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Abstract

Knowledge graph embeddings (KGEs) com-
pactly encode multi-relational knowledge
graphs (KGs). Existing KGE models rely on
geometric operations to model relational pat-
terns. Euclidean (circular) rotation is useful
for modeling patterns such as symmetry, but
cannot represent hierarchical semantics. In
contrast, hyperbolic models are effective at
modeling hierarchical relations, but do not per-
form as well on patterns on which circular ro-
tation excels. It is crucial for KGE models
to unify multiple geometric transformations so
as to fully cover the multifarious relations in
KGs. To do so, we propose BiQUE, a novel
model that employs biquaternions to integrate
multiple geometric transformations, viz., scal-
ing, translation, Euclidean rotation, and hyper-
bolic rotation. BiQUE makes the best trade-
offs among geometric operators during train-
ing, picking the best one (or their best combi-
nation) for each relation. Experiments on five
datasets show BiQUE’s effectiveness.

1 Introduction

Knowledge graphs (KGs) provide an efficient way
to represent real-world entities and their intricate
connections in the form of (head, relation, tail)
triples. Each head/tail entity corresponds to a
node in a KG, and each relation represents a di-
rected edge between them. Imbued with rich fac-
tual knowledge, KGs have demonstrated their ef-
fectiveness in a wide range of downstream appli-
cations (Wang et al., 2018; Saxena et al., 2020).
Although problems due to incompleteness and
noise continue to plague KGs, those issues have
been ameliorated by knowledge graph embeddings
(KGEs) that project entities and relations into low-
dimensional dense vectors.

Current KGE methods mainly focus on ex-
ploiting geometric transformations and embed-
ding spaces to model relational patterns such
as (anti)symmetry, inversion, and composition.
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Figure 1: interacts_with is symmetric (green arrows)
and hierarchical (blue arrows) in different context.
Each affects (red arrow) can be composed from a green-
arrow relation followed by a blue-arrow one.

TransE (Bordes et al., 2013) represents each re-
lation as a translation from a head entity to a tail en-
tity. With translations alone, TransE cannot model
many relation types such as symmetric ones. In
contrast, RotatE (Sun et al., 2019) represents each
relation as a rotation in complex space. It proves
that it can model (anti)symmetry, inversion, and
composition patterns. QuatE (Zhang et al., 2019)
extends RotatE’s complex number representation
to a hypercomplex number representation.

A drawback of rotation-based KGE models is
that their representations are entrenched in (Eu-
clidean) circular rotation, and hence they are un-
able to model hierarchical and tree-like structures
(e.g. hypernym and part_of ). Such hierarchical
relations are common and even pervasive in some
KGs. Since, in circular rotation, all rotating points
are constrained to be at the same distance from
the center of a circle, it is hard to model relations
whose semantics require that entities move at dif-
ferent distances from the nexus.

To overcome this shortcoming, recent models
project KGs into hyperbolic space (Balazevic et al.,
2019; Chami et al., 2020). The hyperbolic models
inevitably lose the basic properties of Euclidean-
space transformations, and thus cannot avail them-
selves of these useful operations. Moreover, it is
difficult to seamlessly integrate the hyperbolic mod-
els with extant non-hyperbolic models to create
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more powerful hybrids because the models’ differ-
ent geometric representations do not cohere.

What we want is the best of best worlds, i.e., a
model capable of effecting both circular rotations
and hyperbolic transformations, in a coherent ge-
ometric representation. This allows the model to
choose the best representation for each relation,
e.g., circular rotations for symmetric/inversion re-
lations and hyperbolic rotations for hierarchical
patterns. In addition, for relations that exhibit both
circular and hyperbolic characteristics (e.g., the in-
teract_with relation in Figure 1), the model would
rely on the data to choose the sweet spot balancing
both transformations. For relations that are best
captured by the composition of circular and hyper-
bolic rotations (e.g., affects in Figure 1), the model
would learn the best composition of both repre-
sentations jointly. Lastly, by subsuming circular
rotations, the model would inherit the representa-
tional prowess of circular-rotation models.

In this paper, we propose precisely such a model
named BiQUE. BiQUE employs a powerful alge-
braic system called biquaternions (Ward, 1997) to
represent KGs. Most common number systems
used by current KGE methods (including real num-
bers, complex numbers, and real quaternions) are
subsumed and systematically unified by biquater-
nions. Further, the Hamilton product of biquater-
nions, at the core of BiQUE, imbues it with a strong
geometric interpretation that combines both circu-
lar rotations and hyperbolic rotations. In sum, our
contributions are as follows.

• To our knowledge, we are the first to use bi-
quaternionic algebra for KGEs. Algorithmically,
we contribute by designing a flexible score func-
tion that leverages multiple geometric transfor-
mations (scaling, translation, circular rotation,
and hyperbolic rotation).

• Theoretically, we contribute by rigorously prov-
ing that BiQUE’s biquaternionic transformation
is equivalent to the composition of a circular ro-
tation and a hyperbolic rotation.

• Empirically, we contribute by validating and ana-
lyzing BiQUE’s effectiveness on five KG bench-
marks that span a wide gamut of sizes.

2 Related Work

We briefly survey KGE methods that are most rele-
vant to our approach.

Euclidean models. These models represent en-
tities and relations by real vectors, and can be
categorized into translation-based models (Bordes
et al., 2013; Wang et al., 2014; Lin et al., 2015; Ji
et al., 2016), semantic-matching models (Nickel
et al., 2011; Yang et al., 2015), and neural mod-
els (Dettmers et al., 2018; Vashishth et al., 2020a).
Euclidean models typically cannot represent all re-
lation types in a KG, e.g., TransE cannot model
symmetric patterns, and DistMult cannot model
antisymmetric/inversion patterns (Sun et al., 2019).
Euclidean models typically need large embedding
dimensions for good empirical performance.

Complex-valued models. ComplEx (Trouillon
et al., 2017) uses complex-valued tensor factoriza-
tion and complex conjugation to model antisym-
metric relations. RotatE (Sun et al., 2019) models
each relation as a 2D circular rotation in a com-
plex vector space. It can model several relation
types, but falls short when modeling hierarchical
patterns. QuatE (Zhang et al., 2019) extends Ro-
tatE’s complex representation to a hypercomplex
one via quaternion embeddings, and represents ro-
tations in a four-dimensional real-number space.
However, it shares the weakness of circular-rotation
methods in being deficient when modeling hierar-
chical semantics. DualE (Cao et al., 2021) incorpo-
rates dual numbers into quaternions, and thereby
unifies circular rotation with translation. This geo-
metric combination of DualE differs from that of
our BiQUE model (Section 4), which unifies cir-
cular rotation with hyperbolic rotation. Another
difference is that BiQUE models translations via
a different mechanism in the form of a relation-
specific biquaternion.

