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Abstract

Combining several embeddings typically im-

proves performance in downstream tasks as

different embeddings encode different infor-

mation. It has been shown that even models us-

ing embeddings from transformers still bene-

fit from the inclusion of standard word embed-

dings. However, the combination of embed-

dings of different types and dimensions is chal-

lenging. As an alternative to attention-based

meta-embeddings, we propose feature-based

adversarial meta-embeddings (FAME) with an

attention function that is guided by features

reflecting word-specific properties, such as

shape and frequency, and show that this is ben-

eficial to handle subword-based embeddings.

In addition, FAME uses adversarial training

to optimize the mappings of differently-sized

embeddings to the same space. We demon-

strate that FAME works effectively across lan-

guages and domains for sequence labeling and

sentence classification, in particular in low-

resource settings. FAME sets the new state of

the art for POS tagging in 27 languages, var-

ious NER settings and question classification

in different domains.

1 Introduction

Recent work on word embeddings and pre-trained

language models has shown the large impact of

language representations on natural language pro-

cessing (NLP) models across tasks and domains

(Devlin et al., 2019; Beltagy et al., 2019; Conneau

et al., 2020). Nowadays, a large number of differ-

ent embedding models are available with different

characteristics, such as different input granularities

(word-based (e.g., Mikolov et al., 2013; Pennington

et al., 2014) vs. subword-based (e.g., Heinzerling

and Strube, 2018; Devlin et al., 2019) vs. character-

based (e.g., Lample et al., 2016; Ma and Hovy,

2016; Peters et al., 2018)), or different data used

for pre-training (general-world vs. specific domain).

Since those characteristics directly influence when

embeddings are most effective, combinations of

different embedding models are likely to be benefi-

cial (Tsuboi, 2014; Kiela et al., 2018; Lange et al.,

2019b), even when using already powerful large-

scale pre-trained language models (Akbik et al.,

2018; Yu et al., 2020). Word-based embeddings,

for instance, are strong in modeling frequent words

while character-based embeddings can model out-

of-vocabulary words. Similarly, domain-specific

embeddings can capture in-domain words that do

not appear in general domains like news text.

Different word representations can be combined

using so-called meta-embeddings. There are sev-

eral methods available, ranging from concatena-

tion (e.g., Yin and Schütze, 2016), over averag-

ing (e.g., Coates and Bollegala, 2018) to attention-

based meta-embeddings (Kiela et al., 2018). How-

ever, they all come with shortcomings: Concatena-

tion leads to high-dimensional input vectors and,

as a result, requires additional parameters in the

first layer of the neural network. Averaging simply

merges all information into one vector, not allowing

the network to focus on specific embedding types

which might be more effective than others to repre-

sent the current word. Attention-based embeddings

address this problem by allowing dynamic combi-

nations of embeddings depending on the current

input token. However, the calculation of attention

weights requires the model to assess the quality of

embeddings for a specific word. This is arguably

very challenging when embeddings of different in-

put granularities are combined, e.g., subwords and

words. Infrequent in-domain tokens, for instance,

are hard to detect when using subword-based em-

beddings as they can model any token. Moreover,

both average and attention-based meta-embeddings

require a mapping of all embeddings into the same

space which can be challenging for a set of embed-

dings with different dimensions.

In this paper, we propose feature-based adver-

sarial meta-embeddings (FAME) that (1) align the
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embedding spaces with adversarial training, and

(2) use attention for combining embeddings with

a layer that is guided by features reflecting word-

specific properties, such as the shape or frequency

of the word and, thus, can help the model to assess

the quality of the different embeddings. By using

attention, we avoid the shortcomings of concate-

nation (high-dimensional input vectors) and aver-

aging (merging information without focus). Fur-

ther, our contributions mitigate the challenges of

previous attention-based meta-embeddings: In our

analysis, we show that the first contribution is es-

pecially beneficial when embeddings of different

dimensions are combined. The second helps, in par-

ticular, when combining word-based with subword-

based embeddings.

