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Abstract

Temporal knowledge graph (TKG) reasoning
is a crucial task that has gained increasing re-
search interest in recent years. Most exist-
ing methods focus on reasoning at past times-
tamps to complete the missing facts, and there
are only a few works of reasoning on known
TKGs to forecast future facts. Compared with
the completion task, the forecasting task is
more difficult and faces two main challenges:
(1) how to effectively model the time informa-
tion to handle future timestamps? (2) how to
make inductive inference to handle previously
unseen entities that emerge over time? To ad-
dress these challenges, we propose the first
reinforcement learning method for forecast-
ing. Specifically, the agent travels on histor-
ical knowledge graph snapshots to search for
the answer. Our method defines a relative time
encoding function to capture the timespan in-
formation, and we design a novel time-shaped
reward based on Dirichlet distribution to guide
the model learning. Furthermore, we propose
a novel representation method for unseen en-
tities to improve the inductive inference abil-
ity of the model. We evaluate our method
for this link prediction task at future times-
tamps. Extensive experiments on four bench-
mark datasets demonstrate substantial perfor-
mance improvement meanwhile with higher
explainability, less calculation, and fewer pa-
rameters when compared with existing state-
of-the-art methods.

1 Introduction

Storing a wealth of human knowledge and facts,
Knowledge Graphs (KGs) are widely used for
many downstream Artificial Intelligence (AI) appli-
cations, such as recommendation systems (Guo
et al., 2020), dialogue generation (Moon et al.,
2019), and question answering (Zhang et al.,
2018). KGs store facts in the form of triples
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(4B, A, 4>), i.e. (subject entity, predicate/relation,
object entity), such as (LeBron_James, plays_for,
Cleveland_Cavaliers). Each triple corresponds
to a labeled edge of a multi-relational directed
graph. However, facts constantly change over
time. To reflect the timeliness of facts, Tempo-
ral Knowledge Graphs (TKGs) additionally asso-
ciate each triple with a timestamp (4B, A, 4>, C), e.g.,
(LeBron_James, plays_for, Cleveland_Cavaliers,
2014-2018). Usually, we represent a TKG as a
sequence of static KG snapshots.

TKG reasoning is a process of inferring new
facts from known facts, which can be divided into
two types, interpolation and extrapolation. Most
existing methods (Jiang et al., 2016a; Dasgupta
et al., 2018; Goel et al., 2020; Wu et al., 2020)
focus on interpolated TKG reasoning to complete
the missing facts at past timestamps. In contrast,
extrapolated TKG reasoning focuses on forecasting
future facts (events). In this work, we focus on
extrapolated TKG reasoning by designing a model
for the link prediction at future timestamps. E.g.,
“which team LeBron James will play for in 2022?”
can be seen as a query of link prediction at a future
timestamp: (LeBron_James, plays_for, ?, 2022).

Compared with the interpolation task, there are
two challenges for extrapolation. (1) Unseen times-
tamps: the timestamps of facts to be forecast do not
exist in the training set. (2) Unseen entities: new
entities may emerge over time, and the facts to be
predicted may contain previously unseen entities.
Hence, the interpolation methods can not treat the
extrapolation task.

The recent extrapolation method RE-NET (Jin
et al., 2020) uses Recurrent Neural Network (RNN)
to capture temporally adjacent facts information to
predict future facts. CyGNet (Zhu et al., 2021) fo-
cuses on the repeated pattern to count the frequency
of similar facts in history. However, these methods
only use the random vectors to represent the previ-
ously unseen entities and view the link prediction
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task as a multi-class classification task, causing
it unable to handle the second challenge. More-
over, they cannot explicitly indicate the impact of
historical facts on predicted facts.

Inspired by path-based methods (Das et al.,
2018; Lin et al., 2018) for static KGs, we propose
a new temporal-path-based reinforcement learn-
ing (RL) model for extrapolated TKG reasoning.
We call our agent the “TIme Traveler” (TITer),
which travels on the historical KG snapshots to find
answers for future queries. TITer starts from the
query subject node, sequentially transfers to a new
node based on temporal facts related to the current
node, and is expected to stop at the answer node.
To handle the unseen-timestamp challenge, TITer
uses a relative time encoding function to capture
the time information when making a decision. We
further design a novel time-shaped reward based
on Dirichlet distribution to guide the model to cap-
ture the time information. To tackle the unseen
entities, we introduce a temporal-path-based frame-
work and propose a new representation mechanism
for unseen entities, termed the Inductive Mean (IM)
representation, so as to improve the inductive rea-
soning ability of the model.

Our main contributions are as follows:
• This is the first temporal-path-based reinforce-

ment learning model for extrapolated TKG
reasoning, which is explainable and can han-
dle unseen timestamps and unseen entities.

• We propose a new method to model the time
information. We utilize a relative time encod-
ing function for the agent to capture the time
information and use a time-shaped reward to
guide the model learning.

• We propose a novel representation mechanism
for unseen entities, which leverages query
and trained entity embeddings to represent un-
trained (unseen) entities. This can stably im-
prove the performance for inductive inference
without increasing the computational cost.

• Extensive experiments indicate that our model
substantially outperforms existing methods
with less calculation and fewer parameters.

