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Abstract

This paper proposes to study a fine-grained se-
mantic novelty detection task, which can be il-
lustrated with the following example. It is nor-
mal that a person walks a dog in the park, but
if someone says “A man is walking a chicken
in the park,” it is novel. Given a set of natu-
ral language descriptions of normal scenes, we
want to identify descriptions of novel scenes.
We are not aware of any existing work that
solves the problem. Although existing novelty
or anomaly detection algorithms are applica-
ble, since they are usually topic-based, they
perform poorly on our fine-grained semantic
novelty detection task. This paper proposes an
effective model (called GAT-MA) to solve the
problem and also contributes a new dataset.
Experimental evaluation shows that GAT-MA
outperforms 11 baselines by large margins.

1 Introduction

Novelty or anomaly detection has been an impor-
tant research topic since 1970s (Barnett and Lewis,
1994) due to numerous applications (Chalapathy
et al., 2018; Pang et al., 2021). Recently, it has also
become important for natural language processing
(NLP). Many researchers have studied the problem
in the text classification setting (Fei and Liu, 2016;
Shu et al., 2017; Xu et al., 2019; Lin and Xu, 2019;
Zheng et al., 2020). However, these text novelty
classifiers are mainly coarse-grained, working at
the document or topic level. Given a text document,
their goal is to detect whether the text belongs to a
known class or unknown class.

This paper introduces a new text novelty detec-
tion problem - fine-grained semantic novelty detec-
tion. Specifically, given a text description d, we
detect whether d represents a semantically novel
fact or not. This work considers text data that de-
scribe scenes of real-world phenomena in natu-
ral language (NL). In our daily lives, we observe
different real-world phenomena (events, activities,

situations, etc.) and often describe these obser-
vations (referred as “scenes" onwards) in NL to
others or write about them. It is quite natural to
observe scenes that we have not seen before (i.e.,
novel scenes). For example, it is a common scene
that “A person walks a dog in the park", but if
someone says “A man is walking a chicken in the
park", it is quite unexpected and novel. Detecting
such semantic novelty requires complex concep-
tual and semantic reasoning over text and thus, is
a challenging NLP problem. Note that conceptu-
ally, the judgement of the novelty of a scene is
subjective and might differ from person to person.
However, there are some scenes for which a major-
ity of people have agreement about their novelty.
A good example of such majority-view of novelty
is the widely-spread meme pictures on social me-
dia, which contain novel interactions between ob-
jects. In this work, we restrict our research to this
majority-based view of novelty and leave the per-
sonalized novelty view angle for the future work.

In this work, we leverage the captions of images
from popular datasets like COCO, Flickr, etc., to
build a semantic novelty detection dataset (Sec. 3),1

where we consider an image as a scene and the
corresponding image captions as different NL de-
scriptions of the scene. Detecting text describing
semantically novel observations have many appli-
cations, e.g., recommending novel news, novel im-
ages & videos (based on their text descriptions),
social media posts and conversations. The problem
of semantic novelty detection is defined as follows.

Problem Definition: Given a set of natural lan-
guage descriptions D = {d1, d2, .....dn} of com-
mon scenes, build a model M using D to score
the semantic novelty of a test NL description d′

with respect to D, i.e., classifying d′ into one of
the two classes {NORMAL, NOVEL}. “NORMAL"
means that d′ is a description of a common scene
and ”NOVEL” means d′ is a description of a se-

1No image is used in this work.
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mantically novel scene. As the detection modelM
is built only with “NORMAL" class data, the task
is an one-class text classification problem.

We are unaware of any existing work that can
effectively solve this problem. Although existing
novelty/anomaly detection and one-class classifi-
cation algorithms are applicable, since they are
coarse-grained or topic-based, they perform poorly
on our task (see Sec. 5). Note that although we
focus on solving the problem of semantic novelty
detection of NL descriptions of scenes, the pro-
posed task and solution framework are generally
applicable to other applications.

This paper proposes a new technique, called
GAT-MA (Graph Attention network with Max-
Margin loss and knowledge-based contrastive data
Augmentation) to identify NL description sentences
of novel scenes. Since our task is at the sentence
level and fine-grained, we exploit Graph Attention
Network (GAT) on the parsed dependency graph
of each sentence, which fuses both semantic and
syntactic information in the sentence for reasoning
with the internal interactions of entities and actions.
To enable the model to capture long-range interac-
tions, we stack multiple layers of GATs to build
a deep GAT model with multi-hop graph atten-
tion. We also create the pseudo novel training data
based on the given normal training data through
contrastive data augmentation. Thus, GAT-MA is
trained with the given original normal scene de-
scriptions and the augmented pseudo novel scene
descriptions (Sec. 4).

GAT-MA is evaluated using our newly cre-
ated Novel Scene Description Detection (NSD2)
Dataset. The results show that GAT-MA outper-
forms a wide range of latest novelty or anomaly
detection baselines by very large margins. Our
main contributions are as follows:

1. We propose a new task of semantic novelty
detection in text. Whereas the existing work
focuses on coarse-grained document- or topic-
level novelty, our task requires fine-grained
sentence-level semantic & syntactic analysis.

2. We propose a highly effective technique called
GAT-MA to solve the proposed semantic nov-
elty detection problem, which is based on
GAT with dependency parsing and knowledge-
based contrastive data augmentation.

3. We create a new dataset called NSD2 for the
proposed task. The dataset can be used as a
benchmark dataset by the NLP community.

2 Related Work

Our work is closely related to anomaly, outlier
or novelty detection. Earlier approaches include
one-class SVM (OCSVM) (Schölkopf et al., 2001;
Manevitz and Yousef, 2001) or Support Vector
Data Description (SVDD) (Tax and Duin, 2004).
In recent years, deep learning approaches domi-
nated. Erfani et al. (2016) and Ruff et al. (2018)
learned features using deep learning and then ap-
plied OCSVM or SVDD to build one-class classi-
fiers. Many recent approaches are based on auto-
encoders (You et al., 2017; Abati et al., 2019; Cha-
lapathy and Chawla, 2019), GAN (Perera et al.,
2019; Zheng et al., 2019), neural density estima-
tion (Wang et al., 2019), multiple hypothesis pre-
diction (Nguyen et al., 2019), robust mean esti-
mation (Dong et al., 2019) and regularization (Hu
et al., 2020). See the surveys (Chalapathy and
Chawla, 2019; Pang et al., 2021) for more details.
Our GAT-MA is based on stacked graph attention
neural networks, parsing and data augmentation.

