. BLEUzero and ACCzero, are
large in two benchmarks out of three, i.e. Ted Talks
and WMT-2018, and with a similar trend in OPUS-
100. We also note that performance differences
may be related to the different data sizes (see Ap-
pendix A). TED Talks is a rather small and imbal-
anced multilingual dataset with 116 language direc-
tions with a total of 10M training sentences, while
WMT-2018 and OPUS-100 comprise 14 language
pairs for a total of 47.8M training sentences, and
110M training sentences for 198 language pairs,
respectively. We plan on investigating the impact
of the training size and the resulting alignments on
the zero-shot test sets further in future work.

Limitations Finally, we highlight that we have
focused on a quantitative evaluation on English-
centric MNMT benchmarks only, therefore we lack
a comprehensive evaluation on complete MNMT
benchmarks including training data without En-
glish as source and target language (Freitag and
Firat, 2020; Rios et al., 2020; Tiedemann, 2020;
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Goyal et al., 2021).

5 Conclusions and Future Work

In this work we present an empirical comparative
evaluation of integrating different alignment meth-
ods in Transformer-based models for highly multi-
lingual English-centric MT setups. Our extensive
evaluation over three alignment variants shows that
adding alignment supervision between correspond-
ing words and the language label consistently im-
proves the stability of the models, resulting in sta-
ble performance across different runs and mitigat-
ing the off-target translation issue in the zero-shot
scenario. We believe that our work will pave the
way for designing new and better multilingual MT
models to improve their generalization in zero-shot
setups.

As future work, we intend to analyze the quality
of the learned alignments and their effect on the
other attention weights in both supervised and zero-
shot evaluation data (Raganato and Tiedemann,
2018; Tang et al., 2018; Mareček and Rosa, 2019;
Voita et al., 2019). Finally, we plan to explore
other mechanisms to inject prior knowledge to bet-
ter handle zero-shot translations (Deshpande and
Narasimhan, 2020; Raganato et al., 2020; Song
et al., 2020).
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A Data and Model details

A.1 Data

TED Talks (Qi et al., 2018). This parallel cor-
pus includes 59 language pairs from and to English.
It is a highly imbalanced benchmark, ranging from
less than 4K up to 215K training sentences. We
use the same languages as Aharoni et al. (2019)
for both supervised testing and zero-shot evalua-
tion. As supervised test sets, we use {Azerbeijani,
Belarusian, Galician, Slovak, Arabic, German, He-
brew, Italian}↔English. As zero-shot test sets, we
use Arabic↔French, and Ukrainian↔Russian.

WMT-2018 (Bojar et al., 2018). We use train-
ing and testing data as provided by the WMT
2018 news translation task organizers. The bench-
mark contains a total of 14 language pairs: {Chi-
nese, Czech, Estonian, Finnish, German, Rus-
sian, Turkish}↔English. For training, we use
up to 5M parallel sentences per language pair,
with Turkish↔English, Estonian↔English, and
Finnish↔English, having only 200K, 1M, and
2.7M training sentences, respectively. For zero-
shot test sets, we use the test data from Tiedemann
(2020), using the following 24 language directions:

Czech↔ German, German↔ Russian,

German↔ Chinese, Finnish↔ German,

Finnish↔ Turkish, Russian↔ Finnish,

Russian↔ Chinese, Turkish↔ Chinese,

Czech↔ Russian, German↔ Turkish,

Estonian↔ Russian, Russian↔ Turkish

OPUS-100 (Zhang et al., 2020). OPUS-100 is
a recent benchmark consisting of 55M English-
centric sentence pairs covering 100 languages. The
data is collected from movie subtitles, GNOME
documentation, and the Bible. Out of 99 language
pairs, 44 have 1M sentences, 73 have at least 100K
sentences, and 95 at least 10K. It provides also
zero-shot test sets, pairing the following languages:
Arabic, Chinese, Dutch, French, German, and Rus-
sian.

A.2 Model hyperparameters

We use the OpenNMT-py framework (Klein et al.,
2017), and the Transformer base model setting
(Vaswani et al., 2017). Specifically, we use 6
layers for the encoder and the decoder, 512 as
model dimension, and 2048 as hidden dimension.

#Lang. #Train. #Zero-shot
pairs sent. lang. pairs

TED Talks 116 10M 4
WMT-2018 14 47M 24
OPUS-100 198 110M 30

Table 4: Benchmark statistics: number of language
pairs used for training, total number of training sen-
tences, and number of language pairs for zero-shot eval-
uation.

We applied 0.1 as dropout for both residual lay-
ers and attention weights, using the Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9, and
β2 = 0.998, with learning rate set at 3 and 40K
warmup steps as in Aharoni et al. (2019). We train
the models with three random seeds each, for 200K
training steps for the TED Talks and WMT-2018
benchmarks, while for 500K training steps for the
OPUS-100. To speed up training, we use half-
precision, i.e., FP16.