2 Related Work

2.1 Static Knowledge Graph Reasoning

Embedding-based methods represent entities and
relations as low-dimensional embeddings in dif-
ferent representation spaces, such as Euclidean
space (Nickel et al., 2011; Bordes et al., 2013),

complex vector space (Trouillon et al., 2016; Sun
et al., 2019), and manifold space (Chami et al.,
2020). These methods predict missing facts by
scoring candidate facts based on entity and rela-
tion embeddings. Other works use deep learning
models to encode the embeddings, such as Convolu-
tion Neural Network (CNN) (Dettmers et al., 2018;
Vashishth et al., 2020) to obtain deeper semantics,
or Graph Neural Network (GNN) (Schlichtkrull
et al., 2018; Nathani et al., 2019; Zhang et al., 2020)
to encode multi-hop structural information.

Besides, path-based methods are also widely
used in KG reasoning. Lin et al. (2015) and Guo
et al. (2019) use RNN to compose the implications
of paths. Reinforcement learning methods (Xiong
et al., 2017; Das et al., 2018; Lin et al., 2018) view
the task as a Markov decision process (MDP) to
find paths between entity pairs, which are more
explanatory than embedding-based methods.

2.2 Temporal Knowledge Graph Reasoning

A considerable amount of works extend static KG
models to the temporal domain. These models
redesign embedding modules and score functions
related to time (Jiang et al., 2016b; Dasgupta et al.,
2018; Goel et al., 2020; Lacroix et al., 2020; Han
et al., 2020a). Some works leverage message-
passing networks to capture graph snapshot neigh-
borhood information (Wu et al., 2020; Jung et al.,
2020). These works are designed for interpolation.

For extrapolation, Know-Evolve (Trivedi et al.,
2017) and GHNN (Han et al., 2020b) use temporal
point process to model facts evolved in the contin-
uous time domain. Additionally, TANGO (Ding
et al., 2021) explores the neural ordinary differ-
ential equation to build a continuous-time model.
RE-NET (Jin et al., 2020) considers the multi-
hop structural information of snapshot graphs and
uses RNN to model entity interactions at different
times. CyGNet (Zhu et al., 2021) finds that many
facts often show a repeated pattern and make refer-
ence to known facts in history. These approaches
lack to explain their predictions and cannot han-
dle the previously unseen entities. Explanatory
model xERTE (Han et al., 2021) uses a subgraph
sampling technique to build an inference graph.
Although the representation method that refers to
GraphSAGE (Hamilton et al., 2017) makes it pos-
sible to deal with unseen nodes, the continuous ex-
pansion of inference graphs also severely restricts
the inference speed.
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3 Methodology

Analogizing to the previous work on KGs (Das
et al., 2018), we frame the RL formulation as “walk-
based query-answering” on a temporal graph: the
agent starts from the source node (subject entity of
the query) and sequentially selects outgoing edges
to traverse to new nodes until reaching a target. In
this section, we first define our task, and then de-
scribe the reinforcement learning framework and
how we incorporate the time information into the
on-policy reinforcement learning model. The op-
timization strategy and the inductive mean repre-
sentation method for previously unseen entities are
provided in the end. Figure 2 is the overview of
our model.

3.1 Task Definition

Here we formally define the task of extrapolation
in a TKG. Let E, R, T , and F denote the sets of
entities, relations, timestamps, and facts, respec-
tively. A fact in a TKG can be represented in the
form of a quadruple (4B, A, 4>, C), where A ∈ R
is a directed labeled edge between a subject en-
tity 4B ∈ E and an object entity 4> ∈ E at time
C ∈ T . We can represent a TKG by the graph
snapshots over time. A TKG can be described as
G(1,) ) = {G1,G2, ...,G) }, where GC = {EC ,R, FC }
is a multi-relational directed TKG snapshot, and
EC and FC denote entities and facts that exist at
time C. In order to distinguish the graph nodes at
different times, we let a node be a two-tuple with
entity and timestamp: 4C

8
= (48 , C). Thus, a fact

(or event) (4B, A, 4>, C) can also be seen as an edge
from source node 4CB to destination node 4C> with
type A .

Extrapolated TKG reasoning is the task of pre-
dicting the evolution of KGs over time, and we
perform link prediction at future times. It is also
forecasting of events occurring in the near future.
Given a query (4@, A@, ?, C@) or (?, A@, 4@, C@), we
have a set of known facts {(4B8 , A8 , 4>8 , C8) |C8 < C@}.
These known facts constitute the known TKG, and
our goal is to predict the missing object or subject
entity in the query.

3.2 Reinforcement Learning Framework

Because there is no edge among the typical TKG
snapshots, the agent cannot transfer from one snap-
shot to another. Hence, we sequentially add three
types of edges. (i) Reversed Edges. For each
quadruple (4B, A, 4>, C), we add (4>, A−1, 4B, C) to

Figure 1: Illustration of the TKG with temporal edges.
To ensure the figure be clear enough, we omit the self-
loop edges and reversed edges. The dotted lines are
temporal edges.

the TKG, where A−1 indicates the reciprocal rela-
tion of A . Thus, we can predict the subject entity by
converting (?, A, 4@, C) to (4@, A−1, ?, C) without loss
of generality. (ii) Self-loop Edges. Self-loop edges
can allow the agent to stay in a place and work as
a stop action when the agent search unrolled for a
fixed number of steps. (iii) Temporal Edges. The
agent can walk from node 4C 9B to node 4C8> through
edge A , if (4B, A, 4>, C8) exits and C8 < C 9 ≤ C@ . Tem-
poral edges indicate the impact of the past fact on
the entity and help the agent find the answer in
historical facts. Figure 1 shows the graph with
temporal edges.