We conduct experiments across a variety of

tasks, languages and domains, including sequence-

labeling tasks (named entity recognition (NER) for

four languages, concept extraction for two special

domains (clinical and materials science), and part-

of-speech tagging (POS) for 27 languages) and sen-

tence classification tasks (question classification in

different domains). Our results and analyses show

that FAME outperforms existing meta-embedding

methods and that even powerful fine-tuned trans-

former models can benefit from additional embed-

dings using our method. In particular, FAME sets

the new state of the art for POS tagging in all 27

languages, for NER in two languages, as well as

on all tested concept extraction and two question

classification datasets.

In summary, our contributions are meta-

embeddings with (i) adversarial training and (ii) a

feature-based attention function. (iii) We perform

broad experiments, ablation studies and analyses

which demonstrate that our method is highly ef-

fective across tasks, domains and languages, in-

cluding low-resource settings. (iv) Moreover, we

show that even representations from large-scale pre-

trained transformer models can benefit from our

meta-embeddings approach. The code for FAME

is publicly available1 and compatible with the flair

framework (Akbik et al., 2018).

2 Related Work

This section surveys related work on meta-

embeddings, attention and adversarial training.

1https://github.com/boschresearch/

adversarial_meta_embeddings

Meta-Embeddings. Previous work has seen

performance gains by, for example, combining var-

ious types of word embeddings (Tsuboi, 2014) or

the same type trained on different corpora (Luo

et al., 2014). For the combination, some alterna-

tives have been proposed, such as different input

channels of a convolutional neural network (Kim,

2014; Zhang et al., 2016), concatenation followed

by dimensionality reduction (Yin and Schütze,

2016) or averaging of embeddings (Coates and Bol-

legala, 2018), e.g., for combining embeddings from

multiple languages (Lange et al., 2020b; Reid et al.,

2020). More recently, auto-encoders (Bollegala

and Bao, 2018; Wu et al., 2020), ensembles of sen-

tence encoders (Poerner et al., 2020) and attention-

based methods (Kiela et al., 2018; Lange et al.,

2019a) have been introduced. The latter allows a

dynamic (input-based) combination of multiple em-

beddings. Winata et al. (2019) and Priyadharshini

et al. (2020) used similar attention functions to

combine embeddings from different languages for

NER in code-switching settings. Liu et al. (2021)

explored the inclusion of domain-specific seman-

tic structures to improve meta-embeddings in non-

standard domains. In this paper, we follow the idea

of attention-based meta-embeddings and propose

task-independent methods for improving them.

Extended Attention. Attention has been intro-

duced in the context of machine translation (Bah-

danau et al., 2015) and is since then widely used

in NLP (i.a., Tai et al., 2015; Xu et al., 2015; Yang

et al., 2016; Vaswani et al., 2017). Our approach

extends this technique by integrating word features

into the attention function. This is similar to extend-

ing the source of attention for uncertainty detection

(Adel and Schütze, 2017) or relation extraction

(Zhang et al., 2017b; Li et al., 2019). However, in

contrast to these works, we use task-independent

features derived from the token itself. Thus, we can

use the same attention function for different tasks.

Adversarial Training. Further, our method

is motivated by the usage of adversarial training

(Goodfellow et al., 2014) for creating input repre-

sentations that are independent of a specific domain

or feature. This is related to using adversarial train-

ing for domain adaptation (Ganin et al., 2016) or

coping with bias or confounding variables (Li et al.,

2018; Raff and Sylvester, 2018; Zhang et al., 2018;

Barrett et al., 2019; McHardy et al., 2019). Follow-

ing Ganin et al. (2016), we use gradient reversal

training in this paper. Recent studies use adversar-
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- Frequency: High-frequency words can typi-

cally be modeled well by word-based embeddings,

while low-frequency words are better captured with

subword-based embeddings. Moreover, frequency

is domain-dependent and can thus help to decide be-

tween embeddings from different domains. We es-

timate the frequency n of a word in the general do-

main from its rank r in the FastText-based embed-

dings provided by Grave et al. (2018): n(r) = k/r
with k = 0.1, following Manning and Schütze

(1999). Finally, we group the words into 20 bins

as in Mikolov et al. (2011) and represent their fre-

quency with a 20-dimensional one-hot vector.