Novelty detection has also been studied in out-
of-distribution (OOD) detection (Fei and Liu, 2016;
Fei et al., 2016; Liang et al., 2018; Shu et al., 2018;
Erfani et al., 2017; Xu et al., 2019). However, these
methods work in the multi-class classification set-
ting. Our work focuses on one-class classification.

Our work is also related to document or sentence
topical novelty detection (Dasgupta and Dey, 2016;
Ghosal et al., 2018; Nandi and Basak, 2020; Jo
et al., 2020; Zhang et al., 2003; Ru et al., 2004;
Li and Croft, 2005; Zhang and Tsai, 2009). These
tasks differ from our problem setting as we focus
on fine-grained semantic novelty detection.

Our work is also related to semantic plausibility
(SPLA) and selectional preference (SPRE). SPLA
is concerned with whether an event is plausible,
and SPRE is about the “typicality" of an event. For
SPLA, existing models employ pretrained language
models (Porada et al., 2019) and manually elicited
entity property knowledge (Wang et al., 2018) to
model physical plausibility in the supervised set-
ting. Other related work includes creating datasets
with plausibility ratings (Keller and Lapata, 2003)
and dealing with multi-event inference (Zhang
et al., 2017; Sap et al., 2019). For SPRE, the early
works include (Resnik, 1996; Clark and Weir, 2001;
Erk and Padó, 2010; Bergsma et al., 2008; Rit-
ter et al., 2010; Ó Séaghdha, 2010; Van de Cruys,
2009). The performance is improved by neural
networks (Van de Cruys, 2014; Dasigi and Hovy,



868

2014; Tilk et al., 2016). Our work is different: (1)
Conceptually, SPLA and SPRE are related but dif-
ferent from novelty, (2) they are mostly based on
structured Subject-Verb-Object triples, rather than
natural language sentences, and (3) they use fully
labeled data (Dasigi and Hovy, 2014) while we do
novelty detection with only normal data in training.

The work of commonsense reasoning is re-
motely related to our work. Existing works build
multi-choice commonsense reasoners (Zellers et al.,
2018, 2019), study the commonsense knowledge
contained in language models (Davison et al.,
2019; Trinh and Le, 2019, 2018) and knowl-
edge graph (Bosselut et al., 2019), and build new
datasets for better evaluation (Wang et al., 2020a).
Several researchers also investigated physical com-
monsense reasoning (Bagherinezhad et al., 2016;
Forbes and Choi, 2017; Wang et al., 2017; Bisk
et al., 2020) and affordance of entities (Forbes et al.,
2019). They do not perform novelty detection.

Our work is also related to trivia fact min-
ing (Merzbacher, 2002; Ganguly et al., 2014; Ga-
mon et al., 2014; Prakash et al., 2015; Fatma et al.,
2017; Mahesh and Karanth; Tsurel et al., 2017; Ni-
ina and Shimada, 2018; Korn et al., 2019; Kwon
et al., 2020). However, trivia is more related to
interestingness. Some trivia facts are interesting
because they are rare, but not necessarily novel. Ex-
isting works use labeled training data for learning,
or rely on Wikipedia structure to retrieve interesting
facts using information retrieval methods (Tsurel
et al., 2017; Kwon et al., 2020). We have only
normal data but not novel data.

Our proposed model learns text representation
using a Graph Neural Network and leveraging de-
pendency parsing. Other works in NLP that use
Graph Neural Networks and dependency struc-
tures include (Huang and Carley, 2019; Ma et al.,
2020; Guo et al., 2019; Wang et al., 2020b; Pouran
Ben Veyseh et al., 2020; Xiao and Zhou, 2020),
etc. But they solve different problems, such as
sentiment analysis and argument mining. Their ap-
proaches are also different from ours and do not do
novelty detection.

3 Dataset Collection and Annotation

As there is no semantic novelty detection dataset
available for text, we build a new dataset. As our
proposed task requires learning of latent semantic
knowledge in text, such as capturing the interaction
among entities and verbs (e.g. “person" and “food"

are related to each other by verb “cook"); the ac-
tions (verbs) that an entity can support (e.g., only
a person can perform action “cook"); actions an
entity can be applied on (e.g. “cook" can be applied
on entity “vegetables"), etc., we aim to build a cor-
pus rich in such knowledge. Text data like news
articles, social media posts, reviews, etc., generally
contain such knowledge in low density and thus,
are not very suitable. Instead, we leverage image
captions to built our dataset, which we found to be
suitable for our task.

Image caption data collection. We found that
the captions of non-iconic images (depicting mul-
tiple objects and their interactions) meet the
aforementioned dataset requirements. We chose
three popular benchmark image caption datasets:
COCO (Chen et al., 2015; Lin et al., 2014),
Flickr30k (Plummer et al., 2015) and Visual
Genome (Krishna et al., 2017) to build our dataset.
COCO consists of 616,435 captions of Flickr im-
ages. Flickr30k contains 158,915 captions about
people and animals, and Visual Genome contains
5.4 million captions describing interactions among
various objects. To ensure we have a diverse dataset
to learn interactions among entities and verbs, we
merge the 3 datasets into one large dataset.
NSD2 dataset preparation. Given the merged
NL caption dataset, we proceed to build our pro-
posed NSD2 dataset as follows. We consider the
captions from the NL caption dataset as normal
or common scene descriptions. As our proposed
GAT-MA model uses only “NORMAL" class data,
we build our training dataset involving only nor-
mal scene descriptions and compile a test dataset
having scene descriptions involving both “NOR-
MAL" and “NOVEL" classes.