Our method can be formulated as a Markov Deci-
sion Process (MDP), and the components of which
are elaborated as follows.

States. LetS denote the state space, and a state is
represented by a quintuple B; = (4;, C;, 4@, C@, A@) ∈
S, where (4;, C;) is the node visited at step ; and
(4@, C@, A@) is the elements in the query. (4@, C@, A@)
can be viewed as the global information while
(4;, C;) is the local information. The agent starts
from the source node of the query, so the initial
state is B0 = (4@, C@, 4@, C@, A@).

Actions. Let A denote the action space, and A;
denote the set of optional actions at step ;,A; ⊂ A
consists of outgoing edges of node 4C;

;
. Concretely,

A; should be {(A ′, 4′, C ′) | (4;, A ′, 4′, C ′) ∈ F , C ′ ≤
C;, C
′ < C@}, but an entity usually has many related

historical facts, leading to a large number of op-
tional actions. Thus, the final set of optional ac-
tionsA; is sampled from the set of above outgoing
edges.

Transition. The environment state is transferred
to a new node through the edge selected by the
agent. The transition function X : S × A → S de-
fined by X(B;,A;) = B;+1 = (4;+1, C;+1, 4@, C@, A@),
where A; is the sampled outgoing edges of 4C;

;
.
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Figure 2: Overview of TITer. Given a query (4@ , A@ , ? (46C ), C@), TITer starts from node 4C@@ . At each step, TITer
samples an outgoing edge and traverses to a new node according to c\ (policy network). We use the last step of the
search as an example. 4C;

;
is the current node. Illustration of policy network provides the process for scoring one

of the candidate actions (A1, 41, C1). TITer samples an action based on the transition probability calculated from
all candidate scores. When the search is completed, the time-shaped reward function will give the agent a reward
based on the estimated Dirichlet distribution �8A ("rq ).

Rewards with shaping. The agent receives a ter-
minal reward of 1 if it arrives at a correct target
entity at the end of the search and 0 otherwise.
If B! = (4! , C! , 4@, C@, A@) is the final state and
(4@, A@, 46C , C@) is the ground truth fact, the reward
formulation is:

'(B!) = I{4! == 46C }. (1)

Usually, the quadruples with the same entity are
concentrated in specific periods, which causes tem-
poral variability and temporal sparsity (Wu et al.,
2020). Due to such property, the answer entity of
the query has a distribution over time, and we can
introduce this prior knowledge into the reward func-
tion to guide the agent learning. The time-shaped
reward can let the agent know which snapshot is
more likely to find the answer. Based on the train-
ing set, we estimate a Dirichlet distribution for each
relation. Then, we shape the original reward with
Dirichlet distributions:

'̃(B!) = (1 + ?ΔC! )'(B!),
ΔC! = C@ − C! ,

(?1, ..., ? ) ∼ �8A82ℎ;4C ("A@ ),
(2)

where "A@ ∈ R is a vector of parameters of
the Dirichlet distribution for a relation A@. We
can estimate "A@ from the training set. For each
quadruple with relation A@ in the training set, we
count the number of times the object entity ap-
pears in each of the most recent  historical snap-
shots. Then, we obtain a multinomial sample G8
and � = {G1, ..., G# }. To maximize the likelihood:

?(� |"A@ ) =
∏
8

?(G8 |"A@ ), (3)

we can estimate "A@ . The maximum can be com-
puted via the fixed-point iteration, and more calcu-

lation formulas are provided in Appendix A.5. Be-
cause Dirichlet distribution has a conjugate prior,
we can update it easily when we have more ob-
served facts to train the model.

3.3 Policy Network
We design a policy network c\ (0; |B;) = %(0; |
B;; \) to model the agent in a continuous space,
where 0; ∈ A;, and \ are the model parameters.
The policy network consists of the following three
modules.

Dynamic embedding. We assign each relation
A ∈ R a dense vector embedding r ∈ R3A . As
the characteristic of entities may change over time,
we adopt a relative time representation method for
entities. We use a dynamic embedding to represent
each node 4C

8
= (48 , C) in GC , and use e ∈ R34 to

represent the latent invariant features of entities.
We then define a relative time encoding function
�(ΔC) ∈ R3C to represent the time information.
ΔC = C@ − C and �(ΔC) is formulated as follows:

�(ΔC) = f(wΔC + b), (4)

where w, b ∈ R3C are vectors with learnable pa-
rameters and f is an activation function. 3A , 34
and 3C represent the dimensions of the embedding.
Then, we can get the representation of a node 4C

8
:

eC
8
= [e8;�(ΔC)].

Path encoding. The search history ℎ; =

((4@, C@), A1, (41, C1), ..., A;, (4;, C;)) is the sequence
of actions taken. The agent encodes the history ℎ;
with a LSTM:

h; = LSTM(h;−1, [r;−1; eC;−1;−1]),
h0 = LSTM(0, [r0; e

C@
@ ]).

