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Abstract

Pretrained transformer-based models such as
BERT have demonstrated state-of-the-art pre-
dictive performance when adapted into a range
of natural language processing tasks. An open
problem is how to improve the faithfulness
of explanations (rationales) for the predictions
of these models. In this paper, we hypoth-
esize that salient information extracted a pri-
ori from the training data can complement the
task-specific information learned by the model
during fine-tuning on a downstream task. In
this way, we aim to help BERT not to forget
assigning importance to informative input to-
kens when making predictions by proposing
SALOSS; an auxiliary loss function for guid-
ing the multi-head attention mechanism dur-
ing training to be close to salient information
extracted a priori using TextRank. Experi-
ments for explanation faithfulness across five
datasets, show that models trained with SA-
Loss consistently provide more faithful ex-
planations across four different feature attribu-
tion methods compared to vanilla BERT. Us-
ing the rationales extracted from vanilla BERT
and SALOSS models to train inherently faith-
ful classifiers, we further show that the lat-
ter result in higher predictive performance in
downstream tasks.'

1 Introduction

Pretrained transformer-based (Vaswani et al., 2017)
language models (LMs) such as BERT (Devlin
et al., 2019), have achieved state-of-the-art results
in various language understanding tasks (Wang
et al., 2019b,a). Despite their success, their highly
complex nature consisting of millions of parame-
ters, makes them difficult to interpret (Jain et al.,
2020). This has motivated new research on under-
standing and explaining their predictions.
Previous work has explored whether LMs en-
code syntactic knowledge by studying their multi-

'Code: https://github.com/GChrysostomou/
saloss.

n.aletras}@sheffield.ac.uk

head attention distributions (Clark et al., 2019; Htut
et al., 2019; Voita et al., 2019). Recent studies
have evaluated the faithfulness of explanations”
for predictions made by these models (Vashishth
et al., 2019; Atanasova et al., 2020; Jain et al.,
2020). In general, LMs can provide faithful ex-
planations, particularly using attention (Jain et al.,
2020), but still fall behind other simpler architec-
tures (Atanasova et al., 2020) possibly due to in-
creased information mixing and higher contextual-
ization in the model (Brunner et al., 2020; Pascual
et al., 2021; Tutek and Snajder, 2020). Recent stud-
ies have attempted to improve the explainability
of non transformer-based models, by guiding them
through an auxiliary objective towards informative
input importance distributions (e.g. human or ad-
versarial priors) (Ross et al., 2017a; Liu and Avci,
2019; Moradi et al., 2021).

In a similar direction, we propose Salient Loss
(SALO0SS), an auxiliary objective that allows the
multi-head attention of the model to learn from
salient information (i.e. token importance) during
training to reduce the effects of information mix-
ing (Pascual et al., 2021). We compute a priori
token importance scores (Xu et al., 2020) using
TEXTRANK (Mihalcea and Tarau, 2004) (i.e. an
unsupervised graph-based method) and penalize
the model when the attention distribution deviates
from the salience distribution. Our contributions
are as follows:

* We demonstrate that models trained with SA-
Loss generate more faithful explanations in
an input erasure evaluation.

* We finally show that rationales extracted from
SAL 0SS models result in higher predictive
performance in downstream tasks when used
as the only input for training inherently faith-
ful classifiers.

2A faithful explanation represents the true reasons behind
a model’s prediction (Jacovi and Goldberg, 2020).
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2 Related Work

Model Explainability Explanations can be ob-
tained by computing importance scores for input to-
kens to identify which parts of the input contributed
the most towards a model’s prediction (i.e. feature
attribution). A common approach to attributing
input importance is by measuring differences in a
model’s prediction between keeping and omitting
an input token (Robnik-Sikonja and Kononenko,
2008; Li et al., 2016b; Nguyen, 2018a). Input
importance can also be obtained by calculating
the gradients of a prediction with respect to the
input (Kindermans et al., 2016; Li et al., 2016a;
Sundararajan et al., 2017; Bastings and Filippova,
2020). We can also use sparse linear meta-models
that are easier to interpret (Ribeiro et al., 2016;
Lundberg and Lee, 2017). Finally, recent studies
propose using feature attribution to extract a frac-
tion of the input as a rationale and then use it to
train a classifier (Jain et al., 2020; Treviso and Mar-
tins, 2020).