Due to budgetary constraints, we cannot eval-
uate on all verbs. We selected 20 verbs (see Ap-
pendix Sec. A) frequently used in the NL caption
dataset and built our training and test dataset with
scene descriptions involving these 20 verbs. For
training, we extract the captions from the merged
set that contain any of the 20 verbs as the “NOR-
MAL" class text examples. For test dataset prepa-
ration, we employ human annotators to write NL
scene descriptions involving both “NORMAL" and
“NOVEL" classes (discussed below).
Test dataset preparation. The test dataset is pre-
pared by 5 volunteer graduate students with ad-
vanced level of English as crowd workers. We
divide the task into 20 small subtasks, one verb
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Table 1: NSD2 dataset statistics. NR (NV) denotes
NORMAL (NOVEL) class. “description length" de-
notes # words.

Training Test
# instances (descriptions) 202,681 (NR) 2000 (NR), 2000 (NV)
Avg. description length 11.25 11.10

for each subtask. For each substask, the designated
worker is asked to write at least 100 normal and 100
novel scene descriptions from scratch for this verb.
For training the workers, each of them is asked to
write 25 normal and 25 novel sentences for a verb
and then we check these sentences and give them
feedback. Any disagreements are discussed. After
the training session, each subtask is carried out by
each worker independently. The workers are un-
aware of the proposed model. After initial writing
of each subtask is done, the scene descriptions are
assigned to other four workers (who are not the
writer) to label them as normal or novel. If the
consensus (majority judgment) is the same as the
original writer’s label of the scene description, it
means this scene description’s label aligns with the
majority view of novelty. If the majority judgement
is not the same as the original writer’s label, this
scene description is discarded. Then the worker
is asked to write more and iterate the above vot-
ing process until 100 normal and 100 novel scene
descriptions are collected for this verb.

Table 1 shows the summary of our NSD2 dataset
statistics. More detailed statistics regarding train-
ing data statistics for each verb and description
token number are provided in Appendix Sec.A.

4 The Proposed GAT-MA Model

The proposed GAT-MA model consists of two main
components: (i) Knowledge-based Contrastive
Data Generator (CDG), and (ii) Text Semantic
Novelty Scorer (SNS). Given a set of NL descrip-
tions Dtr = {d1, d2, ..., dn} of normal scenes
in the training data, CDG dynamically generates
pseudo-novel descriptions by perturbing the nor-
mal scene descriptions in Dtr utilizing the lexical
knowledge base WordNet2 (Fellbaum, 2010). The
normal descriptions in Dtr are augmented with
these pseudo-novel descriptions (used as NOVEL
class examples in training) to learn a SNS.

The SNS is a deep GAT model that learns to
score an input text to measure its semantic novelty
with respect to Dtr. To capture the semantic and
syntactic information in an input text d, GAT-MA

2https://wordnet.princeton.edu/

parses d into a dependency graph and feeds the
graph enriched with additional word-level features
to the SNS, which is then trained to assign higher
score to a normal scene description compared to
that of a novel one.

4.1 Knowledge-based Contrastive Data
Generator (CDG)

We propose to use the lexical knowledge base
WordNet to help generate contrastive instances to
the normal scene descriptions in Dtr. These con-
trastive instances serve as pseudo-novel data and
enable supervised learning of the Text Semantic
Novelty Scorer (SNS). WordNet contains rich tax-
onomy of words and thus, is beneficial to our se-
mantic novelty detection task.

In our generator, a knowledge-based misfit
sampler Smisfit(.) is the key component. Given
a normal scene description d ∈ Dtr, Smisfit(e)
[here, e is an entity, either a noun or a noun phrase]
samples an entity e′ that is semantically distant
from e in the WordNet. We use Wu-Palmer Similar-
ity (Wu and Palmer, 1994) to measure the semantic
distance between e and e′. We randomly sample
e′ from WordNet such that the similarity score be-
tween e and e′ is less than 0.9 (an empirically set
threshold). Next, since e′ is semantically distant
from e, e′ is a misfit in original description d. e
is replaced with e′ in description d to generate a
pseudo-novel description. For example, “a man is
driving a car" describes a normal scene. It is com-
monsense that the subject for verb “drive" should
be a person. Any thing outside of the category
introduces novelty, e.g., “a dog is driving a car".

When replacing the entity e, the choice of e is
also critical. For our task, we focus on three novelty
aspects in a given description: (1) what actions an
entity can perform, (2) what actions an entity can
be applied to, and (3) how several entities interact
with each other. In the interactions between entities
and verbs, verbs are the core of these interactions.
Thus, we only replace entities that are syntactically
related to a verb to create pseudo-novel descrip-
tions. We refer to the verb of interest in d as the
target verb, which is used later in Sec. 4.2. We
include the details for finding and extracting enti-
ties syntactically related to the target verb in the
Appendix Sec.B.

Note, the novel scene description d′ generated
by the perturbation is contrastive to the original de-
scription d. We dynamically generate one (empiri-
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cally set) pseudo-novel description for each normal
description in Dtr in every training epoch.

4.2 Text Semantic Novelty Scorer (SNS)

The recent progress of employing GAT (Velickovic
et al., 2018) on text data (Huang and Carley, 2019;
Ma et al., 2020; Guo et al., 2019) has shown the ad-
vantage of explicitly combining syntactic structure
(dependency parse graph) and word-level seman-
tics for fine-grained text analysis, such as aspect-
level sentiment analysis and argument mining. Be-
cause our task is inherently a fine-grained semantic
reasoning task, we build SNS based on GAT. GAT
fuses the graph-structured information and node
features and employs masked self-attention layers
to allow a node to attend to its neighborhood fea-
tures and learn different attention weights for dif-
ferent neighboring nodes for graph representation
learning. More details can be found in Appendix
Sec. D.

4.2.1 Input Representation
We use a dependency parser (Chen and Manning,
2014) to convert an input scene description d
into a dependency parse graph. For a description
d = {w1, w2, ...wn}, a word wi corresponds to a
node ni in the graph. The node feature of ni is a
word embedding vector: Xi ∈ RF . F is the word
embedding size. Since a description contains n
words, the input node feature matrix is X ∈ Rn×F .