(5)

Here, r0 is a start relation, and we keep the LSTM
state unchanged when the last action is self-loop.
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Action scoring. We score each optional action
and calculate the probability of state transition. Let
0= = (4=, C=, A=) ∈ A; represent an optional action
at step ;. Future events are usually uncertain, and
there is usually no strong causal logic chain for
some queries, so the correlation between the entity
and query is sometimes more important. Thus, we
use a weighted action scoring mechanism to help
the agent pay more attention to attributes of the
destination nodes or types of edges. Two Multi-
Layer Perceptrons (MLPs) are used to encode the
state information and output expected destination
node 4̃ and outgoing edge Ã representations. Then,
the agent obtains the destination node score and
outgoing edge score of the candidate action by cal-
culating the similarity. With the weighted sum of
the two scores, the agent obtains the final candidate
action score q(0=, B;):

q(0=, B;) = V=
〈̃
e, eC==

〉
+ (1 − V=) 〈̃r, r=〉 , (6)

ẽ = W4ReLU(W1 [h;; e
C@
@ ; r@]),

r̃ = WAReLU(W1 [h;; e
C@
@ ; r@]),

(7)

V= = sigmoid(WV [h;; e
C@
@ ; r@; eC== ; r=]), (8)

where W1, W4, WA and WV are learnable matrices.
After scoring all candidate actions inA; , c\ (0; |B;)
can be obtained through softmax.

To summarize, the parameters of the LSTM,
MLP and �, the embedding matrices of relation
and entity form the parameters in \.

3.4 Optimization and Training
We fix the search path length to !, and an !-length
trajectory will be generated from the policy net-
work c\ : {01, 02, ..., 0!}. The policy network is
trained by maximizing the expected reward over all
training samples FCA08=:

� (\) = E(4B ,A ,4> ,C)∼FCA08= [E01,...,0!∼c\
['̃(B! |4B, A, C)]] .

(9)

Then, we use the policy gradient method to
optimize the policy. The REINFORCE algo-
rithm (Williams, 1992) will iterate through all
quadruple in FCA08= and update \ with the follow-
ing stochastic gradient:

∇\ � (\) ≈ ∇\
∑

<∈[1,! ]
'̃(B! |4B, A, C);>6c\ (0; |B;)

(10)

Figure 3: Illustration of the IM mechanism. For an un-
seen entity 4@ , “C@ − 3 : A1, A3” indicates 4@ has co-
occurrence relations A1, A3 at C@ − 3, and updates its
representation based on �A1 , �A3 , and finally gets the
IM representation at C@ − 1. Then to answer a query
(4@ , A2, ?, C@), we do a prediction shift based on �A2 .

3.5 Inductive Mean Representation

As new entities always emerge over time, we pro-
pose a new entity representation method for previ-
ously unseen entities. Previous works (Bhowmik
and de Melo, 2020; Han et al., 2021) can rep-
resent unseen entities through neighbor informa-
tion aggregation. However, newly emerging en-
tities usually have very few links, which means
that only limited information is available. E.g.,
for a query (�E0=_">1;4H, ?;0HB_ 5 >A, ?, 2022),
entity “Evan_Mobley” does not exist in previ-
ous times, but we could infer this entity is a
player through relation “plays_for”, and assign
“Evan_Mobley” a more reasonable initial embed-
ding that facilitates the inference. Here we provide
another approach to represent unseen entities by
leveraging the query information and embeddings
of the trained entities, named Inductive Mean (IM),
as illustrated in Figure 3.

Let G(C 9 ,C@−1) represent the snapshots of the TKG
in the test set. The query entity 4@ first appears in
GC 9 and gets a randomly initialized representation
vector. We regard A as the co-occurrence relation
of 4@, if there exists a quadruple which contains
(4@, A). Note that entity 4@ may have different co-
occurrence relations over time. We denote 'C (4@)
as the co-occurrence relation set of entity 4@ at time
C. Let �A represent the set that comprises all the
trained entities having the co-occurrence relation A .
Then, we can obtain the inductive mean represen-
tation of the entities with the same co-occurrence
relation A:

eA =
∑
4∈�A e
|�A |

. (11)
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Entities with the same co-occurrence relation A
have similar characteristics, so IM can utilize eA to
gradually update the representation of 4@ based on
the time flow. 0 ≤ ` ≤ 1 is a hyperparameter:

e@,C = `e@,C−1 + (1 − `)
∑
A ∈'C (4@) eA

|'C (4@) |
. (12)

For relation A@ , we do a prediction shift based on
eA@ to make the entity representation more suit-
able for the current query. To answer a query
(4@, A@, ?, C@), we use the combination of 4@’s rep-
resentation at time C@ − 1 and the inductive mean
representation eA@ :

e@,C@ ,A@ = `e@,C@−1 + (1 − `)eA@ . (13)

4 Experiments

4.1 Experimental Setup
Datasets. We use four public TKG datasets for
evaluation: ICEWS14, ICEWS18 (Boschee et al.,
2015), WIKI (Leblay and Chekol, 2018a), and
YAGO (Mahdisoltani et al., 2015). Integrated Cri-
sis Early Warning System (ICEWS) is an event
dataset. ICEWS14 and ICEWS18 are two sub-
sets of events in ICEWS that occurred in 2014 and
2018 with a time granularity of days. WIKI and
YAGO are two knowledge base that contains facts
with time information, and we use the subsets with
a time granularity of years. We adopt the same
dataset split strategy as in (Jin et al., 2020) and
split the dataset into train/valid/test by timestamps
such that:

time_of_train < time_of_valid < time_of_test.
Appendix A.2 summarizes more statistics on the
datasets.