Hyperbolic models. Recent models have used
hyperbolic space because of its amenability to rep-
resenting hierarchical structures. MurP (Balazevic
et al., 2019) and ATTH (Chami et al., 2020) both
adopt the Poincaré-ball model to represent entities
and relations. MurP utilizes Möbius multiplica-
tion and addition with relation-specific parameters
to transform entities. ATTH integrates hyperbolic
rotations and reflections via an attention mecha-
nism, and learns hyperbolic curvatures automati-
cally. Both MurP and ATTH have rigid hyperbolic
geometric assumptions, and they remain challeng-
ing to optimize directly in hyperbolic space.

In contrast to existing systems, our model
BiQUE overcomes their weaknesses by integrat-
ing the strengths of their respective geometric rep-
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resentations into one coherent representation us-
ing biquaternions. By subsuming the complex-
valued rotation-based models (e.g., complEx and
QuatE), it retains their strengths in capturing
(anti)symmetric, inversion, and composition pat-
terns. By incorporating a hyperbolic representation,
it is also able to model hierarchical semantics.

3 Background

Biquaternions, endowed with rich algebraic proper-
ties, have been widely used in quantum mechanics,
general relativity, and signal processing (Pei et al.,
2004; Gong et al., 2011), but have yet to make
inroads into knowledge graph embeddings. A bi-
quaternion is defined on a four-dimensional vector
space over the field C of complex numbers. We
denote a complex number c ∈ C as c = cr + ciI
where cr, ci ∈ R are real numbers, and I is the
usual imaginary unit (I2 = −1).

Definition 1. The basic algebraic forms of a
biquaternion q are

w + xi + yj + zk (1)

=(wr+wiI)+(xr+xiI)i+(yr+yiI)j+(zr+ziI)k

=qr+qiI (2)

where w, x, y, z ∈ C are q’s coefficients,
wr, xr, yr, zr, wi, xi, yi, zi∈R, qr=wr+xri+yrj+
zrk, qi=wi+xii+yij+zik, and i, j,k are imaginary
units that have the following (non)commutative
multiplication properties:

i2 = j2 = k2 = −1, iI = Ii, jI = Ij,kI = Ik

ij = −ji = k, jk = −kj = i, ki = −ik = j,
(3)

We denote the scalar and vector parts of q re-
spectively as s(q) =w and v(q) =xi+yj+zk. A
pure biquaternion q is one with s(q)=0. A quater-
nion (Hamilton, 1844) is a restricted biquaternion,
in which w, x, y, z ∈ R (e.g., qr and qi in Equa-
tion 2 are quaternions). Complex numbers and real
numbers are both special cases of biquaternions.

The biquaternion q =w+xi+yj+zk has sev-
eral equivalent representations (Ward, 1997; Jafari,
2016): (a) as the vector V(q) = [w, x, y, z]T ; (b)
as ||q||(cos θ+u sin θ) (where θ=cos−1(w/||q||),
θ ∈ C, u = v(q)/||v(q)||, and ||q|| =√
w2+x2+y2+z2); and (c) as the matrix

M(q) =


w −x −y −z
x w z −y
y −z w x
z y −x w

 . (4)

Next we present basic operations on a biquater-
nion q = w+xi+yj+zk. The conjugate of q is
denoted as q̄ =w−xi−yj−zk. The complex con-
jugate of q is denoted as q∗ =w∗+x∗i+y∗j+z∗k
(c∗=cr−ciI is the standard complex conjugate of
a complex number c=cr+ciI). Two biquaternions
q1=w1+x1i+y1j+z1k and q2=w2+x2i+y2j+z2k
are added and subtracted (in the obvious manner)
as q1±q2=(w1±w2)+(x1±x2)i+(y1±y2)j+(z1±z2)k.
The multiplication q1q2 between q1 and q2 can be
obtained via standard algebraic distributivity (while
obeying the properties in Equations 3, and follow-
ing the normal multiplication rule of complex num-
bers for the products between coefficients) as

q1q2 =w1w2−x1x2−y1y2−z1z2
+ (w1x2+x1w2+y1z2−z1y2)i
+ (w1y2−x1z2+y1w2+z1x2)j

+ (w1z2+x1y2−y1x2+z1w2)k. (5)

Equation 5 is termed the Hamilton product between
q1 amd q2. Alternatively, the multiplication can be
equivalently represented as a matrix-vector product

V(q1q2) =M(q2)V(q1), (6)

or as a matrix-matrix product

M(q1q2) =M(q2)M(q1). (7)

Equations 6 and 7 can be easily verified by sub-
stituting in Equations 4 and 5, and using normal
matrix multiplication. The set of biquaternions and
the set of quaternions are both closed under multi-
plication, and multiplication is associative but not
commutative. Also note that q1q2 = q2 q1.

By using Equation 4, we can easily verify that
M(q̄) = M(q)T and M(q∗) = M(q)∗ (where
M(·)∗ refers to the complex conjugation of each
element in the matrix).

The norm of q is given by ||q||=
√
qq̄=

√
q̄q=√

w2+x2+y2+z2 (NB: ||q|| = ||q̄||). A unit bi-
quaternion is one with unit norm, i.e., ||q|| = 1.

4 BiQUE: Biquaternionic Embeddings

4.1 Unification of Circular and Hyperbolic
Rotations

We prove that a biquaternion unifies both circular
and hyperbolic rotations in C4 space within a sin-
gle representation in Theorem 4.1 (the proof is in
Appendix A).
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Theorem 4.1. LetM(q) be the matrix represen-
tation of a unit biquaternion q = qr+qiI, where
qr=wr+xri+yrj+zrk, and qi=wi+xii+yij+zik.
M(q) can be factorized asM(q) =M(h)M(u)
whereM(h)=

coshφ −aI sinhφ −bI sinhφ −cI sinhφ
aI sinhφ coshφ cI sinhφ −bI sinhφ
bI sinhφ −cI sinhφ coshφ aI sinhφ
cI sinhφ bI sinhφ −aI sinhφ coshφ

,

M(u)=


cos θ − xr sin θ

||v(qr)|| −
yr sin θ
||v(qr)|| −

zr sin θ
||v(qr)||

xr sin θ
||v(qr)|| cos θ zr sin θ

||v(qr)|| −
yr sin θ
||v(qr)||

yr sin θ
||v(qr)|| −

zr sin θ
||v(qr)|| cos θ xr sin θ

||v(qr)||
zr sin θ
||v(qr)||

yr sin θ
||v(qr)|| −

xr sin θ
||v(qr)|| cos θ

,
θ= cos−1 wr

||qr|| , φ= cosh−1 ||qr||, qrqi
||qr||||qi|| = ai+

bj+ck, and θ, φ, a, b, c ∈ R. Alternatively,M(q)
can be factorized asM(q)=M(u)M(h′), where
qiqr

||qi||||qr||=a′i+b′j+c′k, andM(h′)=
coshφ −a′I sinhφ −b′I sinhφ −c′I sinhφ

a′I sinhφ coshφ c′I sinhφ −b′I sinhφ
b′I sinhφ −c′I sinhφ coshφ a′I sinhφ
c′I sinhφ b′I sinhφ −a′I sinhφ coshφ

.
In addition, the determinants ofM(h),M(h′) and
M(u) are 1, and M(h), M(h′) and M(u) are
orthogonal.