4.2.2 Enriching Entity Word Embeddings
with Hypernym Information

We consider a noun or a noun phrase in d as an
entity if it exists in the WordNet. And we refer the
word(s) comprising the entity as entity word(s)
and the corresponding word embedding(s) as en-
tity word embedding(s) onwards. Intuitively, the
hypernym information of entities is beneficial to
our task. Consider a normal description, “a golden
retriever is chasing a flying frisbee". One of the
hypernym chains of the entity “golden retriever" in
WordNet is: {golden retriever}3⇒ . . .⇒ {dog, do-
mestic dog, Canis familiaris}⇒ . . .⇒ {carnivore}
⇒ . . .⇒ {mammal, mammalian} ⇒ . . . {entity}.
This hypernym chain tells that golden retriever is a
breed of dog. If we leverage the hypernym informa-
tion, the model can not only learn that one specific
breed of dog like “golden retriever" can chase a
frisbee, but also generalize to other breeds of dogs

3We show a synset in the format of a list of lemma names
to make a synset more informative to demonstrate.

as well. Additionally, this hypernym chain also
contains other commonsense knowledge such as
“dogs eat meat", since dogs belong to the category
“carnivore".

We perform the following three steps to incorpo-
rate hypernym features into GAT-MA:

Step-1. Candidate Entity Set Extraction. We
incorporate hypernym features to entities that are
syntactically related to the target verb in a descrip-
tion. We call these entities the candidate entities
onwards. Given an input description d, this step
extracts the candidate entities from d using a rule-
based extractor that leverages dependency pars-
ing and POS tagging information. Details of the
method can be found in Appendix Sec. B. Consid-
ering the aforementioned example, the candidate
entities are “golden retriever" and “frisbee" and the
target verb is “chase".

Step-2. Obtaining Hypernym Name Set from
WordNet. Given a entity e, the Hypernym Name
Set of e is the set of synset names of hypernyms of e
in the WordNet. Considering the entity “golden re-
triever", we obtain its Hypernym Name Set from
WordNet as follows:

1. Obtain the synet of the entity. The concept
of hypernym is defined between synsets in the
WordNet. The word sense of an entity e de-
fined in the description context corresponds
to a synset in the WordNet. Ideally, a Word
Sense Disambiguation (WSD) model should
be employed to tag this entity with an appro-
priate synset. We have tried state-of-the-art
WSD models, and found them not working
well for our dataset. On analysis, we found
that choosing the first sense of the entity works
better. Note that, according to the WordNet
documentation4, “Senses in WordNet are gen-
erally ordered from most to least frequently
used, with the most common sense numbered
1." which conforms to our findings.

2. Find a complete Hypernym Synset Set.
With the chosen synset of the entity, we recur-
sively collect the set of all hypernym synsets
from the WordNet. For instance, given the en-
tity “golden retriever", the set of synsets in all
hypernym chains originating from {golden re-
triever} synset to {entity} synset in the Word-
Net hypernym hierarchy forms the Hypernym
Synset Set of “golden retriever".

4https://wordnet.princeton.edu/documentation/wndb5wn
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3. Filter General Hypernym Synsets. In prac-
tice, when compiling the entity hypernym
information, we do not consider the whole
Hypernym Synset Set for that entity because
some hypernyms are too general to contribute
useful knowledge for our task. Thus, we man-
ually collect a set of synsets that are too gen-
eral and remove them from the complete Hy-
pernym Synset Set of the entity. The 24 gen-
eral sysnets are given in Appendix Sec. C.

4. Get Hypernym Name Set. An hypernym
synset contains a set of lemma names. E.g.
given a hypernym synset - Synset(‘dog.n.01’)
of entity “golden retriver", “dog", “domestic
dog", “Canis familiaris" are the lemma names.
We obtain the Hypernym Name Set of an en-
tity by collecting all lemma names from all
synsets in the Hypernym Synset Set of the
entity.

Step-3. Construction of Hypernym Feature
Vector. A Hypernym Feature Vector is created for
each entity based on its Hypernym Name Set and is
computed as the pointwise addition of all Hyernym
Name Embeddings, one for each Hyernym Name in
the Hypernym Name Set of the entity. We use two
types of Hypernym Name Embeddings as follows:

• GloVe-based Hyernym Name Embedding.
For a single-word hypernym name, the Hy-
ernym Name Embedding is the corresponding
GloVe word embedding. For a multi-word
Hypernym Name, it is computed as the aver-
age of GloVe embeddings of the words in the
Hypernym Name.

• BERT based Hypernym Name Embedding.
Since BERT produces contextual embedding
for each word, the input of BERT should con-
tain the context information. Given an input
description, we replace the entity in the de-
scription with the Hypernym Name and feed
this description into BERT. Because BERT
tokenizer segments word into word pieces
(subword tokens), we average the embeddings
of all word pieces corresponding to this Hy-
pernym Name to obtain the final Hypernym
Name Embedding.

The Hypernym Feature Vector F hyper is calcu-

lated as: F hyper =
M∑
k=1

Xhyper
k , where Xhyper

k is the

embedding of the kth Hypernym Name in Hyper-
nym Name Set of an entity, and M is the size of the
Hypernym Name Set.

a dog is driving a car

Score

GAT Layer 1

GAT Layer L

…

Figure 1: Working of GAT-MA on an input text.

4.2.3 Modeling Dependency using Deep GAT

We observe that the dependency parse graph of
description d contains rich syntactic information
that is beneficial to explicitly learn the interactions
between entities and actions in a scene description,
especially long range interactions. For a novel de-
scription like “a monkey with a white beard and
brown hair is driving a car down the street", the
interaction among monkey, drive and car makes it
semantically novel. Note that, entity “monkey" and
verb “drive" have a sequential word distance of 9
making it difficult for a sequential representation
learning method to model the interaction. In con-
trast, “monkey" and “drive" are only one hop away
in the dependency parse tree.

In addition, we find that for these three key
words, “drive" is the parent of both “monkey" and
“car" in the original directed dependency graph.
To encourage interactions between them and allow
the semantic information to flow freely in the de-
pendency graph structure during training, we sim-
plify the original directed dependency graph into
an undirected graph. Importantly, the GAT model
is trained not to attend to all neighbors of a given
node equally. The attention weights to neighbors
are trained to give higher weights to those nodes
more useful for the task.