Evaluation metrics. We evaluate our model on
TKG forecasting, a link prediction task at the future
timestamps. Mean Reciprocal Rank (MRR) and
Hits@1/3/10 are performance metrics. For each
quadruple (4B, A, 4>, C) in the test set, we evaluate
two queries, (4B, A, ?, C) and (?, A, 4>, C). We use
the time-aware filtering scheme (Han et al., 2020b)
that only filters out quadruples with query time C.
The time-aware scheme is more reasonable than the
filtering scheme used in (Jin et al., 2020; Zhu et al.,
2021). Appendix A.1 provides detailed definitions.

Baseline. As lots of previous works have ver-
ified that the static methods underperform com-
pared with the temporal methods on this task, we

do not compare TITer with them. We compare
our model with existing interpolated TKG rea-
soning methods, including TTransE (Leblay and
Chekol, 2018b), TA-DistMult (García-Durán et al.,
2018), DE-SimplE (Goel et al., 2020), and TNT-
ComplEx (Lacroix et al., 2020), and state-of-the-
art extrapolated TKG reasoning approaches, in-
cluding RE-NET (Jin et al., 2020), CyGNet (Zhu
et al., 2021), TANGO (Ding et al., 2021), and
xERTE (Han et al., 2021). An overview of these
methods is in Section 2.

4.2 Implementation Details

Our model is implemented in PyTorch1. We set
the entity embedding dimension to 80, the relation
embedding dimension to 100, and the relative time
encoding dimension to 20. We choose the latest #
outgoing edges as candidate actions for TITer at
each step. # is 50 for ICEWS14 and ICEWS18, 60
for WIKI, and 30 for YAGO. The reasoning path
length is 3. The discount factor W of REINFORCE
is 0.95. We use Adam optimizer to optimize the
parameters, and the learning rate is 0.001. The
batch size is set to 512 during training. We use
beam search for inference, and the beam size is
100. For the IM, ` is 0.1. The activation function
of � is 2>B8=4. For full details, please refer to
Appendix A.3.

4.3 Results and Discussion

Performance on the TKG datasets. Our
method can search multiple candidate answers
via beam search. Table 1 reports the TKG
forecasting performance of TITer and the baselines
on four TKG datasets. TITer outperforms all
baselines on all datasets when evaluated by MRR
and Hits@1 metrics, and in most cases (except
ICEWS18), TITer exhibits the best performance
when evaluated by the other two metrics. TTransE,
TA-DistMult, DE-SimplE, and TNTComplEx can-
not deal with unseen timestamps in the test set, so
they perform worse than others. The performance
of TITer is much higher than RE-NET, CyGNet,
and TANGO on WIKI and YAGO. Two reasons
cause this phenomenon: (1) the characteristic of
WIKI and YAGO that nodes usually have a small
number of neighbors gives the neighbor search
algorithm an advantage. (2) for WIKI and YAGO,
a large number of quadruples contain unseen
entities in the test set(See Table 2), but these

1https://github.com/JHL-HUST/TITer/
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Table 1: Comparison on future link prediction. The results of MRR and Hits@1/3/10 are multiplied by 100. The
best results are in bold. We average the metrics over five runs.

Method
ICEWS14 ICEWS18 WIKI YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TTransE 13.43 3.11 17.32 34.55 8.31 1.92 8.56 21.89 29.27 21.67 34.43 42.39 31.19 18.12 40.91 51.21

TA-DistMult 26.47 17.09 30.22 45.41 16.75 8.61 18.41 33.59 44.53 39.92 48.73 51.71 54.92 48.15 59.61 66.71

DE-SimplE 32.67 24.43 35.69 49.11 19.30 11.53 21.86 34.80 45.43 42.6 47.71 49.55 54.91 51.64 57.30 60.17

TNTComplEx 32.12 23.35 36.03 49.13 27.54 19.52 30.80 42.86 45.03 40.04 49.31 52.03 57.98 52.92 61.33 66.69

CyGNet 32.73 23.69 36.31 50.67 24.93 15.90 28.28 42.61 33.89 29.06 36.10 41.86 52.07 45.36 56.12 63.77

RE-NET 38.28 28.68 41.34 54.52 28.81 19.05 32.44 47.51 49.66 46.88 51.19 53.48 58.02 53.06 61.08 66.29

xERTE 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 71.14 68.05 76.11 79.01 84.19 80.09 88.02 89.78

TANGO-Tucker – – – – 28.68 19.35 32.17 47.04 50.43 48.52 51.47 53.58 57.83 53.05 60.78 65.85

TANGO-DistMult – – – – 26.75 17.92 30.08 44.09 51.15 49.66 52.16 53.35 62.70 59.18 60.31 67.90

TITer 41.73 32.74 46.46 58.44 29.98 22.05 33.46 44.83 75.50 72.96 77.49 79.02 87.47 84.89 89.96 90.27

Table 2: The percentage of quaduples containing un-
seen entities of used test datasets.

Datasets ICEWS14 ICEWS18 WIKI YAGO
Proportion 6.52 3.93 42.91 8.03

Table 3: Comparison on the number of parameters and
calculation. (M means million.)

Method # Params # MACs
RE-NET 5.459M 4.370M
CyGNet 8.568M 8.554M
xERTE(3 steps) 2.927M 225.895M
TITer(3 steps) 1.455M 0.225M

methods cannot handle these queries.