From Theorem 4.1, we know that the matrix
M(q), representing a unit biquaternion q, can
be expressed as the composition of two matrices
M(h) andM(u) (orM(u) andM(h′)). Further,
since all elements inM(h),M(h′), andM(u) are
derived from q, we can constructM(h), M(h′),
andM(u) given q.

An orthogonal matrix with determinant 1 rep-
resents a rotation in the space in which it oper-
ates (Artin, 1957). Since we know both M(h)
andM(u) are orthogonal and have determinants 1
from Theorem 4.1, they each represent a rotation
in C4 space. From the form of the matrices, we
can see that M(u) represents a circular rotation,
whileM(h) represents a hyperbolic rotation1. To
see the hyperbolic-rotation nature ofM(h) more
clearly, we can use the identities coshφ= cos Iφ
and I sinhφ=sin Iφ to representM(h) as

cos Iφ −a sin Iφ −b sin Iφ −c sin Iφ
a sin Iφ cos Iφ c sin Iφ −b sin Iφ
b sin Iφ −c sin Iφ cos Iφ a sin Iφ
c sin Iφ b sin Iφ −a sin Iφ cos Iφ

 .
1This may be clearer by restricting each matrix to the first

two dimensions, which correspond to the square sub-matrix
made up of the 4 elements at the top-left corner.

NowM(h) takes the form of a “regular” rotation
matrix (cf. M(u)), but with a complex angle Iφ.
According to Lansey (2009), a rotation through
an imaginary angle Iφ can be understood as a hy-
perbolic rotation through the real angle φ. Conse-
quently, a unit biquaternion composes these two
kinds of rotations in a coherent algebraic represen-
tation. (It has been shown by Jafari (2016, Corol-
lary 4.1) thatM(q) is orthogonal with a determi-
nant of 1, and thus represents an arbitrary rotation
in C4. However, that paper does not tease apart the
matrix to reveal the contributions of its component
circular and hyperbolic rotation matrices like we
have done.)

Our results extend to arbitrary (not necessar-
ily unit) biquaternions. Any biquaternion q is a
scaled version of its unit biquaternion, i.e., q =
||q||( q

||q||). Thus its matrixM(q) represents a cir-
cular rotation followed by a hyperbolic rotation
(i.e., M(h)M(u)), or a hyperbolic rotation fol-
lowed by a circular rotation (i.e., M(u)M(h′)).
Both rotations are represented by q

||q|| , followed by
a scaling by ||q||.

We analyze and visualize the M(u) and M(h)
rotations in Appendix B.

It is worth noting that the system QuatE2 (Zhang
et al., 2019), an experimental baseline in Sec-
tion 5, uses quaternions as its representation. Be-
cause quaternions are special cases of biquater-
nions, QuatE2 only employs the circular rotation
matrixM(u) (with itsM(h) as the identity matrix).
Further, note that the power of a biquaternion does
not merely comes from doubling the parameters
of a quaternion. A biquaternion achieves better
representational power and parameter efficiency
by facilitating the interactions between its real and
imaginary parameters (see the last paragraph of
Section B of the Appendix, and subsection 5.5.3).

4.2 Problem Definition

A multi-relational knowledge graph KG is rep-
resented as a set of directed triples, i.e., KG =
{(h, r, t)}. Each triple (h, r, t) consists of a head
entity h ∈ E , a relation r ∈ R, and a tail entity
t ∈ E . The numbers of entities and relations are
denoted as |E| = Ne and |R| = Nr respectively.
The goal of a knowledge graph embedding model
is to project entities and relations into a continuous
vector space while preserving their original seman-
tics. The knowledge graph completion (KGC) task
requires a model to predict the probability of ex-
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istence or correctness of unseen triples using the
observed triples KG.

4.3 The Proposed Model

In our BiQUE model, we represent the entities and
relations in aKG as vectors of biquaternions. Let Q
be the set of biquaternions. Each entity e is a vector
Qe of k biquaternions, i.e., Qe = [q1, q2, . . . , qk]

T ,
where q1, q2, . . . , qk ∈ Q. We denote a head entity
and a tail entity as Qh and Qt respectively. Each
relation r is modeled as two vectors Q+

r and Q×r ,
each of which also contains k biquaternions. An
entity or relation vector Q ∈ {Qh, Qt, Q+

r , Q
×
r }

can also be expressed as Q=w+xi+yj+zk where
w, x, y, z ∈ Ck (i.e., w, x, y, z are each a vector
containing k complex numbers, with its ith ele-
ment corresponding to the ith biquaternion in Q).
(Note the similarity between the form of Q and
that of a biquaternion in Equation 1.) Because a
complex number can be represented by two real
numbers (its real and imaginary components), Q
can be represented with k × 4× 2 = 8k real num-
bers (8k is its embedding size). (For expository
convenience, we refer to Q as a “biquaternion” or
an “embedding”; their structures should be clear
from their contexts.)

Currently, the loss functions of KGE models can
be roughly categorized as additive and multiplica-
tive ones depending on the relation transformation
projecting a head entity to a tail entity. Allen et al.
(2021) has recently shown that projections require
matrix multiplication, and cannot be achieved via
addition alone. Thus, it is necessary to combine
both additive and multiplicative operations into a
loss function to represent powerful projections.

We represent the transformation due to relation
r with the biquaternions Q+

r and Q×r . The embed-
ding Q+

r applies a relation-specific translation to a
head entity’s embedding Qh. We realize it by the
element-wise addition of biquaternions (similar to
what we do with real vectors for translation):

Q′h,r = Qh +Q+
r

= (wh + w+
r ) + (xh + x+r )i

+ (yh + y+r )j + (zh + z+r )k

= w′ + x′i + y′j + z′k

(8)

Next the embedding Q×r applies a relation-specific
multiplicative transformation to the translated head
entity Q′h,r. The multiplicative transformation is
defined via the Hamilton product of biquaternions

(Equation 5) as follows.