The input-output for a single GAT layer is sum-
marized as Hout = GAT (X,A; Θ). The input
is X ∈ Rn×F and the output is Hout ∈ Rn×F ′

,
where n is the number of nodes, F is the node
feature size, F ′ is GAT hidden size, and the depen-
dency graph structure is encoded into A ∈ Rn×n

which is the adjacency matrix of the graph.
In a single GAT layer, a word or an entity in

a graph only attends over the local information
from 1-hop neighbors. To enable the model to cap-
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ture long-range interactions between entities and
actions, we stack L layers to make a deep model,
which allows information from L-hops away to
propagate into this word.

As illustrated in Figure 1, the stacking architec-
ture is represented as H l+1 = GAT (H l,A; Θl),
l ≥ 0, H0 = XW0 + b0. The output of the GAT
layer l,H l

out = GAT (H l,A; Θl), is the input for
layer (l + 1), denoted by H l+1. H0 is the initial
input. W0 ∈ RF×F ′

and b0 are the projection ma-
trix and bias vector. For a L layer GAT-MA model,
the output of the final layer isHL

out ∈ Rn×F ′
.

For our task, we are concerned with interactions
of verbs and entities. As mentioned in Sec. 4.1,
when perturbing the normal descriptions, we only
replace the entities that are syntactically related
to a verb in the dependency graph. This verb is
our target verb. Any novelty introduced in the
description due to the replacement is related to this
verb. If a description contains multiple verbs, the
target verb of an entity is the one which is close to
it along the dependency parse graph.

We use a mask layerm to fetch the output em-
bedding for this target verb vi from GAT: hvi =
mHL

out, where m ∈ R1×n is a one-hot vector in-
dicating the position of the target verb. Next, we
use a feed-forward layer to project hvi into a se-
mantic novelty score. We denote the score function
of SNS by S(d) for the input description d.

Training. GAT-MA is trained end-to-end by
minimizing a max-margin ranking objective, as
given below -

L =
∑

d∈Dtr

∑
d′∈D′

max{S(d′)− S(d) + 1, 0} (1)

where, Dtr is the set of the normal descriptions,
d′ ∈ D′ is the pseudo-novel description corre-
sponding to d ∈ Dtr. L encourages the score S(d)
of normal description d to be higher than S(d′) for
a pseudo-novel description d′.

5 Experiments

5.1 Experiment Setup

For dataset details, please refer to Sec. 3. Ap-
pendix has additional information about the data
and model implementation details.5

5The code and the annotated dataset are released
at: https://github.com/NianzuMa/semantic-novelty-detection-
in-natural-language-descriptions

Baselines. We compare GAT-MA with three cat-
egories of baselines: (1) four language model based
novelty detection models, (2) seven one-class clas-
sification models, (3) other models based on differ-
ent text encoders and loss functions (see Sec. 5.2).
All the results in this section are the average of five
runs with different seeds. The results are statisti-
cally significant with p < 0.001.

A trained language model (LM) can be intu-
itively used as a novelty detection model due to
the following reasons: (1) When training a LM on
normal scene descriptions, the model minimizes
the perplexity of the training data by maximizing
the likelihood of each word appearing in its context.
In this way, it indirectly learns the semantic mean-
ing of words and sentences. (2) Each LM trained on
normal descriptions can output the probability of
each word in a description appearing in its context.
Thus a sentence probability can be calculated from
the list of word probabilities. We have tried various
ways of calculating the sentence score from the
word probability list, such as arithmetic mean, ge-
ometric mean, harmonic mean, and multiplication
of all word probabilities and found harmonic mean
to be the best choice. We use N-gram, the bag of
words LM, N ∈ {1, 2, 3, 4, 5} (N = 1 gives the
best result), LSTM (Hochreiter and Schmidhuber,
1997), BERT (Devlin et al., 2019), GPT-2 (Rad-
ford et al., 2019) as our LM baselines. The results
are listed in Table 2.

For general one-class classification models, most
of them only work on images. We modified the
related components of the models to make them
suitable for text data. More details regarding model
modification and parameter setting are provided in
Appendix Sec. F. The following 7 baselines are
compared: (1) DSVDD (Deep SVDD) (Ruff et al.,
2018): a recent one-class classifier, which is the
deep learning version of SVDD (see Sec. 2). (2)
ICS (Schlachter et al., 2019): a recent one-class
classification method trained on one class of train-
ing data that is split into two subsets: typical and
atypical. (3) OCGAN(Perera et al., 2019): a lat-
est one-class anomaly detection method based on
GAN. (4) VAE (Kingma and Welling, 2014): the
variational auto-encoder. (5) OCSVM (Schölkopf
et al., 2001): the classic SVM method for one-
class classification (see Sec. 2). (6) iForest (Liu
et al., 2008): a classic ensemble method based on
random unsupervised trees. (7) HRN (Hu et al.,
2020): the latest model based on a holistic regular-



873

Table 2: Comparison of baselines and our proposed model (based on AUC score)

Language model based model General One-class classifier Proposed
Ngram LSTM BERT GPT-2 OCSVM iForest VAE DSVDD ICS OCGAN HRN GAT-MA
76.76 77.95 82.13 77.87 68.07 50.55 51.43 54.89 56.15 50.80 56.83 89.22

ization. We could not compare with another latest
baseline CSI (Tack et al., 2020) as it is based on
various image transformations. We do not compare
with out-of-distribution (OOD) detection methods
as they require multiple classes to learn.

Experiments settings. In general, we conduct
experiments using various word and sentence em-
beddings, such as GloVe6 (Pennington et al., 2014),
BERT7 (Devlin et al., 2019) and InferSent (Con-
neau et al., 2017; Bowman et al., 2015). We only
show the best results in Table 2. The detailed hyper-
parameter settings for GAT-MA and baseline mod-
els are included in the Appendix Sec. E and F.