Faithfulness of Pretrained LM Explanations
Brunner et al. (2020) criticize the ability of atten-
tion in providing faithful explanations for the inner
workings of a LM, by showing that constructed
adversary attention maps do not impact signifi-
cantly the predictive performance. Pruthi et al.
(2020) show similar outcomes by manipulating
attention to attend to uninformative tokens. Pas-
cual et al. (2021) and Brunner et al. (2020) argue
that this might be due to significant information
mixing in higher layers of the model, with recent
studies showing improvements in the faithfulness
of attention-based explanations by addressing this
(Chrysostomou and Aletras, 2021; Tutek and Sna-
jder, 2020).

Atanasova et al. (2020) evaluate faithfulness
of explanations (Jacovi and Goldberg, 2020) by
removing important tokens and observing dif-
ferences in prediction, showing that generally
gradient-based approaches for transformers pro-
duce more faithful explanations compared to sparse
meta-models (Ribeiro et al., 2016). However,
transformer-based explanations are less faithful
compared to simpler models due to their highly
parameterized architecture. Atanasova et al. (2020)
also show that explanation faithfulness does not
correlate with how plausible it is (understandable
by humans) corroborating arguments made by Ja-
covi and Goldberg (2020). Jain et al. (2020) show

that attention-based feature attributions, in general,
outperform gradient-based ones.

A different branch of studies introduced adver-
sarial auxiliary objectives to influence attention-
based explanations during training (Kennedy et al.,
2020; Wiegreffe and Pinter, 2019; Ross et al.,
2017b; Liu and Avci, 2019). These objectives have
typically been used as a tool for evaluating explana-
tion faithfulness generated by attention (Kennedy
et al., 2020; Wiegreffe and Pinter, 2019; Pruthi
et al., 2020; Ghorbani et al., 2019) while others
used auxiliary objectives to improve the faithful-
ness of explanations generated by non-transformer
based models (Ross et al., 2017b; Liu and Avci,
2019; Moradi et al., 2021; Mohankumar et al.,
2020; Tutek and Snajder, 2020). The auxiliary
objectives guide the model using human annotated
importance scores (Liu and Avci, 2019), or allow
for selective input gradient penalization (Ross et al.,
2017b). Such studies illustrate the effectiveness of
auxiliary objectives for improving the faithfulness
of model explanations suggesting that we can also
improve explanation faithfulness in transformers
using appropriate prior information.

3 Improving Explanation Faithfulness
with Word Salience

Even though attention scores are more faithful than
other feature attribution approaches (Jain et al.,
2020), they usually pertain to their corresponding
input tokens in context and not individually due
to information mixing (Tutek and Snajder, 2020;
Pascual et al., 2021). As such, we hypothesize that
we can improve the ability of a pretrained LM in
providing faithful explanations, by showing to the
model alternative distributions of input importance
(i.e. word salience). We assume that by introducing
the salience distribution via an auxiliary objective
(Ross et al., 2017b), we can reduce information
mixing by “shifting” the model’s attention to other
informative tokens. In a similar direction to ours,
Xu et al. (2020) showed that by computing attention
together with salience information from keyword
extractors improves text summarization.

Computing Word Salience We compute word
salience o using TEXTRANK (Mihalcea and Ta-
rau, 2004), an unsupervised graph-based model for
keyword extraction. TEXTRANK calculates inde-
gree centrality of graph nodes iteratively based on a
Markov chain, where each node is a wordpiece and
each edge links wordpiece pairs within a context
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window (Xu et al., 2020). For each input document
X, we construct an undirected graph and apply
TEXTRANK to compute the local salience scores
(0;) of its words by:

JEIn(V;)

O’j l
ou(vy] Y

where d is the damping coefficient, In(V;) and
Out(V;) are the incoming and outgoing nodes. Our
intuition is that by using the task-agnostic TEX-
TRANK, we can extract words that are important
in the context of the sequence and as such offer an
alternative view of token importance.’