Inductive inference. When a query contains an
unseen entity, models should infer the answer in-
ductively. For all such queries that contain unseen
entities in the ICEWS14 test set, we present ex-
perimental results in Figure 4 and Table 6. The
performance of RE-NET and CyGNet decays sig-
nificantly when compared with their result on the
whole ICEWS14 test set (see Table 1). Due to
the lack of training for unseen entities’ embed-
ding and the classification layer for all entities,
RE-Net and CyGNet could not reach the perfor-
mance of a 3-hop neighborhood random search
baseline, as illustrated by the dotted line in Figure
4. In contrast, xERTE can tackle such queries by
dynamically updating the new entities’ representa-
tion based on temporal message aggregation, and
TITer can tackle such queries by the temporal-path-
based RL framework. We also observe that TITer
outperforms xERTE, no matter TITer adopts the
IM mechanism or not. The IM mechanism could
further boost the performance, demonstrating its

Figure 4: Inductive inference results on a subset of
ICEWS14 that contain unseen entities. The dotted line
corresponds to the score of a 3-steps random search. T.
w/o IM: TITer without IM mechanism.

effectiveness in representing unseen entities.

Case study. Table 4 visualizes specific reason-
ing paths of several examples in the test set of
ICEWS18. We notice that TITer tends to select a
recent fact (outgoing edge) to search for the answer.
Although the first two queries have the same sub-
ject entity and relation, TITer can reach the ground
truths according to different timestamps. As shown
in Eq. (6), V increases when TITer emphasizes
neighbor nodes more than edges. After training,
the representations of entities accumulate much
semantic information, which helps TITer select
the answer directly with less extra information for
queries 3 and 4. In comparison, TITer needs more
historical information when unseen entities appear.
Query 5 is an example of multi-hop reasoning. It
indicates that TITer can tackle combinational logic
problems.

Efficiency analysis. Table 3 reflects the complex-
ity of RE-NET, CyGNet, xERTE, and TITer. Due
to the enormous linear classification layers, RE-
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Table 4: Path visualization on ICEWS18. † indicates unseen entities not appeared in the training set. ‡ indicates
entities along a path with the same country. V is defined in Eq. (6). For a test quadruple, we use the object
prediction as an example.

ID Test quadruple Path V

1 (Military (Comoros)†, Use conventional military
force, Citizen (Comoros), 2018/10/17) Military‡

5 86ℎC F8Cℎ B<0;; 0A<B 0=3 ;86ℎC F40?>=B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

C=2018/10/16
Citizen‡ 0.46

2 (Military (Comoros)†, Use conventional military
force, Armed Rebel (Comoros)†, 2018/10/26) Military‡

�=E4BC860C4−1
−−−−−−−−−−−−−−→
C=2018/10/19

Armed Rebel‡ 0.54

3 (Nigeria, Consult, Muhammadu Buhari, 2018/10/04) Nigeria
"0:4 0= 0??40; >A A4@D4BC−1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

C=2018/10/01
Muhammadu Buhari 0.96

4 (Police (India), Physically assault, Citizen (India),
2018/10/08) Police‡

�=E4BC860C4
−−−−−−−−−−−−→
C=2018/10/06

Citizen‡ 0.96

5 (Governor (Cote d’Ivoire)†, Make an appeal or re-
quest, Citizen (Cote d’Ivoire), 2018/10/14) Governor‡ %A08B4 >A 4=3>AB4−−−−−−−−−−−−−−−−−−→

C=2018/10/12
Party Member‡

"0:4 0= 0??40; >A A4@D4BC
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

C=2018/9/29
Citizen‡ –

Table 5: Ablation study on ICEWS18. w/o: without,
ws: weighted action scoring mechanism, rs: reward
shaping.

Method MRR H@1 H@3 H@10

TITer w/o ws and rs 29.13 20.73 32.74 45.04
TITer w/o ws 29.25 20.84 32.83 45.06
TITer w/o rs 29.17 21.00 32.72 44.51

TITer 29.98 22.05 33.46 44.83

Table 6: Results improvement with IM mechanism on
subsets of ICEWS14 and WIKI that contain unseen en-
tities.

Datasets MRR H@1 H@3 H@10
ICEWS14 +0.41 +0.46 +0.81 +0.01
WIKI +1.52 +1.15 +2.15 +1.90

NET and CyGNet have much more parameters
than other methods. To achieve the best results,
xERTE adopts the graph expansion mechanism and
the temporal relational graph attention layer to per-
form a local representation aggregation for each
step, leading to a vast amount of calculation. Com-
pared with xERTE, the number of parameters of
TITer has reduced by at least a half, and the num-
ber of Multi-Adds operations (MACs) has greatly
reduced to 0.225M, which is much less than the
counterpart, indicating the high efficiency of the
proposed model.

In summary, compared to the previous state-of-
the-art models, TITer has saved at least 50.3% pa-
rameters and 94.9% MACs. Meanwhile, TITer still
exhibits better performance.

4.4 Ablation Study

In this subsection, we study the effect of differ-
ent components of TITer by ablation studies.The
results are shown in Table 5 and Figure 5.