- Word Shape: Word shapes capture certain lin-

guistic features and are often part of manually de-

signed feature sets, e.g., for CRF classifiers (Laf-

ferty et al., 2001). For example, uncommon word

shapes can be indicators for domain-specific words,

which can benefit from domain-specific embed-

dings. We create 12 binary features that capture

information on the word shape, including whether

the first, any or all characters are uppercased, al-

phanumerical, digits or punctuation marks.

- Word Shape Embeddings: In addition, we train

word shape embeddings (25 dimensions) similar

to Limsopatham and Collier (2016). For this, the

shape of each word is converted by replacing let-

ters with c or C (depending on the capitalization),

digits with n and punctuation marks with p. For

instance, Dec. 12th would be converted to Cccp

nncc. The resulting shapes are one-hot encoded

and a trainable randomly initialized linear layer is

used to compute the shape representation.

All sparse feature vectors (binary or one-hot en-

coded) are fed through a linear layer to generate

a dense representation. Finally, all features are

concatenated into a single feature vector f of 77

dimensions which is used in the attention function

as described earlier.

3.3 Adversarial Learning of Mappings

The attention-based meta-embeddings require that

all embeddings have the same dimension for sum-

mation. For this, mapping matrices need to be

learned, as only a limited number of embeddings

exist for many languages and domains, and there

is typically no option to only use embeddings of

the same size. To learn an effective mapping, we

propose to use adversarial training. In particular,

FAME adapts gradient-reversal training with three

components: the representation module R consist-

Dimensions Fine-tuned?

General Domain
Character 50 Yes
BPEmb 100 No
FastText 300 No
XLM-R 1024 No / Yes

Domain-specific
Word 100 (En), 300 (Es) No
Transformer 768 (En) No / Yes

Table 1: Overview of embeddings used in our models.

ing of the different embedding models and the map-

ping functions Q to the common embedding space,

a discriminator D that tries to distinguish the differ-

ent embeddings from each other, and a downstream

classifier C which is either a sequence tagger or a

sentence classifier in our experiments (and is de-

scribed in more detail in Section 4).

The input representation is shared between the

discriminator and downstream classifier and trained

with gradient reversal to fool the discriminator. To

be more specific, the discriminator D is a multino-

mial non-linear classification model with a standard

cross-entropy loss function LD. In our sequence

tagging experiments, the downstream classifier C
has a conditional random field (CRF) output layer

and is trained with a CRF loss LC to maximize the

log probability of the correct tag sequence (Lample

et al., 2016). In our sentence classification exper-

iments, C is a multinomial classifier with cross-

entropy loss LC . Let θR, θD, θC be the parameters

of the representation module, discriminator and

downstream classifier, respectively. Gradient rever-

sal training will update the parameters as follows:

θD = θD − ηλ
∂LD

∂θD
; θC = θC − η

∂LC

∂θC
(4)

θR = θR − η(
∂LC

∂θR
− λ

∂LD

∂θR
) (5)

with η being the learning rate and λ being a hyper-

parameter to control the discriminator influence.

4 Neural Architectures

In this section, we present the architectures we use

for text classification and sequence tagging. Note

that our contribution concerns the input representa-

tion layer, which can be used with any NLP model,

e.g., also sequence-to-sequence models.

4.1 Input Layer

The input to our neural networks is our FAME meta-

embeddings layer as described in Section 3. Our
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methodology does not depend on the embedding

method, i.e., it can incorporate any token represen-

tation. In our experiments, we use the embeddings

listed in Table 1 based on insights from related

work. In particular, Akbik et al. (2018) showed

the advantages of character and FastText embed-

dings (Bojanowski et al., 2017) and Heinzerling

and Strube (2018) showed similar results for char-

acter and BPE embeddings. Thus, we decided to

use the union (char+FastText +BPE) with a state-

of-the-art multilingual Transformer (Conneau et al.,

2020, XLM-R). Our character-based embeddings

are randomly initialized and accumulated to token

embeddings using a bidirectional long short-term

memory network (Hochreiter and Schmidhuber,

1997) with 25 hidden units in each direction.