Evaluation Metrics. Following the existing
novelty/anomaly detection literature (Chalapathy
and Chawla, 2019; Pang et al., 2021), we only pro-
duce a score function and ignore the binary deci-
sion problem and use AUC (Area Under the ROC
curve) as the evaluation metric. All compared mod-
els are trained with only normal scene descriptions.

5.2 Results and Analysis
Baseline Comparison. Table 2 shows the pre-

dictive performance comparison of the baselines
and our proposed model GAT-MA. Note, GAT-MA
is our proposed model using BERT embedding
and enhanced with hypernym embedding features.
From Table 2, we conclude the following:

(1) All general one-class classifiers perform
poorly on our task. Even the reported state-of-the-
art model HRN gives AUC score of only 56.89. We
have tried various ways to produce the description
embedding as the input feature for these models,
such as (a) averaging all words’ GloVe embeddings,
(b) feeding the description into BERT and using
the first token [CLS]’s embedding as the sentence
embedding, (c) feeding the description into BERT
and averaging all output tokens’ embeddings as the
sentence embedding, and (d) feeding the descrip-
tion into the pre-trained sentence embedding extrac-
tor InferSent to produce the sentence embedding.
However, none of these options give good perfor-
mances. These one-class classifiers perform well

6We use glove.840B.300d in our experiments
7We use the BERT model “bert-base-uncased" as text en-

coder. We expect that using larger transformer embeddings
leads to better results. But due to the limitation of our comput-
ing resources, we have to use this base BERT model.

2 4 6
Number of GAT-MAvanilla Stacked Layers

0.880

0.882

0.884

AU
C

Figure 2: Effects of the number of layers in GAT-
MAvanilla

on image data because images of a given class (e.g.,
in the MNIST dataset) contains images with very
similar latent representations. Thus, auto-encoder
and GAN-based models can learn latent representa-
tions for all instances in an image class very close
to each other in the latent space. In contrast, our
normal scene descriptions have many topics and
it’s hard for them to learn latent representations
that are close to each other in the latent space.

(2) Language model-based methods are in gen-
eral better than one-class classifiers because they,
in some sense, do not try to learn a latent repre-
sentation, but exploit the sequential and semantic
information of the input text to produce word prob-
abilities. Thus, they are comparatively more ef-
fective in fine-grained semantic novelty detection.
However, they still perform much worse than GAT-
MA as they mainly learn the word distribution in
the normal description data but do not explicitly
capture the interaction of entities and verbs.

In summary, GAT-MA outperforms all baselines
by large margins and is more effective for our pro-
posed task. Below, we discuss ablation and addi-
tional experiments.

Effects of word embedding and hypernyms.
In Table 4, GAT-MAvanilla is our proposed model
using BERT embedding without being enhanced
with the hypernum features. GAT-MAGloVe is our
proposed model using GloVe embedding without
being enhanced with hypernym features. Compar-
ing the results of GAT-MAGloVe and GAT-MAvanilla,
we can see that BERT embedding contains richer
semantic knowledge which is more beneficial to
our task compared to using GloVe embedding. It is
also interesting to see that when GAT-MAvanilla is
enhanced with hypernym embedding feature (noted
as GAT-MA), it improves the AUC score from
88.12 to 89.22. It means that hypernym features
can help our model generalize better.
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Table 3: Some descriptions predicted wrongly by BERTMM but correctly by GAT-MAMM

Text Label
1 a monkey with glasses is cooking food on a stovetop in a kitchen. Novel
2 a couple of seal dogs carry their surfboard across the beach. Novel
3 a giant panda in a white smock prepares to cut the hair of an older balding gentleman in

front of a case holding several hair supplies.
Novel

4 an adult is walking on the sidewalk in St. Luis. Normal
5 a guy eats food on a table in front of a food shop on the street while a passerby walks by. Normal
6 a group of people stands around are drinking some vermouth. Normal

Table 4: Effect of using embedding type and hypernym
feature based on AUC score

GAT-MAGloVe GAT-MAvanilla GAT-MA
84.42 88.12 89.22

Table 5: Comparison of BERT and GAT-MA variants
based on cross-entropy (CE) and max-margin (MM)
loss function based on AUC scores

BERTCE BERTMM GAT-MACE GAT-MAMM

82.09 87.41 83.80 88.12

Effects of model depth. From Figure 2, we see
that increasing the number of stacked layers from
1 to 5 improves the performance of GAT-MAvanilla.
When the number of stacked layers higher than 5,
the performance drops. This is because most of
the interaction between entities and actions near to
each other in the dependency parse graph. Stacking
5 layers is enough and more stacked layers will not
help but hurt the performance.

Effects of using max-margin ranking loss. Ta-
ble 5 compares fine-tuned BERT and GAT-MA vari-
ants in terms of the use of loss functions in model
training. Here, [·]CE denotes the model using the
cross entropy loss for training and [·]MM denotes
the model using the max-margin loss as proposed
in Sec. 4.2.3. From Table 5, we see that CE variants
are weaker than MM variants for both BERT and
GAT-MA. Both GAT-MACE and GAT-MAMM use
BERT embeddings without the hypernym feature.

Effects of using dependency parse structure.
Table 5 shows that BERTMM not directly using any
syntactic features easily fail on examples dissim-
ilar to training data in terms of word distribution.
However, GAT-MAMM performs better by explic-
itly modeling the dependency parse structure. This
means that modeling dependency parse structure
is beneficial to capturing the interactions between
entities and actions in our task. Some descriptions
predicted wrongly by BERTMM but correctly by
GAT-MAMM are shown in Table 3.

6 Error Analysis
The AUC score in (.) for each verb is as follows:
pull (0.99), carry (0.99), push (0.99), drive (0.97),
travel (0.97), hit (0.95), throw (0.95), kick (0.94),
climb (0.94), look (0.93), build (0.93), cook (0.92),
walk (0.92), ride (0.87), fly (0.84), cut (0.82), swim
(0.81), jump (0.73), drink (0.73), and eat (0.69).