Salience Loss We propose Salient Loss
(SALO0SS), an auxiliary objective which allows the
model to learn attending to more informative input
tokens jointly with the task. SALOSS penalizes the
model when the attention distribution («¢) deviates
from the word salience distribution (o°).* For av we
compute the average attention scores of the CLS
token from the last layer (Jain et al., 2020). The
joint objective for adapting a LM to a downstream
classification task with SALOSS is:

L = £C + A»Csal (2)

where L. is the Cross-Entropy Loss for a down-
stream text classification task and A a regulariza-
tion coefficient for the proposed SALOSS (Lsq1)
which can be tuned in a development set. L, is
defined as the KL divergence between o and o

Lsq = KL(a,0) = Z a(loga —loga) (3)

We assume a standard text classification setting
where a set of labeled documents is used for fine-
tuning a pretrained LM by adding an extra out-
put classification layer. We normalize the salience
scores for compatibility with the KL divergence.

4 Experimental Setup

Datasets We consider five natural language un-
derstanding tasks (see dataset statistics in Appx.
A): SST (Socher et al., 2013); AGNews (AG)
(Corso et al., 2005); Evidence Inference (EV.INF.)
(Lehman et al., 2019); MultiRC (M.RC) (Khashabi
et al., 2018) and Semeval 2017 Task 4 Subtask A
(SEMEVAL) (Nakov et al., 2013).

3We also considered the use of TFIDF and x? scores ob-
serving comparable but lower performance in early experimen-
tation. We hypothesize that TextRank performs well due to its
effectiveness in improving performance in text summarization
(Xu et al., 2020). See also Appx. H for TFIDF and x? results
on input erasure experiments.

‘a €RY; o €R', where t is the sequence length.

DATASET || BASELINE A SALOSS
SST .91 (.00) 1E-3 .91 (.00)
AG .93 (.00) 1E-4 .93 (.00)
EV.INF .82 (.01) 1E-4 .80 (.02)
M.RC .76 (.01) 1E-3 .76 (.00)
SEMEVAL .58 (.01) 1E-3 .57 (.03)

Table 1: F1 macro averaged across 3 seeds for vanilla
LMs (BASELINE) and SALOSS models. A represents
the regularization coefficient of our proposed objective.

Models Similar to Jain et al. (2020) we use:
BERT (Devlin et al., 2019) for (SST, AG, SE-
MEVAL); SCIBERT (Beltagy et al., 2019) for
EV.INF.; ROBERTA (Liu et al., 2019) for M.RC.

Evaluating Explanation Faithfulness We eval-
uate the faithfulness® of model explanations using
two standard approaches:

* Input Erasure: We first compute the average
fraction of tokens required to be removed (in
decreasing importance) to cause a change in
prediction (decision flip) (Serrano and Smith,
2019; Nguyen, 2018b).

* FRESH: We also compute the predictive per-
formance of a classifier trained on rationales
extracted with feature attribution metrics (see
§4) using FRESH (Jain et al., 2020). We ex-
tract rationales by; (1) selecting the top-k most
important tokens (TOPK) and (2) selecting the
span of length k that has the highest overall
importance (CONTIGUOUS).

Feature Attribution Approaches We opt using
the following popular metrics to allocate impor-
tance to input tokens: (1) Normalized attention
scores (a); (2) Attention scores scaled by their
gradient (V) (Serrano and Smith, 2019); (3)
Gradients of the input scaled by the input (xVx)
(Kindermans et al., 2016; Atanasova et al., 2020);
and (4) Integrated Gradients which compute the
accumulated gradients along a path from a baseline
to the input (I.G.) (Sundararajan et al., 2017).6

S Experimental Results

Predictive Performance Table 1 shows FlI
macro scores averaged over three runs with stan-
dard deviation across tasks, for vanilla pretrained

SWe do not conduct human experiments, as faithfulness
and plausibility (human understandability of explanations) do
not correlate (Atanasova et al., 2020; Jacovi and Goldberg,
2020; Wiegreffe and Pinter, 2019).