For experiments in non-standard domains, we

add domain-specific embeddings, including word

embeddings from the clinical domain for English

(Pyysalo et al., 2013) and Spanish (Gutirrez-Fandio

et al., 2021) and the materials science domain (Tshi-

toyan et al., 2019). Further, we include domain-

specific transformer models for experiments on En-

glish data, i.e., Clinical BERT (Alsentzer et al.,

2019) trained on MIMIC, and SciBERT (Beltagy

et al., 2019) trained on academic publications from

semantic scholar.

For all experiments, our baselines and proposed

models use the same set of embeddings. We exper-

iment with both freezing and fine-tuning the trans-

former embeddings during training. However, note

that fine-tuning the transformer model increases the

model size by more than a factor of 100 from 4M

trainable parameters to 535M as shown in Table 2.

This increases computational costs by a large mar-

gin. For example, in our experiments, the time for

training a single epoch for English NER increases

from 3 to 38 minutes.

4.2 Model for Sequence Tagging

Our sequence tagger follows a well-known architec-

ture (Lample et al., 2016) with a bidirectional long

short-term memory (BiLSTM) network and con-

ditional random field (CRF) output layer (Lafferty

et al., 2001). Note that we perform sequence tag-

ging on sentence level without cross-sentence con-

text as done, i.a., by Schweter and Akbik (2020).

4.3 Models for Text Classification

For sentence classification, we use a BiLSTM sen-

tence encoder. The resulting sentence representa-

Transformer
fine-tuned?

Meta-embeddings method No Yes

General Domain (4 embeddings)
Concatenation 10.0 / 3.4 543.9 / 539.4
Attention-based meta-emb 4.0 / 4.0 537.9 / 538.9
Feature-based attention 4.0 / 4.0 538.0 / 538.9

Domain-specific (4+2 embeddings)
Concatenation 14.9 / 5.3 652.2 / 648.2
Attention-based meta-emb 4.9 / 4.9 642.2 / 643.2
Feature-based attention 5.0 / 4.9 642.2 / 643.2

+ Adversarial Discriminator +1.0 / +1.0 +1.0 / +1.0

Table 2: Number of trainable parameters (in million) of

our models for sequence labeling / text classification.

tion is fed into a linear layer followed by a softmax

activation that outputs label probabilities.

4.4 Hyperparameters and Training

To ensure reproducibility, we describe details of our

models and training procedure in the following.

Hyperparameters. We use hidden sizes of 256

units per direction for all BiLSTMs. The attention

layer has a hidden size H of 10. We set the map-

ping size E to the size of the largest embedding in

all experiments, i.e., 1024 dimensions, the size of

XLM-R embeddings. The discriminator D has a

hidden size of 1024 units and is trained every 10th

batch. We perform a hyperparameter search for the

λ parameter in {1e-4, 1e-5, 1e-6, 1e-7} for models

using adversarial training. Note that we use the

same hyperparameters for all models and all tasks.

Training. We use the AdamW optimizer with an

initial learning rate of 5e-6. We train the mod-

els for a maximum of 100 epochs and select the

best model according to the performance using the

task’s metric on the development set if available,

or using the training loss otherwise. The training

was performed on Nvidia Tesla V100 GPUs with

32GB VRAM.3

5 Experiments and Results

We now describe the tasks and datasets we use in

our experiments as well as our results.