Q̂h,r = Q′h,r ~Q×r =

(w′ ⊗ w×r − x′ ⊗ x×r − y′ ⊗ y×r − z′ ⊗ z×r )+

(w′ ⊗ x×r + x′ ⊗ w×r + y′ ⊗ z×r − z′ ⊗ y×r )i+

(w′ ⊗ y×r − x′ ⊗ z×r + y′ ⊗ w×r + z′ ⊗ x×r )j+

(w′ ⊗ z×r + x′ ⊗ y×r − y′ ⊗ x×r + z′ ⊗ w×r )k

(9)

where ~ denotes the element-wise application of
the Hamilton product betweenQ′h,r andQ×r , and⊗
denotes the element-wise multiplication between
vectors of complex numbers. As shown in sub-
section 4.1, each biquaternion in Q×r represents a
composition of circular rotation, hyperbolic rota-
tion, and scaling. In the above Hamilton product,
we bring this powerful composition to bear on the
projection of the translated head entity. The Hamil-
ton product of biquaternions in Equation 9 has an
added benefit of increasing the potential interaction
between entities and relations through the multi-
plications between different components of the en-
tities and relations (observe that each element in
{w′, x′, y′, z′} is multiplied with each element in
{w×r , x×r , y×r , z×r }.)

Overall, our model unifies multiple expressive
geometric transformations (translation, scaling, cir-
cular rotation, and hyperbolic rotation) into one
coherent representation system.

4.4 Score Function and Training Loss
We measure the plausibility score of a given triple
(h, r, t) by computing the vector similarity between
the transformed head entity Q̂h,r= ŵ+x̂i+ŷj+ẑk
(from Equation 9), and a candidate tail entity Qt=
wt+xti+ytj+ztk as

f(h, r, t) = Q̂h,r ·Qt
= 〈ŵ, wt〉+ 〈x̂, xt〉+ 〈ŷ, yt〉+ 〈ẑ, zt〉,

(10)

where 〈·, ·〉 denotes the standard dot-product be-
tween vectors.

We regard the task of knowledge graph com-
pletion as a multi-class classification problem and
employ the cross-entropy loss to train our model.

L =
∑

(h,r,t)∈KG

∑
t′∈E

log
(
1+exp

(
ytf(h, r, t′)

))
+Ω

yt =

{
−1, t′ = t

1, otherwise.
(11)

To combat overfitting, we follow previous
work (Zhang et al., 2019), and append a N3 regu-
larization norm (Lacroix et al., 2018) to our loss
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function, thus obtaining

Ω =
∑

{h,r,t}∈KG

λ
(
λ1(‖Qh‖33+‖Qt‖33)+λ2‖Qr‖33

)
(12)

where λ, λ1, λ2 are the global, entity and relation
regularization hyperparameters respectively. ‖ · ‖3
denotes L3 norm of vectors.

5 Experiments

To validate BiQUE’s effectiveness, we conduct
extensive experiments on the knowledge graph
completion (KGC) task. We use three standard
knowledge graph datasets, viz., WN18RR, FB15K-
237, and YAGO3-10. In addition, to demonstrate
BiQUE’s scalability, we run it on two huge com-
monsense knowledge graph datasets, viz., Con-
cept100k and ATOMIC. Our codes and datasets are
publicly available at https://github.com/
guojiapub/BiQUE.

5.1 Datasets
The WN18RR (Dettmers et al., 2018) and FB15K-
237 (Toutanova and Chen, 2015) datasets are re-
spectively subsets of WN18 and FB15K (both
from Bordes et al. (2013)). (Both WN18 and
FB15K have test leakage problems, which al-
low their test triples to be easily inferred. Thus,
KGE models typically perform well on those two
datasets, and they do not help to differentiate be-
tween models. Because of this, we do not use
them in our experiments.) To make the KGC task
more challenging, FB15K-237 and WN18RR re-
move the inverse relations from the original val-
idation and test sets of WN18 and FB15K. The
CN-100K (Li et al., 2016) and ATOMIC (Sap
et al., 2019) datasets are two large knowledge graph
benchmarks recently adopted for evaluating com-
monsense reasoning. ATOMIC mainly describes
the reactions, effects, and intents of human behav-
iors, and represents each entity as a phrase with an
average length of 4.4 words. CN-100K contains
general commonsense knowledge about the world.
For CN-100K and ATOMIC, we use the data splits
of previous work (Malaviya et al., 2020). Table 1
provides details on the datasets. (Note that the
datasets span a wide range of sizes.)

Both WN18RR and YAGO3-10 contain many
relations with hierarchical semantics, e.g., hyper-
nym and part_of (Chami et al., 2020). On the other
hand, most of FB15K-237’s edges are antisymmet-
ric, and it does not have much hierarchical struc-
ture (Balazevic et al., 2019). The varying level of

hierarchical structure in the datasets helps to high-
light BiQUE’s adaptability to datasets with differ-
ent relation types. ATOMIC mainly contains cause-
effect relations that are not hierarchical. CN100k
contains several hierarchical relations (e.g., IsA and
AtLocation). Aside from their large sizes, these two
datasets have the challenging feature of being ex-
tremely sparse.

Dataset #Entities #Relations #Train #Valid #Test

FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,188 37 1,079,040 5,000 5,000

CN-100K 78334 34 100,000 1,200 1,200
ATOMIC 304,388 9 610,536 87,700 87,701

Table 1: Knowledge Graph Benchmarks.

5.2 Baselines

We compare our model to strong baselines that op-
erate in different geometric spaces. For Euclidean
space, we use TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ConvE (Dettmers et al.,
2018), InteractE (Vashishth et al., 2020a), and
CompGCN (Vashishth et al., 2020b). For complex-
valued space, we use ComplEx (Trouillon et al.,
2017), RotatE (Sun et al., 2019), QuatE2 (Zhang
et al., 2019) (the version with N3 regularization
and reciprocal learning) and DualE1(without type
constraints) (Cao et al., 2021). For hyperbolic
space, we use MurP (Balazevic et al., 2019) and
ATTH (Chami et al., 2020). For the commonsense
datasets, we also include ConvTransE (Shang et al.,
2019).