Relative time encoding. The relative time rep-
resentation is a crucial component in our method.
Figure 5 shows the notable change from tempo-
ral to static on ICEWS18 and WIKI. We remove
the relative time encoding module to get the static
model. For Hits@1, the temporal model improves
13.19% on ICEWS18 and 18.51% on WIKI, com-
pared with the static model. It indicates that our rel-
ative time encoding function can help TITer choose
the correct answer more precisely.

Weighted action scoring mechanism. We ob-
serve that setting V to a constant 0.5 can lead to a
drop of 5.49% on Hits@1, indicating that TITer can
better choose the source of evidence when making
the inference. After training, TITer learns the latent
relationship among entities. As expounded in Table
4, TITer prefers to pay more attention to the node
for inferring when there exists more information
to make a decision, and TITer chooses to focus on
edges (relations in history) to assist the inferring
for complex queries or unseen entities.

Reward shaping. We observe that TITer outper-
forms the variant without reward shaping, which
means an improvement of 5% on Hits@1. By us-
ing Dirichlet prior distribution to direct the decision
process, TITer acquires knowledge about the prob-
ability distribution of the target’s appearance over
the whole time span.
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Figure 5: Ablation of time information.

5 Conclusion

In this work, we propose a temporal-path-based
reinforcement learning model named TimeTraveler
(TITer) for temporal knowledge graph forecasting.
TITer travels on the TKG historical snapshots and
searches for the temporal evidence chain to find
the answer. TITer uses a relative time encoding
function and time-shaped reward to model the time
information, and the IM mechanism to update the
unseen entities’ representation in the process of
testing. Extensive experimental results reveal that
our model outperforms state-of-the-art baselines
with less calculation and fewer parameters. Further-
more, the inference process of TITer is explainable,
and TITer has good inductive reasoning ability.
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A Appendix

A.1 Definitions for Evaluation Metrics
We use two popular metrics, Mean Reciprocal
Rank (MRR) and Hits@: (we let : ∈ {1, 3, 10}),
to evaluate the models’ performance. For each
quadruple @ = (4B, A, 4>, C) in the test fact set FC4BC ,
we evaluate two queries: @> = (4B, A, ?, C) and
@B = (?, A, 4>, C). For each query, our model ranks
the entities searched by beam search according to
the transition probability. If the ground truth en-
tity does not appear in the final searched entity set,
we set the rank as the number of entities in the
dataset. xERTE ranks the entities in the final infer-
ence graph, and others rank the total entities in the
dataset.

MRR is defined as:

"'' =
1

2 ∗ |FC4BC |
∑

@∈FC4BC

( 1
A0=: (4> |@>)

+ 1
A0=: (4B |@B)

).
(14)

Hits@: is the percentage of times that the
ground truth entity appears in the top : of the
ranked candidates, defined as:

Hits@: =
1

2 ∗ |FC4BC |
∑

@∈FC4BC

(I{A0=: (4> |@>} ≤ :

+I{A0=: (4B |@B} ≤ :).
(15)

There are two filtering settings, static filtering
and time-aware filtering. RE-NET (Jin et al., 2020)
and CyGNet (Zhu et al., 2021) directly use static
filtering setting to remove the entities from the can-
didate list according to the triples in the dataset.
However, this filtering setting is not appropriate
for temporal KGs. The facts of temporal KGs al-
ways change over time. For example, we evaluate
the test quadruple (�, visit, �, 2018/04/03). There
are two other facts (�, visit, �, 2018/04/03) and
(�, visit, �, 2018/03/28). Static filtering setting
will remove both � and � from the candidates
even though the triple (�, visit, �) is not invalid in
2018/04/03. A more appropriate setting is only to
remove � from the candidates. Therefore, we use
the time-aware filtering setting that eliminates the
entities according to the quadruple.

A.2 Dataset Statistics
Dataset statistics are provided in Table 8. #CA08=,
#E0;83 and #C4BC are the numbers of quadruples

Table 7: Number of unseen entities in the test set.

Dataset #D=B44=4=C #D=B44=>@ #D=B44=B@ #D=B44=B>@

ICEWS14 496 438 497 73
ICEWS18 1140 975 1050 77
WIKI 2968 11086 22967 6974
YAGO 540 1102 873 366

in training set, valid set, and test set, respectively.
#4=C and #A4; are the numbers of total entities and
total relations. ICEWS14 and ICEWS18 are event-
based knowledge graphs, and we use the same ver-
sion as (Han et al., 2021)2. WIKI and YAGO
datasets contain temporal facts with time span
(4B, A, 4>, [CB, C4]), and each fact is converted to
{(4B, A, 4>, CB), (4B, A, 4>, CB+1C ), ..., (4B, A, 4>, C4)}
where 1C is a unit time. Here, 1C == 1H40A. We
use the same version of WIKI and YAGO as (Jin
et al., 2020)3.

Since we split each dataset by timestamps, some
entities in the test set do not exist in the training
set. Table 7 describes the number of unseen entities
and the number of quadruples containing these en-
tities in the test set. #D=B44=4=C is the number of new
entities in the test set. #D=B44=>@ is the number of
quadruples that object entities are unseen. #D=B44=B@

is the number of quadruples that subject entities are
unseen. #D=B44=B>@ is the number of quadruples that
both subject entities and object entities are unseen.

A.3 Detailed Implementation

Hyperparameters search. We use a grid search
to choose the hyperparameters. The search space of
` is [0.1, 0.3, 0.5, 0.7, 0.9]. The search space of the
outgoing edges number # is [30, 50, 80, 100, 200].
The search space of the path length is [2, 3, 4]. We
also try using different activation functions for the
�, such as A4;D, B86<>83, C0=ℎ.