5.1 Tasks and Datasets

Sequence Labeling. For sequence labeling, we

use named entity recognition (NER) and part-of-

speech tagging (POS) datasets from different do-

mains and languages. For NER, we use the CoNLL

3All experiments ran on a carbon-neutral GPU cluster.
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NER
Model En De Es Nl

Schweter and Akbik (2020) 93.69 92.29 89.93 94.66
Yu et al. (2020) 93.5 90.3 90.3 93.7
XLM-R (Conneau et al., 2020) 92.92 85.81 89.72 92.53
FAME (our model) 94.11 92.28 89.90 95.42

Concept Extraction
Model ClinEn ClinEs SofcEn

Alsentzer et al. (2019) 87.7 - -
Lange et al. (2020a) 88.9 91.4 –
Friedrich et al. (2020) – – 81.5
FAME (our model) 90.08 92.68 83.68

Table 3: NER and concept extraction results (F1). XLM-R is a fine-tuned transformer (Conneau et al., 2020).

benchmark datasets from the news domain (En-

glish/German/Dutch/Spanish) (Tjong Kim Sang,

2002; Tjong Kim Sang and De Meulder, 2003). In

addition, we conduct experiments for concept ex-

traction on two datasets from the clinical domain,

the English i2b2 2010 data (Uzuner et al., 2011)

and the Spanish PharmaCoNER task (Gonzalez-

Agirre et al., 2019), as well as experiments on the

materials science domain (Friedrich et al., 2020).

For POS tagging, we use the universal dependen-

cies treebanks version 1.2 (UPOS tag) and use the

27 languages for which Yasunaga et al. (2018) re-

ported numbers.

Sentence Classification. We experiment with

three question classifications tasks, namely the

TREC corpus (Voorhees and Tice, 1999) with 6

or 50 labels and GARD (Kilicoglu et al., 2016,

clinical domain).

5.2 Evaluation Results

We now present the results of our experiments. All

reported numbers are the averages of three runs.

Sequence Labeling. Tables 3 and 4 show the re-

sults for sequence labeling in comparison to the

state of the art.4 Our models consistently set the

new state of the art for English and Dutch NER,

for domain-specific concept extraction as well as

for all 27 languages for POS tagging. The compar-

ison with XML-R on NER shows that our FAME

method can also improve upon already powerful

transformer representations. In domain-specific

concept extraction, we outperform related work

by 1.5 F1-points on average. This shows that our

approach works across languages and domains.

Sentence Classification. Similar to sequence la-

beling, our FAME approach outperforms the ex-

isting machine learning models on all three tested

sentence classification datasets as shown in Table 6.

This demonstrates that our approach is generally

4Following prior work, we report the micro-F1 for the
NER and clinical corpora, the macro-F1 for the SOFC corpus
and accuracy for the POS corpora.

SOTA1 SOTA2 SOTA3 FAME

Bg (Bulgarian) 97.97 98.53 98.7 99.53
Cs (Czech) 98.24 98.81 98.9 99.33
Da (Danish) 96.35 96.74 97.0 99.13
De (German) 93.38 94.35 94.0 95.95
En (English) 95.17 95.82 95.6 98.09
Es (Spanish) 95.74 96.44 96.5 97.75
Eu (Basque) 95.51 94.71 95.6 97.66
Fa (Persian) 97.49 97.51 97.1 98.68
Fi (Finnish) 95.85 95.40 94.6 98.67
Fr (French) 96.11 96.63 96.2 97.19
He (Hebrew) 96.96 97.43 96.6 98.00
Hi (Hindi) 97.10 97.21 97.0 98.35
Hr (Croatian) 96.82 96.32 96.8 97.96
Id (Indonesian) 93.41 94.03 93.4 94.24
It (Italian) 97.95 98.08 98.1 98.82
Nl (Dutch) 93.30 93.09 93.8 94.74
No (Norwegian) 98.03 98.08 98.1 99.16
Pl (Polish) 97.62 97.57 97.5 99.05
Pt (Portuguese) 97.90 98.07 98.2 98.86
Sl (Slovenian) 96.84 98.11 98.0 99.44
Sv (Swedish) 96.69 96.70 97.3 99.17
Avg. 96.40 96.65 96.6 98.08

El (Greek) - 98.24 97.9 98.89
Et (Estonian) - 91.32 92.8 97.07
Ga (Irish) - 91.11 91.0 94.27
Hu (Hungarian) - 94.02 94.0 97.72
Ro (Romanian) - 91.46 89.7 96.64
Ta (Tamil) - 83.16 88.7 91.10
Avg. - 91.55 92.4 95.95