5.3 Evaluation Protocol

We use standard evaluation metrics for the knowl-
edge graph completion (KGC) task, viz., mean
reciprocal rank (MRR) and Hits@k with cut-off
values k ∈ {1, 3, 10}. For both MRR and Hits@k,
the larger the metric, the better the performance
of a model. We adopt the BOTTOM setting (Sun
et al., 2020) when ranking candidate triples and
we consistently apply it to our BiQUE model, i.e.,
the correct triple is always inserted at the end of
a list of triples with the same plausibility scores.
This is the strictest evaluation protocol for KGC
tasks, and provides the best reflection of a model’s
performance. Finally, we report filtered results like
previous work (Bordes et al., 2013) for fair compar-
isons. (Implementation details are in the appendix.)

https://github.com/guojiapub/BiQUE
https://github.com/guojiapub/BiQUE
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WN18RR FB15K-237 YAGO3-10

Models MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.226 - - 0.501 0.294 - - 0.465 - - - -
DistMult 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419 0.340 0.240 0.380 0.540
ConvE 0.430 0.400 0.440 0.520 0.325 0.237 0.356 0.501 0.440 0.350 0.490 0.620
InteractE 0.463 0.430 - 0.528 0.354 0.263 - 0.535 0.541 0.462 - 0.687
CompGCN 0.479 0.443 0.494 0.546 0.355 0.264 0.390 0.535 - - - -

ComplEx-N3 0.480 0.435 0.495 0.572 0.357 0.264 0.392 0.547 0.569 0.498 0.609 0.701
RotatE 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 0.495 0.402 0.550 0.670
QuatE2 0.482 0.436 0.499 0.572 0.366 0.271 0.401 0.556 0.568 0.493 0.611 0.706
DualE1 0.482 0.440 0.500 0.561 0.330 0.237 0.363 0.518 - - - -

MurP 0.481 0.440 0.495 0.566 0.335 0.243 0.367 0.518 0.354 0.249 0.400 0.567
ATTH 0.486 0.443 0.499 0.573 0.348 0.252 0.384 0.540 0.568 0.493 0.612 0.702

BiQUE 0.504 0.459 0.519 0.588 0.365 0.270 0.401 0.555 0.581 0.509 0.624 0.713

Table 2: Best results are bolded, and second best results are underlined. Results for DistMult, ConvE, ComplEx-
N3, RotatE, MurP, and ATTH are from Chami et al. (2020). Results for TransE and QuatE2 are from Zhang et al.
(2019). Results for InteractE, CompGCN and DualE1 are from their original papers. YAGO3 results for QuatE2 are
obtained using our implementation (QuatE2 can be viewed as a special case of BiQUE as discussed in Section 4.1).

CN-100K ATOMIC

Models MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DistMult 0.090 0.045 0.098 0.174 0.124 0.092 0.152 0.183
ComplEx 0.114 0.074 0.125 0.190 0.142 0.133 0.141 0.160
ConvE 0.209 0.140 0.229 0.340 0.101 0.082 0.103 0.134
RotatE 0.247 - 0.282 0.454 0.112 - 0.115 0.156
ConvTransE 0.187 0.079 0.239 0.390 0.129 0.129 0.130 0.130
QuatE2 0.313 0.217 0.356 0.504 0.187 0.167 0.191 0.225

BiQUE 0.320 0.216 0.359 0.553 0.191 0.171 0.196 0.230

Table 3: Best results are bolded, and second best results are underlined. Results for DistMult, ComplEx, ConvE,
and ConvTransE are from Malaviya et al. (2020). Results for RotatE are from Wang et al. (2020). Results for
QuatE2 are obtained using our implementation (QuatE2 is a special case of BiQUE as discussed in Section 4.1).

5.4 Results

Table 2 shows the experimental results. Following
standard practice adopted by our comparison sys-
tems, we show the best results for BiQUE. (We pick
the best result over 10 runs with different random
initializations. The appendix contains the average
scores over the runs, and the standard deviations.)

From Table 2, we see that BiQUE is the best per-
former on four of the five datasets, and is a close
second on the remaining dataset. On the two hierar-
chical datasets WN18RR and YAGO3-10, BiQUE
achieves new state-of-the-art results on all metrics,
and surpasses the second best models by a clear
margin. WN18RR contains a large proportion of
symmetric relations (which are amenable to being
modeled with circular rotations) and hierarchical re-
lations (which are amenable to being modeled with

hyperbolic rotations). BiQUE’s good performance
on this dataset provides evidence that BiQUE’s
composition of circular and hyperbolic rotations is
useful in modeling these disparate relation types
simultaneously. BiQUE also consistently outper-
forms the hyperbolic models MurP and AttH on all
metrics.

On FB15K-237, BiQUE is second best; how-
ever, BiQUE’s scores are only marginally lower
than those of the best system QuatE2. As observed
by Balazevic et al. (2019), the vast majority of
relations in FB15K-237 do not form hierarchies.
Consequently, BiQUE’s hyperbolic transformation
does not play a principal role on FB15K-237, and
BiQUE falls back on only using its circular rota-
tion transformation. QuatE2 can be viewed as a
special case of BiQUE that only has circular ro-
tations (M(u) in Thoerem 4.1). Since both use
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Relation Name #Tripes RotH QuatE2 BiQUE Lift

hypernym 1,251 0.276 0.283 0.306 8.13%
derivationally_related_form 1,074 0.968 0.969 0.970 0.10%
instance_hypernym 122 0.520 0.549 0.602 9.65%
also_see 56 0.705 0.688 0.750 6.38%
member_meronym 253 0.399 0.389 0.453 13.53%
synset_domain_topic_of 114 0.447 0.518 0.539 4.05%
has_part 172 0.346 0.337 0.392 13.29%
member_of_domain_usage 24 0.438 0.563 0.563 -
member_of_domain_region 26 0.365 0.327 0.500 36.99%
verb_group 39 0.974 0.974 0.974 -
similar_to 3 1.000 1.000 1.000 -

Table 4: Best results are bolded, and second best re-
sults are underlined. Comparison of H@10 per rela-
tion for BiQUE and baselines on WN18RR. Results
for RotH are from Chami et al. (2020). QuatE2’s re-
sults are obtained by running its official code (https:
//github.com/cheungdaven/QuatE)

the same transformation, their results are (almost)
indistinguishable on FB15K-237.

Table 3 shows the results on the large common-
sense graphs, CN-100K and ATOMIC. We see
that these datasets are a lot more challenging with
many KGE models having MRRs below or hov-
ering around 0.3. (Because of the datasets’ large
sizes, many extant KGE models do not experiment
on them, and we compare against the models that
have been reported in the literature. Malaviya et al.
(2020) describes systems that use BERT embed-
dings, and thus encapsulate a lot of commonsense
prior knowledge; for a fair comparison, we do not
use such systems as baselines.) Table 3 shows
that BiQUE outperforms the previously reported
state-of-the-art results on CN-100K (RotatE) and
ATOMIC (ComplEx) (by 29.6% and 34.5% on
MRR respectively). Further, by composing hy-
perbolic rotation with circular rotation, BiQUE sur-
passes QuatE2 that only uses the latter rotation.