Details of TITer. For the policy network, we set
the entity embedding dimension to 80, and the func-
tion � output dimension to 20. The node represen-
tation is the concatenation of the entity embedding
and � output, and its dimension is set to 100. we
also set the relation embedding size to 100. The
hidden state dimension of LSTM and the middle
layer dimensions of the two two-layer MLPs are
100. We choose the latest # outgoing edges for the
agent as the current state’s candidate actions. # is
50 for ICEWS14 and ICEWS18, 60 for WIKI, and

2https://github.com/TemporalKGTeam/xERTE
3https://github.com/INK-USC/RE-Net
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Table 8: Statistics on datasets.

Dataset #CA08= #E0;83 #C4BC #4=C #A4; Time granularity
ICEWS14 63685 13823 13222 7128 230 24 hours
ICEWS18 373018 45995 49545 23033 256 24 hours
WIKI 539286 67538 63110 12554 24 1 year
YAGO 161540 19523 20026 10623 10 1 year

30 for YAGO. The reasoning path length is set to
3. All the parameters are initialized with Xavier
initialization.

Details of Training. Same as MINERVA, we use
an additive control variate baseline to reduce the
variance and add an entropy regularization term to
the cost function scaled by a constant to encourage
diversity in the paths sampled by the policy. The
scaling constant is initialized to 0.01, and it will
decay exponentially with the number of training
epochs. The attenuation coefficient is 0.9. The
discount factor W of REINFORCE is 0.95. We use
Adam optimizer to optimize the parameters, and
the learning rate is 0.001. The weight decay of the
optimizer is 0.000001. We clip gradients greater
than 10 to avoid the gradient explosion. The batch
size is set to 512.

Details of Testing. We use beam search to obtain
a list of predicted entities with the corresponding
scores. The beam size is set to 100. Multiple paths
obtained through beam search may lead to the same
target entity, and we keep the highest path score
among them as the final entity score. For the IM
module, we set the time decay factor ` to 0.1.

Details of other Methods. We use the released
code to implement DE-SimplE4, TNTComplEx5,
CyGNet6, RE-NET7, and xERTE8. We use the de-
fault parameters in the code. Partial results in Table
1 are from (Han et al., 2021; Ding et al., 2021).
The authors of CyGNet only made object predic-
tions when evaluating their model. We find that the
subject prediction is more difficult than the object
prediction for these four datasets. We use the code
of CyGNet to train two models to predict object and
subject, respectively. TANGO (Ding et al., 2021)
does not release the code, so we use the results
reported in their paper.

4https://github.com/BorealisAI/de-simple
5https://github.com/facebookresearch/tkbc
6https://github.com/CunchaoZ/CyGNet
7https://github.com/INK-USC/RE-Net
8https://github.com/TemporalKGTeam/xERTE

A.4 Model Robustness
We run TITer on all datasets five times by using five
different random seeds with fixed hyperparameters.
Table 9 reports the mean and standard deviation
of TITer on these datasets. It shows that TITer
demonstrates a small standard deviation, which
indicates its robustness.

A.5 Estimating a Dirichlet Distribution
The Dirichlet density is:

?(p) ∼ �8A (U1, ..., U:) =
Γ(∑: U:)∏
: Γ(U:)

∏
:

?
U:−1
:

,

(16)
where ?: > 0,

∑
: ?: = 1 and U: > 0. To estimate

a Dirichlet distribution of order : with parameters
" = {U1, U2, ..., U: }, we observe a set of samples
� = {G1, ..., G# } where G is a multinomial sample
with length = with probability p. =: represents the
count of corresponding category.

?(x|") =
∫

p
?(x|p)?(p|")

=
Γ(∑: U:)

Γ(= +∑
: U:)

∏
:

Γ(=: + U:)
Γ(U:)

,

(17)

?(� |") =
∏
8

?(G8 |")

=
∏
8

( Γ(∑: U:)
Γ(=8 +

∑
: U:)

∏
:

Γ(=8: + U:)
Γ(U:)

).

(18)

The gradient of the log-likelihood is:

3 ;>6(?(� |")
3 U:

=
∑
8

Ψ(
∑
:

U:) −Ψ(=8 +
∑
:

U:)

+Ψ(=8: + U:) −Ψ(U:),
(19)

where Ψ is the digamma function. The maximum
can be computed via the fixed-point iteration:

U=4F: = U:

∑
8 Ψ(=8: + U:) −Ψ(U:)∑

8 Ψ(=8 +
∑
: U:) −Ψ(

∑
: U:)

. (20)
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Table 9: Mean and standard deviation of TITer across five runs on four datasets.

Datasets MRR H@1 H@3 H@10
ICEWS14 41.75±0.21 32.75±0.12 46.46±0.09 58.44±0.05
ICEWS18 29.98±0.15 22.05±0.07 33.46±0.06 44.83±0.03
WIKI 75.50±0.22 72.96±0.18 77.46±0.09 79.02±0.04
YAGO 87.47±0.08 84.89±0.07 89.96±0.03 90.27±0.04

We can also maximize the leave-one-out likelihood.
The digamma function Ψ can also be inverted effi-
ciently by using a Newton-Raphson method.