Table 4: POS tagging results (accuracy) (using gold

segmentation). SOTA1 refers to results from Plank

et al. (2016), SOTA2 to Yasunaga et al. (2018) and

SOTA3 to Heinzerling and Strube (2019). As Yasunaga

et al. (2018), we split into high-resource (top) and low-

resource languages (bottom).

applicable and can be used for different tasks be-

yond the token level.5

6 Analysis

We finally analyze the different components of our

proposed FAME model by investigating, i.a., ab-

lation studies, attention weights and low-resource

settings.

5Note that a rule-based system (Tayyar Madabushi and
Lee, 2016) achieves 97.2% accuracy on TREC-50. However,
this requires high manual effort tailored towards this dataset
and is not directly comparable to learning-based systems.
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corresponding to NER Concept Extraction POS (subset)
Model baseline meta-emb. En De Es Nl ClinEn ClinEs SofcEn Et Ga Ta

FAME (our model, w/ fine-tuning) 94.11 92.28 89.90 95.42 90.08 92.68 83.68 97.07 94.27 91.10

FAME (our model, w/o fine-tuning) 93.43 91.96 88.86 93.28 89.23 91.97 81.85 96.03 91.47 89.58
– features 93.37 91.66 88.37 92.98 89.07 91.42 81.48 95.81 90.20 88.73
– adversarial Attention (ATT) 93.22 91.52 88.16 92.46 88.87 91.33 81.31 95.19 87.79 87.93
– attention Average (AVG) 92.38 90.14 88.44 92.37 88.69 90.23 80.28 93.20 86.95 87.73
– sum, mapping Concatenation (CAT) 91.00 90.54 85.40 88.51 87.97 90.66 80.08 91.63 86.32 84.51

Table 5: Ablation study results for sequence labeling. We underline our FAME models without fine-tuning for

which we found statistically significant differences to the attention-based meta-embeddings (ATT).

Model TREC-6 TREC-50 GARD

Xu et al. (2020) 96.2 92.0 84.9
Roberts et al. (2014) - - 80.4
Xia et al. (2018) 98.0 - -
FAME (our model) 98.2 93.0 87.90

Table 6: Sentence classification results (accuracy).

6.1 Ablation Study on Model Components

Table 5 provides an ablation study on the different

components of our FAME model for exemplary

sequence-labeling tasks.

First, we ablate the fine-tuning of the embedding

models as we found that this has a large impact

on the number of parameters of our models (538M

vs. 4M) and, as a result, on the training time (cf.,

Section 4.1). Our results show that fine-tuning

does have a positive impact on the performance

of our models but our approach still works very

well with frozen embeddings. In particular, our

non-finetuned FAME model is competitive to a

finetuned XLM-R model (see Table 3) and outper-

forms it on 3 out of 4 languages for NER.

Second, we ablate our two newly introduced

components (features and adversarial training) and

find that both of them have a positive impact on the

performance of our models across tasks, languages

and domains.

With successively removing components, we

obtain models that actually correspond to base-

line meta-embeddings as shown in the second col-

umn of the table. Our method without features

and adversarial training, for example, corresponds

to the baseline attention-based meta-embedding

approach (ATT). Further removing the attention

function yields average-based meta-embeddings

(AVG). Finally, we also evaluate another baseline

meta-embedding alternative, namely concatenation

(CAT). Note that concatenation leads to a very high-

dimensional input representation and, therefore, re-

quires more parameters in the next neural network

layer, which can be inefficient in practice.

Statistical Significance. To show that FAME

significantly improves upon the attention-based

meta-embeddings, we report statistical signifi-

cance6 between those two models (using our

method without fine-tuning for a fair comparison).

Table 5 shows that we find statistically significant

differences in six out of ten settings.