We carried out error analysis on our test data
and found that the errors are mainly due to the fol-
lowing factors. The first factor is the pretrained
word embeddings’ quality. The quality of the word
embedding is critical for GAT-MA to effectively
do reasoning. GAT-MA makes mistakes when the
pretrained word embedding is not of good qual-
ity. For example, the “talapoin” in “the talapoin
at the zoo is leaning down to drink some water”.
The second factor is the limitation of knowledge
acquired by GAT-MA during training. GAT-MA
relies on the taxology information in WordNet to
generate contrastive novel descriptions during train-
ing. However, sometimes the reasoning of novel
description requires more complex world knowl-
edge. For examples, “two kids are sitting in the bar
drinking spirit" is novel and requires knowledge
that kids is not old enough to drink any alcohol.
Another example “A dog is eating onions on the
ground" is novel and requires the world knowledge
that onions is poisonous to dogs8.

7 Conclusion
Novelty detection is an important problem because
anything novel is of interest. This paper proposed
a semantic novelty detection problem and designed
a graph attention network based approach (called
GAT-MA) exploiting parsing and data augmenta-
tion to solve the problem. As there is no existing
evaluation dataset for the proposed task, an evalua-
tion dataset has been created. Experimental com-
parisons with a wide range of baselines showed that
GAT-MA outperforms them by very large margins.

8https://en.wikipedia.org/wiki/Dog_
health

https://en.wikipedia.org/wiki/Dog_health
https://en.wikipedia.org/wiki/Dog_health
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A Dataset Statistics

A.1 Training data size for each verb

We selected 20 verbs in our data pool with suffi-
cient scene descriptions containing each of these
verbs so that we have enough data to learn com-
monsense knowledge. The list of 20 verbs and
the size (in parentheses) of scene descriptions that
contain these verbs are as follows: build (2644),
carry (9920), climb(2001), cook (2232), cut (7103),
drink(2050), drive (6913), eat (15822), fly (17049),
hit (6316), jump (8947), kick (1759), look (31863),
pull (6194), push (1901), ride (30244), swim
(1760), throw (5299), travel (4410), walk (38254).
There are totally 202,681 scene descriptions in our
training dataset.

A.2 Dataset Split Detailed Statistics

Training Data. There are a total of 202,681 nor-
mal descriptions in the training data. The statistics
of token numbers in descriptions are as follows:
the average token number is 11.24, the maximum
token number is 75, the minimum token number is
2. The standard deviation is 4.21.

Test Data. There are a total of 2000 normal
descriptions and 2000 novel descriptions in the test
data. The statistics of token numbers are as follows:
the average token number is 11.10, the maximum
token number is 68, the minimum token number is
4, the standard deviation is 3.8.

B Knowledge Based Contrastive Data
Generator Details

In the novel scene detection task, we focus on three
novelty aspects: (1) what actions an entity can
perform, (2) what actions an entity can be applied,
and (3) how several entities interact with each other.
In the interactions between entities and verbs, verbs
are the core of these interactions. Thus, we only
replace entities that are syntactically related to a
verb to create pseudo-novel description.

Extraction of candidate entities. The candi-
date entities are those syntactically related to a verb.
If a sentence contains only a single verb, this sen-
tence describes a single event and all nouns (noun
phrases) are syntactically related to this verb. If a
sentence contains multiple verbs, candidate entities
for a target verb are the nouns (noun phrases) that
are closer to the target verb along the dependency
parse graph. In this multi-verb case, we create
multiple training instances, one for each verb as

the target verb. We use a simple rule-based extrac-
tion technique based on dependency parsing path
and Part-of-Speech (POS) tagging to extract the
relevant entities for each target verb. The nouns
or noun phrases, one hop away to the target verb
along the dependency parse graph are the candidate
entities.

C General Hypernym Synsets

The 24 general synsets are: entity.n.01, abstrac-
tion.n.06, physical-entity.n.01, psychological-
feature.n.01, causal-agent.n.01, object.n.01,
group.n.01, thing.n.12, measure.n.02, matter.n.03,
process.n.06, relation.n.01, attribute.n.02, com-
munication.n.02, solid.n.01, part.n.01, part.n.02,
part.n.03, state.n.02, solid.n.03, artifact.n.01,
instrumentality.n.03, abstraction.n.06, whole.n.02.

D Graph Attention Network (GAT)

Graph Attention Network (GAT) (Velickovic et al.,
2018) fuses the graph-structured information and
node features within the model. Its masked self-
attention layers allow a node to attend to neigh-
borhood features, and to learn different atten-
tions/weights to different nodes in the neighbors.

hout
i =

K

‖
k=1

σ

∑
j∈Ni

akijW
kxj


αk
ij =

exp(f((ak)T [W kxi ‖ W kxj ]))∑
x∈Ni

exp(f((ak)T [W kxi ‖ W kxx]))

(2)

The node features fed into a GAT layer are
X=[x1,x2, ...xi, ...xn], xi ∈ RF , X ∈ Rn×F , where n
is the number of nodes, F is the feature size of
each node. Specifically, in our context, each word
corresponds to a node and F is the size of word
embedding. In equation (2), node i attends over its
1-hop neighbors j ∈ Ni. ‖

K

k=1
means the concatena-

tion of K multi-head attention outputs. hout
i ∈ RF

′

is the output of node i at the current layer. αk
ij is

the k-th attention between node i and j. ‖ is the
concatenation operation. W k ∈ R

F
′

K
×F is linear trans-

formation. α ∈ R
2F

′

K is the weight vector, and f(·) is
a LeakyReLU non-linearity function.

Overall, the input-output for a single GAT layer
is summarized as Hout = GAT (X,A; Θ). The input
is X ∈ Rn×F and the output is Hout ∈ Rn×F ′

, where
n is the number of nodes, F is the node feature
size, F ′ is GAT hidden size, and A ∈ Rn×n is the
adjacency matrix of the graph.
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E GAT-MA Model Implementation
Details

We employ Stanford Neural Network Dependency
Parser (Chen and Manning, 2014) to convert each
scene description into dependency parse graph. In
our experiments, two pretrained embedding are
used: GloVe9 (Pennington et al., 2014) embedding
and BERT10 (Devlin et al., 2019) embedding. To
produce BERT embedding, the input of BERT is
formatted by adding “[CLS]" before and “[SEP]"
after the tokens of the description. This input is to-
kenized by BERT tokenizer into word pieces. The
output of the pretrained BERT model embedding
is a sequence of vectors, each of size 768. Each
output vector corresponds to one word piece token.
BERT tokenizer tokenizes some words into word
pieces (sub-word tokens), such as “tokenizer" is
tokenized as word pieces “token" and “##izer". We
take the average of the word pieces embedding of
the original word to obtain embedding of this word.
Note that, we use BERT embedding as the static
input feature for GAT-MA. The model does not
fine-tune BERT.