5.5 Analysis

5.5.1 Performance per Relation
To provide a fine-grained analysis of BiQUE’s re-
sults, we report its performance per relation on
WN18RR in Table 4. A large portion of the
WN18RR dataset consists of hierarchical triples,
such as hypernym and instance_hypernym, which
account for more than 43% of training examples.
We see that BiQUE achieves the best performance
on all 11 relation types compared with current top-
performing models. BiQUE not only performs
well on hierarchical and tree-like relations (e.g., hy-
pernym and instance_hypernym), but also obtains
significant improvements on challenging one-to-

Variants
WN18RR FB15K-237

MRR H@3 MRR H@3

BiQUE 0.504 0.519 0.365 0.401(
(Qh +Q+

r ) ~Q×?r
)
·Qt 0.491 0.502 0.351 0.384(

(Qh +Q+
r ) ~Q×/r

)
·Qt 0.486 0.500 0.350 0.385

w/o Q+
r 0.490 0.505 0.362 0.398

w/o regularizer 0.457 0.467 0.344 0.378

Table 5: Variants and ablations of BiQUE on
WN18RR.

many relations (e.g., member_of_domain_region
and member_meronym). It is worth noting that
BiQUE does not sacrifice its performance on other
relation types for the abovementioned improve-
ments. In fact, BiQUE also achieves the best
performance for symmetric relations (e.g., deriva-
tionally_related_form and verb_group). All in all,
these fine-grained results support our hypothesis
that BiQUE’s integration of multiple geometric
transformations allows it to make good trade-offs
among various representations for different relation
types, thereby allowing it to pick the best one (or
combinations thereof) for optimal performance.

5.5.2 Model Variants and Ablation Study
Table 5 shows the performances of variants and ab-
lations of BiQUE. We test the impact of BiQUE’s
scaling operation by normalizing the relation rota-
tion biquaternion Q×r in two ways: Q×?r uses the
regular normalization of real vectors, andQ×/r uses
the standard normalization of biquaternions. (See
appendix for details.) Compared to BiQUE, both
normalized variants perform worse. Thus the norm
of Q×r plays an important role in having a scaling
effect. Further, from our ablation study, we observe
that without the translation operator Q+

r , BiQUE
performs worse on both datasets. This shows that
rotations cannot fully replace translations in KGE
models. Table 5 also shows that regularization is
important for BiQUE to avoid overfitting.

5.5.3 Model Efficiency
We investigate the impact of varying embedding
size on performance (H@1). In Figure 2, the pa-
rameters of all systems are tuned, and the results
are averaged over 5 runs (with different random
initializations). We see that BiQUE’s results con-
sistently surpasses those of the strong baselines
across embedding dimensions. The disparity is
most apparent in the regime of small embedding
sizes. This suggests that BiQUE’s representation

https://github.com/cheungdaven/QuatE
https://github.com/cheungdaven/QuatE


8346

Figure 2: Effect of varying embedding size on perfor-
mance.

WN18RR FB15K-237

#Params #Epoch MRR H@3 #params #Epoch MRR H@3

QuatE2

20.97M
40000 0.481 0.496

7.57M
15000 0.331 0.363

BiQUE 200 0.499 0.515 300 0.359 0.397

Table 6: Performance on WN18RR and FB15K-237
with the same parameter size.

is more effective at modeling the data (and thus do
better even with smaller embeddings).

In Table 6, we use the same number of param-
eters for BiQUE and QuatE2 (the baseline most
similar to BiQUE), and show that BiQUE performs
better (higher MRR and H@3) with fewer epochs.
This again supports our hypothesis that BiQUE
models the data better (with the same number of
parameters) than QuatE2, and thus requires fewer
epochs to achieve better results.

6 Conclusion

In this paper, we propose BiQUE, a novel model
that uses biquaternionic algebra for KGEs, and
combines multiple geometric transformations in a
coherent representation. Our experimental results
and detailed empirical analysis demonstrate the
effectiveness, scalability, and advantages of our
model. As future work, we will extend BiQUE to
work on knowledge hypergraphs.
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A Proofs

We prove that a biquaternion unifies both circular
and hyperbolic rotations in C4 space within a single
representation in Theorem 4.1. To do so, we require
Theorem A.1 that is proved by Jafari (2016), and
the definitions covered in Section 3. We also prove
auxiliary Lemma A.2.

Theorem A.1 (Jafari, 2016, Theorem 4.1(vi)). If
M(q) is the matrix representation of a biquater-
nion q, then the matrix’s determinant is given by
det[M(q)] = ||q||4.

Lemma A.2. If q=qr+qiI is a unit biquaternion
(i.e., ||q||=1) where qr=wr+xri+yrj+zrk, and
qi = wi+xii+yij+zik, then qrqi and qiqr are
pure quaternions (i.e., their scalar parts s(qrqi)=
s(qiqr) = 0), ||qr|| = coshφ and ||qi|| = sinhφ ,
where φ ∈ R.

Proof. Note that both qr and qi are quaternions,
and q=(wr+wiI)+(xr+xiI)i+(yr+yiI)j+(zr+ziI)k.

||q||2=(wr+wiI)
2+(xr+xiI)

2+(yr+yiI)
2

+(zr+ziI)
2

=(w2
r−w2

i + x2r−x2i + y2r−y2i + z2r−z2i )

+ 2(wrwi + xrxi + yryi + zrzi)I.

Since ||q||2 = 1 is real, we know that the above
imaginary part wrwi + xrxi + yryi + zrzi = 0.
s(qrqi)=s((wr−xri−yrj−zrk)·

(wi+xii+yij+zik))

= wrwi + xrxi + yryi + zrzi (using Eq. 5)

= 0.

s(qiqr)=s((wi+xii+yij+zik)·
(wr−xri−yrj−zrk))

= wiwr + xixr + yiyr + zizr (using Eq. 5)

= 0.

Thus qrqi and qiqr are both pure quaternions (recall
that the set of quaternions is closed under multipli-
cation).
||q||2= q̄q=(qr+qiI)(qr+qiI)=(qr+qiI)(qr+qiI)

=qrqr + qiqiI
2 + (qrqi + qiqr)I

= ||qr||2 − ||qi||2 + (qrqi + qiqr)I.