99

6 99 o
where Va,; = Pa; and Vz; = o2;
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METRIC||SST AG EV.INF. M.RCc SEMEVAL SALoOSS

RAND. “ 66 67 51 44 54 DATASET BASELINE| 15X TRANK UNIFORM
% « .55 .43 .25 .40 43 SST (20%) .83 (.00) | .87 (.00) T .82 (.00)
O xVx .65 .64 .42 .40 .55 AG (20%) .92 (.00) | .92 (.00) .92 (.00)
5 aVa 57 .52 .25 .38 48 EV.INF. (10%) .82 (.00) | .81 (.00) .78 (.00)
;é 1.G. .63 .63 42 .42 .50 M.Rc (20%) .75 (.00) | .75(.00) .75 (.00)
» « A27 .53 14¢ 197 397 SEMEVAL (20%)|| .48 (.03) | .53 (.01)7 .43 (.00)
& xVx |.611f .59 .38f .30t S1t
j aVa ||.481 .507 121 .24% Alt Table 3: F1 macro on models trained with extracted
# LG. |.61f .57t 331 .33} 451 rationales (TOPK and «) using FRESH for BASELINE

Table 2: Average fraction of tokens required to cause a
decision flip across datasets and feature attribution met-
rics (lower is better). Bold denotes the best method in
each dataset. 1 denotes a significant difference com-
pared to BASELINE using the same attribution metric
(Wilcoxon Rank Sum, p < .05).

LMs (BASELINE) and models with our proposed
objective SALOSS. Results demonstrate that mod-
els trained with our proposed salience objective’
achieve similar performance to the BASELINE mod-
els across datasets.

Input Erasure Table 2 shows results for the aver-
age fraction of input tokens required to be removed
to cause a decision flip for BASELINE and SALOSS
models in the test set. Results suggest that models
trained with our proposed objective require a signif-
icantly lower fraction of tokens removed to cause a
decision flip in 19 out of 20 cases (Wilcoxon Rank
Sum, p < .05), with the exception of AG and
a. This demonstrates that SALLOSS obtains more
faithful explanations in the majority of cases (Ja-
covi and Goldberg, 2020). For example in EV.INF.,
the BASELINE approach with « requires .25 frac-
tions of tokens on average to observe a decision
flip compared to .14 with SALOSS (approximately
40 tokens less). We also observe that in M.RC.
where o« is not the most effective feature attribution
method with BASELINE, with SALOSS it becomes
the most effective. In fact, o is the best performing
feature attribution approach across most tasks and
metrics using SALOSS, indicating the effectiveness
of infusing salient information.

We also performed an analysis on the differ-
ences in Part-of-Speech (PoS) tags of the rationales
selected by SALOSS and BASELINE,to obtain in-
sights towards why rationales with SALOSS are
shown to be more faithful to those from models
trained without our proposed objective . In SST,
we observe that SALOSS allocates more impor-
tance on adverbs and adjectives, which are consid-

"We treat \ as a hyper-parameter tuned on the development
set, where A € {le-2, le-3, le-4}.

and SALOSS models. Bold denotes best performance
in each dataset. T indicates that SALOSS rationales per-
form significantly better (t-test, p < .05).

ered important in sentiment analysis (Dragut and
Fellbaum, 2014; Sharma et al., 2015). In EV.INF.,
we observe that SALOSS allocates importance
to subordinating conjunction words such as than,
which are indeed important for the task, which con-
sists of inferring relationships (i.e. higher than).
We thus hypothesize that SALOSS guides the model
to other informative tokens, complementing the
task specific information learned by the model.®

Rationale Extraction We finally compare our
SALOSS models with vanilla LMs (BASELINE)
on rationale extraction using FRESH (Jain et al.,
2020), by measuring the predictive performance
of the classifier trained on the extracted rationales.
For completeness we also include an uninforma-
tive baseline for SALOSS, which comprise of a
normalized uniform distribution over the input (i.e.
all inputs are assigned the same salience score).
For brevity, Table 3 presents results using the best
performing metric from the erasure experiments
a with ToPK.? Our approach significantly out-
performs BASELINE in 2 out of 5 datasets (t-test,
p < 0.05), whilst achieving comparable predictive
performance on the rest. For example in SST we
observe a 3% increase in F1 using the same ratio
of rationales. It is notable that in M.RcC, AG and
EV.INF., performance of classifiers trained on ratio-
nales from both BASE. and SALOSS is comparable
to that with full text (1-2% lower). We assume that
this is due to the nature of the tasks, which likely
do not require a large part of the input to reach high
performance. This highlights the effectiveness of
our approach, as a simple yet effective solution for
improving explanation faithfulness.