We empirically set GAT-MA hyper-parameters
as follows: hidden state size as 300D; BERT em-
beddings mapped into 300D using a linear layer. 6
attention heads used for the GAT layers. The mini-
batch size is set as 256 and learning rate is set as
5e-5. We use larger batch size to make training pro-
cess faster. We apply 0.1 embedding dropout (Sri-
vastava et al., 2014) and 0.1 attention dropout.
We apply l2 regularization with term λ = 10−4.
Adam (Kingma and Ba, 2015) optimizer is used for
training. The model is trained with 5 epochs. Each
epoch takes around 200 minutes to run.

The implementation of this model is based on
PyTorch Geometric(PyG) (Fey and Lenssen, 2019)
and NVIDIA GPU GTX 1080 Ti.

F Baseline Models Implementation
Details

For all the baselines, we do experiments using var-
ious embeddings, such as GloVe, BERT and In-
ferSent embeddings. We report the best results for
comparison.

9We use glove.840B.300d in our experiments
10We use the BERT model “bert-base-uncased" as text en-

coder. We expect that using larger transformer embedding
leads to better results. But due to our limitation of computa-
tional resources, we only did experiments based on this base
BERT model.

F.1 Language Model Based Novelty Detector

N-gram. N-gram is a classic language model
that can assign probabilities to a sequence of
words. We do experiments with the choice of
N ∈ {1, 2, 3, 4, 5}. Among them, N = 1 gives
the best result.

LSTM. GloVe embedding is used to train the
LSTM model on our training dataset. The embed-
ding size is 300. The hidden layer size of LSTM is
300. The number of stacked LSTM layers is 2. The
dropout applied to the LSTM layer during training
is 0.5. The initial learning rate is 50. The learn-
ing rate lr is annealed by equation lr = lr/4.0 if
no improvement has been seen in the validation
dataset.

BERT. We fine-tune the pretrained BERT with
our training data following the default setting of the
original BERT paper. Because BERT is a masked
language model, the probability of word i in a list
of tokens is obtained by mask this word and cal-
culate the probability this word appearing in the
current context. The context of word i is the to-
kens on both left and right side of this word in the
description.

GPT-2. We fine-tuned GPT-211 on our training
data following the default setting. Then we use the
trained model to calculate the sentence probability.
The word probability is calculated by checking its
probability appearing in its context. The context of
word i in the sentence is the token on the left side
of this word.

F.2 General One-Class Classifiers

Most of the general one-class classifiers work on
image data. We change the components in the base-
line models into structures of text encoder to make
them applicable to text data. We have tried 4 meth-
ods to produce sentence embedding as follows. (a)
GloVe-AVG: taking average of all words’ GloVe
embeddings as the sentence embedding, (b) BERT-
CLS: feeding a description into BERT and using
the first token [CLS] as the sentence embedding,
(c) BERT-AVG feeding a description into BERT
and taking the average of the sequence output em-
bedding as the sentence embedding and (d) In-
ferSent: feeding a description into the pre-trained
sentence embedding extractor InferSent (Conneau
et al., 2017; Bowman et al., 2015) to produce the
sentence embedding. There are two versions of

11gpt2: 12-layer, 768-hidden, 12-heads, 117M parameters;
OpenAI GPT-2 English model.
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InferSent pretrained model. InferSent-1 is trained
using GloVe embedding. InferSent-2 is trained
using fastText (Mikolov et al., 2018) embedding.

OCSVM. The parameter setting of OCSVM are
as follows: we use “poly" kernel; gamma as “scale",
nu value as 0.1. For other parameters, we use the
default setting in the scikit-learn implementation12.
OCSVM gets the best result using GloVe-AVG
sentence embedding.

iForest. The parameter setting of iForest are as
follows: we use 100 base estimators in ensemble.
For the amount of contamination of dataset, we set
it as 0.0 because there is no novel scene description
in our training dataset. For other parameter settings,
we follow the default settings in the scikit-learn
implementation13. iForest gets the best result using
InferSent-1 embedding.

VAE. We use the text encoder structure in Con-
volutional Neural Networks (CNN) for Sentence
Classification (Kim, 2014) to implement a VAE
that can take text data as input. For all hyper-
parameters, we follow the settings from the original
work. Among the 4 methods of converting descrip-
tions into sentence embeddings, BERT-CLS gets
the best result.

DSVDD. The LeNet implementation is used as
our baseline model. The latent dimension of the
autoencoder as well as the final fully connected
layer of the model is changed to a dimension of 96
to better accommodate the size of our description
embeddings. For all other parameters, we use the
default settings from the original work and imple-
mentations. Among the 4 methods of converting
descriptions into sentence embeddings, BERT-CLS
gets the best result.

ICS. We use the default settings from the origi-
nal work and implementations. Among the 4 meth-
ods of converting descriptions into sentence em-
beddings, BERT-CLS gets the best result.

OCGAN. To make OCGAN work better for text
data, we change the depth of the generator and
discriminator from 3 layers to 2 layers, the noise
factor of training data from 0.02 to 0.05, and the
weight of the reconstruction loss from 500 to 600.
For other hyper-parameters, we follow the settings
in the original work. Among the 4 methods of
converting descriptions into sentence embeddings,
BERT-CLS gets the best result.

HRN. We followe the default setting of the orig-

12sklearn.svm.OneClassSVM
13sklearn.ensemble.IsolationForest

inal paper. We run HRN 100 epochs, with batch
size 100. The learning rate is set as 0.0003. The
structure of Multilayer Perceptron (MLP) is [768-
300]-[300-100]-[100-1]. HRN gets the best result
using BERT-CLS sentence embedding.