Since ||q||2=1 is real, qrqi+qiqr=0 and ||qr||2−
||qi||2=1. The latter is the equation of a hyperbola.
Since ||qr|| is real, there must exist φ ∈ R such
that ||qr|| = coshφ and ||qi|| = sinhφ (which
gives the identity cosh2 φ− sinh2 φ = 1).

Theorem 4.1. LetM(q) be the matrix represen-
tation of a unit biquaternion q = qr+qiI, where
qr=wr+xri+yrj+zrk, and qi=wi+xii+yij+zik.
M(q) can be factorized asM(q) =M(h)M(u)
whereM(h)=

coshφ −aI sinhφ −bI sinhφ −cI sinhφ
aI sinhφ coshφ cI sinhφ −bI sinhφ
bI sinhφ −cI sinhφ coshφ aI sinhφ
cI sinhφ bI sinhφ −aI sinhφ coshφ

,

M(u)=


cos θ − xr sin θ

||v(qr)|| −
yr sin θ
||v(qr)|| −

zr sin θ
||v(qr)||

xr sin θ
||v(qr)|| cos θ zr sin θ

||v(qr)|| −
yr sin θ
||v(qr)||

yr sin θ
||v(qr)|| −

zr sin θ
||v(qr)|| cos θ xr sin θ

||v(qr)||
zr sin θ
||v(qr)||

yr sin θ
||v(qr)|| −

xr sin θ
||v(qr)|| cos θ

,
θ= cos−1 wr

||qr|| , φ= cosh−1 ||qr||, qrqi
||qr||||qi|| = ai+

bj+ck, and θ, φ, a, b, c ∈ R. Alternatively,M(q)
can be factorized asM(q)=M(u)M(h′), where
qiqr

||qi||||qr||=a′i+b′j+c′k, andM(h′)=
coshφ −a′I sinhφ −b′I sinhφ −c′I sinhφ

a′I sinhφ coshφ c′I sinhφ −b′I sinhφ
b′I sinhφ −c′I sinhφ coshφ a′I sinhφ
c′I sinhφ b′I sinhφ −a′I sinhφ coshφ

.
In addition, the determinants ofM(h),M(h′) and
M(u) are 1, and M(h), M(h′) and M(u) are
orthogonal.

Proof. We utilize the ansatzes u = qr
||qr|| ,

h = ||qr|| + I qrqi
||qr||||qi|| ||qi||, and h′ = ||qr||+

I qiqr
||qi||||qr|| ||qi|| Note that u is a unit quaternion (qr

normalized), and h is a biquaternion in which
qrqi

||qr||||qi|| is a quaternion that is both pure (using
Lemma A.2) and of unit norm (it is a product of
two unit quaternions qr

||qr|| =
qr
||qr|| and qi

||qi|| ). Sim-

ilarly, h′ is a biquaternion in which qiqr
||qi||||qr|| is a

quaternion that is both pure and of unit norm. (NB:
if α and β are unit quaternions, then ||αβ||2 =
αβαβ = βααβ = ββ = 1.)

uh =
qr
||qr||

(
||qr||+ I

qrqi
||qr||||qi||

||qi||
)

=qr + I
qrqrqi
||qr||||qr||

= qr + I
||qr||2qi
||qr||2

= q

Similarly,

h′u =

(
||qr||+ I

qiqr
||qi||||qr||

||qi||
)

qr
||qr||

=qr + I
qiqrqr
||qr||||qr||

=qr + I
qi||qr||2

||qr||2
= q (by associativity)
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Using Equation 7, we get the following factor-
izations: M(q) = M(uh) = M(h)M(u), and
M(q)=M(h′u)=M(u)M(h′).

From Section 3, we know that the quaternion
u= qr

||qr||=
wr
||qr||+

xr
||qr|| i+

yr
||qr|| j+

zr
||qr||k can be repre-

sented equivalently as u= ||u||(cos θ+ v(u)
||v(u)|| sin θ)

=cos θ+ v(qr)
||v(qr)|| sin θ (where θ=cos−1 wr

||qr|| ; θ∈R
because wr, ||qr|| ∈R). Expanding v(qr), we get
u = cos θ+ xr sin θ

||v(qr)|| i+
yr sin θ
||v(qr)|| j+

zr sin θ
||v(qr)||k. Using

the matrix representation given by Equation 4, we
get the form ofM(u) as stated in the theorem.

Since qrqi
||qr||||qi|| is a pure unit quaternion, it can

be represented as ai+bj+ck (a, b, c ∈ R). Thus,
h = ||qr||+ I(ai+bj+ck)||qi|| where qrqi

||qr||||qi|| =

ai+bj+ck. From Lemma A.2, ||qr|| = coshφ and
||qi|| = sinhφ. Thus h = coshφ+(aI sinhφ)i+
(bI sinhφ)j+(cI sinhφ)k. Similarly, we can ob-
tain h′ = coshφ + (a′I sinhφ)i + (b′I sinhφ)j+
(c′I sinhφ)k and qiqr

||qi||||qr|| =a′i+b′j+c′k. Again,
using the the matrix representation given by Equa-
tion 4, we get the form of M(h) and M(h′) as
stated in the theorem.

Note that all elements in M(h),M(h′), and
M(u) are derived from q. Hence, for any q,
we can constructM(h),M(h′), andM(u), thus
proving thatM(q) can be factorized asM(q) =
M(h)M(u) andM(q) =M(u)M(h′).

Next, we show that since both u and q are unit
biquaternions, h and h′ is each a unit biquaternion.
q = uh ⇒ q̄q = uhuh = h̄ūuh = h̄h = ||h||2.
Likewise, q = h′u ⇒ qq̄ = h′uh′u = h′uūh̄′ =
h′h̄′ = ||h′||2. Since q is a unit biquaternion, q̄q =
qq̄ = 1 = ||h||2 = ||h′||2.

Using Theorem A.1, we can obtain detM(h)=
||h||4 = 1, detM(h′) = ||h′||4 = 1, and
detM(u)= ||u||4=1.
h̄h = 1 ⇒ M(h)M(h̄) = M(h)M(h)T =
M(1) = I. Likewise, h′h̄′= 1 ⇒M(h̄′)M(h′) =
M(h′)TM(h′) = M(1) = I, ūu = 1 ⇒
M(u)M(ū) =M(u)M(u)T =M(1) = I. Thus
M(h),M(h′), andM(u) are orthogonal.