6.2 Influence of Embedding Granularities

and Dimensions

Next, we perform an analysis to show the effects

of our method for embeddings of different dimen-

sions and granularities and support our motivation

that our contributions help in those settings. As

a testbed, we perform Spanish concept extraction

and utilize the embeddings published by Grave

et al. (2018) and Gutirrez-Fandio et al. (2021) as

they allow us to nicely isolate the desired effects.

In particular, they published pairs of embeddings

(all having 300 dimensions) that were trained on the

same corpora. The first embeddings are standard

word embeddings and the second embeddings are

subword embeddings with out-of-vocabulary func-

tionality. As both were trained on the same data,

we can isolate the effect of embedding granularities

in a first experiment. In addition, Gutirrez-Fandio

et al. (2021) published smaller versions with 100

dimensions that were trained under the same con-

ditions. We use those in a second experiment to

analyze the effects of combining embeddings of

different dimensions.

The results are shown in Table 7. We find that

adversarial training becomes particularly important

whenever differently-sized embeddings are com-

bined, i.e., when the model needs to learn mappings

to higher dimensions.

6With paired permutation testing with 220 permutations
and a significance level of 0.05.
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Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation, 18(5):552–556.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, pages 6000–6010, USA. Curran As-
sociates Inc.

Ellen M Voorhees and Dawn M Tice. 1999. The trec-8
question answering track evaluation. In Proceedings
of the 8th Text Retrieval Conference (TREC-8), vol-
ume 1999, page 82.

Haozhou Wang, James Henderson, and Paola Merlo.
2019. Weakly-supervised concept-based adversar-
ial learning for cross-lingual word embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4418–
4429, Hong Kong, China. Association for Computa-
tional Linguistics.

Genta Indra Winata, Zhaojiang Lin, and Pascale Fung.
2019. Learning multilingual meta-embeddings for
code-switching named entity recognition. In Pro-
ceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 181–
186, Florence, Italy. Association for Computational
Linguistics.

Xin Wu, Yi Cai, Yang Kai, Tao Wang, and Qing
Li. 2020. Task-oriented domain-specific meta-
embedding for text classification. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 3508–
3513, Online. Association for Computational Lin-
guistics.

Wei Xia, Wen Zhu, Bo Liao, Min Chen, Lijun Cai, and
Lei Huang. 2018. Novel architecture for long short-
term memory used in question classification. Neuro-
computing, 299:20–31.

Dongfang Xu, Peter Jansen, Jaycie Martin, Zheng-
nan Xie, Vikas Yadav, Harish Tayyar Madabushi,
Oyvind Tafjord, and Peter Clark. 2020. Multi-
class hierarchical question classification for multi-
ple choice science exams. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 5370–5382, Marseille, France. Euro-
pean Language Resources Association.

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun
Cho, Aaron Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. 2015. Show,
attend and tell: Neural image caption generation
with visual attention. In Proceedings of the 32Nd In-
ternational Conference on International Conference
on Machine Learning - Volume 37, ICML’15, pages
2048–2057. JMLR.org.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,



8395

pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

Michihiro Yasunaga, Jungo Kasai, and Dragomir
Radev. 2018. Robust multilingual part-of-speech
tagging via adversarial training. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 976–986, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Wenpeng Yin and Hinrich Schütze. 2016. Learning
word meta-embeddings. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1351–1360, Berlin, Germany. Association for Com-
putational Linguistics.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

Brian Hu Zhang, Blake Lemoine, and Margaret
Mitchell. 2018. Mitigating unwanted biases with
adversarial learning. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society,
AIES ’18, pages 335–340, New York, NY, USA.
ACM.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017a. Adversarial training for unsupervised
bilingual lexicon induction. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1959–1970, Vancouver, Canada. Association
for Computational Linguistics.

Ye Zhang, Stephen Roller, and Byron C. Wallace. 2016.
MGNC-CNN: A simple approach to exploiting mul-
tiple word embeddings for sentence classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1522–1527, San Diego, California. Associa-
tion for Computational Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An-
geli, and Christopher D. Manning. 2017b. Position-
aware attention and supervised data improve slot fill-
ing. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
pages 35–45, Copenhagen, Denmark. Association
for Computational Linguistics.