B Analysis and Visualization of BiQUE’s
Circular and Hyperbolic Rotations

To analyze BiQUE’s circular and hyperbolic rota-
tions, we restrict ourselves to two dimensions. This
means a biquaternion takes the form of q = w+xi
where w, x ∈ C. The unit quaternion qr in Theo-
rem 4.1 is thus qr = wr + xri where wr, xr ∈ R,
and xr/||v(qr)|| = xr/||xri|| = 1. The circular
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Figure 3: M(h)’s hyperbolic rotations in the real and
imaginary parts respectively.

rotation matrix is thus

M(u) =

[
cos θ − sin θ
sin θ cos θ

]
Now, we multiply M(u) with an arbitrary biquater-
nion (wr + wiI) + (xr + xiI)i to transform it.[

cos θ − sin θ
sin θ cos θ

] [
wr + wiI
xr + xiI

]
=

[
cos θ − sin θ
sin θ cos θ

] [
wr
xr

]
+I

[
cos θ − sin θ
sin θ cos θ

] [
wi
xi

]
We can see that the real parts wr, xr and imaginary
parts wi, xi are transformed independently. Hence
we can accomplish the same effect by rotating two
quaternions (wr +xri and wi +xii) independently,
and this does not imbue biquaternions with added
representational power beyond that of quaternions,
which also have the rotation M(u) matrix.

Now, we examine the effect of the hyperbolic
rotation matrix M(h). Since ai + bj + ck is a unit
quaternion (as shown in the proof of Theorem 4.1),
and we restrict ourselves to two dimensions, it must
be that a = 1, b = 0, c = 0. The hyperbolic
rotation matrix is thus

M(h) =

[
coshφ −I sinhφ
I sinhφ coshφ

]
We multiply M(h) with an arbitrary biquaternion
(wr + wiI) + (xr + xiI)i to transform the latter.[

coshφ −I sinhφ
I sinhφ coshφ

] [
wr + wiI
xr + xiI

]
=

[
wr xi
xr −wi

] [
coshφ
sinhφ

]
+ I

[
wi −xr
xi wr

] [
coshφ
sinhφ

]
Observe each term in the sum now involves both

the real and imaginary parts (wr, xr, wi, xi) of the
input biquaternion. This is unlike the case above for
M(u) in which the real and imaginary components
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are independent. Thus it is the hyperbolic rotation
M(h) that allows for the interaction between the
real and imaginary components. To illustrate the
hyperbolic rotation, we set wr = 1, wi = 2, xr =
3, xi = 4, and change the value of φ continually
from an initial value of 0. Note that when φ = 0,
the first term in the sum is the point (wr, xr) and
the second term is (wi, xi). As φ changes, we can
visualize the projection of that point. In Figure 3,
the initial points in red are projected along the green
lines. Clearly the green paths are hyperbolic. The
blue point is an example of a projected point.

C Normalization of biquaternions

Given that Q×r = (wr +wiI)+(xr +xiI)i+(yr +
yiI)j + (zr + ziI)k, let A = (w2

r + x2r + y2r + z2r )
and B = (w2

i + x2i + y2i + z2i ), we define the real
vector norm ‖Q×r ‖v and biquaternion norm ‖Q×r ‖b
as follows:

‖Q×r ‖2v = A+B

‖Q×r ‖2b = A−B + 2(wrwi + xrxi + yryi + zrzi)I

Thus, we can obtain Q×?r in section 5.5.2 with the
standard normalization of real vectors: Q×?r =
Q×r
‖Q×r ‖v

.To make Q×r be a unit biquaternion, we
have to make sure that A − B = 1 and wrwi +
xrxi+ yryi+ zrzi = 0. We first employ the Gram-
Schmidt orthogonalization technique to guarantee
that the imaginary coefficient is zero and then re-
strict B = 1. Alternatively, we represent Q×r as
Q×r = q1 + q2I, and conduct the following opera-
tions:

q′1 = q1 −
< q1, q2 >

‖q2‖2
q2

q̃1 =

√
2q′1
‖q′1‖

, q̃2 =
q2
‖q2‖

.

Thus, we obtain the unit biquaternion Q×/r = q̃1 +
q̃2I.

D Variance of the performance

In Table 8 and 9, we provide the averages and stan-
dard deviations for all metrics on the FB15k-237,
WN18RR, YAGO3-10, CN-100K and ATOMIC
datasets. The results are reported based on 10 runs
with different random initializations. We see that
the performance of our model BiQUE is quite sta-
ble across different random initializations, and this
supports the robustness of our method.

E Implementation Details

For training, we adopt reciprocal learning (Lacroix
et al., 2018), in which we add an inverse triple
(t, r−1, h) for each observed triple (h, r, t) in the
training data. For model optimization, we use Ada-
grad (Duchi et al., 2011) as the optimizer, and
employ grid search to find the best hyperparam-
eters according to their performances on valida-
tion sets. The hyperparamters we search over in-
cludes embedding size ({128, 256, 512, 1024}),
batch size ({300, 500, 1000, 2000, 5000}), learn-
ing rate ({0.1, 0.01}), and regularization parame-
ters of Equation 12 (λ:{0, 5e-3, 1e-2, 5e-2, 7e-2,
1e-1, 1.5e-1}; λ1, λ2: {0.5, 1.0, 1.5, 2.0}). The
parameters used in Table 2 are shown in Table 7.
We implement our BiQUE model in PyTorch, and
run all experiments on NVIDIA Quadro RTX 8000
GPUs.

Datasets Epoch Lr Batch k λ λ1 λ2

WN18RR 200 1e-1 300 128 1.5e-1 2.0 0.5
FB15K-237 300 1e-1 500 128 7e-2 2.0 0.5
YAGO3-10 200 1e-1 1000 128 5e-3 2.0 0.5
CN-100K 200 1e-1 5000 128 1e-1 2.0 0.5
ATOMIC 200 1e-1 5000 128 5e-3 2.0 0.5

Table 7: Best hyperparameters for benchmarks. Lr is
learning rate. λ, λ1, λ2 are Equation 12’s hyperparam-
eters.
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WN18RR FB15K-237 YAGO3-10

Models MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
BiQUE 0.502 0.457 0.518 0.589 0.363 0.267 0.401 0.554 0.578 0.504 0.623 0.711
(STDEV) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001

Table 8: The average results and their standard deviations for BiQUE on WN18RR, FB15k-237 and YAGO3-10
datasets.

CN-100K ATOMIC

Models MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

BiQUE 0.319 0.210 0.363 0.550 0.191 0.171 0.195 0.229
(STDEV) 0.001 0.003 0.003 0.003 0.000 0.000 0.000 0.001

Table 9: The average results and their standard deviations for BiQUE on CN-100K and ATOMIC datasets.