8We include an extensive analysis in Appx. G.
For CONTIGUOUS see Appx. F
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Example 1 Data.:AG Id: test_239
[BASELINE]: NEW YORK ( Reuters ) - Shares of Google Inc. will make their Nasdaq stock market debut on Thursday after the year 's most
anticipated initial public offering priced far below initial estimates , raising $1.67 billion .

[SALoss (Ours)]: NEW YORK ( Reuters ) - Shares of Google Inc. will make their Nasdaq stock market debut on Thursday after the year s most
anticipated initial public offering priced far below initial estimates , raising $1.67 billion .

[Topic]: Business

Example 2

[BASELINE]: If nothing else this movie introduces a promising unusual kind of psychological horror.
[SALoss (Ours)]: If nothing else this movie introduces a promising unusual kind of psychological horror.
[Sentiment]: Positive

Example 3 Data.:EV.INF. Id: 4118506_0
[BASELINE]: ... analgesics . ABSTRACT.AIM : : The aim of this study is to evaluate the efficacy of fentanyl along with LA field infiltration in
controlling pain and discomfort associated with CVC insertion . ABSTRACT.SETTINGS AND DESIGN : :...

[SALoss (Ours)]: ... ABSTRACT.RESULTS : : The median interquartile range pain score is worst for placebo group after LAl (5[3-61) and in the
immediate postprocedure period (5[ 4 - 5]) which was significantly attenuated by addition of fentanyl (3.5[2-5]and 3[2-4]) (P =0.009

Data.:SST Id: test_78

and 0.001 respectively ) ...

[Intervention || Comparator || Outcome]: Fentany! || Normal saline || Pain score

[Relationship]: Significantly decreased

Table 4: True examples of extracted rationales from models using our proposed approach (SALOSS) and from

models that do not (BASELINE)

6 Qualitative Analysis

In Table 4 we present examples of extracted ra-
tionales from a model trained with our proposed
objective (SAL0SS) and without (BASELINE) us-
ing aVa, to gain further insights to complement
the PoS analysis. For clarity we present rationales
of CONTIGUOUS type.

In AG we observed similar performance between
models trained with SALOSS and without. Exam-
ple 1 illustrates such a case, where both models
predicted correctly but attended to different parts
of the input. Despite in different locations, both
segments are closely associated with the label of
“Business”. Example 2 is an instance from the
SST dataset, were the SALOSS rationale points
to a phrase that is more associated with the task
(““a promising unusual’) compared to the BASE-
LINE. This also aligns with previous observations
from the PoS analysis, that models trained with
our proposed objective attend to more adjectives
compared to BASELINE. Example 3 considers an
instance from the Ev.Inf. dataset, which shows
that the model trained with SALOSS and BASE-
LINE attended to two different sections. In fact
what we observed in agreement with the PoS anal-
ysis, is that models with SALOSS attend mostly to
segments including words related to relationships,
such as “significantly attenuated” in this particular
example.

7 Conclusion

We introduced Salient Loss (SALOSS), an aux-
iliary objective to incorporate salient informa-
tion to attention for improving the faithfulness

of transformer-based prediction explanations. We
demonstrate that our approach provides more faith-
ful explanations compared to vanilla LMs on input
erasure and rationale extraction. In the future, we
plan to explore additional objectives to better opti-
mize for contiguity of rationales.
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A Datasets

For our experiments we use the following tasks
(see dataset details in Table 5.):

SST (Socher et al., 2013): Binary sentiment clas-
sification with removed neutral sentences.
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AG News (Corso et al., 2005): News articles cat-
egorized by the following topics; Science, Sports,
Business, and World.

Ev.Inf (Evidence Inference) (Lehman et al.,
2019): Abstract-only biomedical articles describ-
ing randomized controlled trials. The task is to
infer the reported relationship between a given in-
tervention and comparator with respect to an out-
come.

M.Rc (Multi RC) (Khashabi et al., 2018): A
reading comprehension dataset composed of ques-
tions with multiple correct answers that depend on
information from multiple sentences. Similar to
DeYoung et al. (2020) and Jain et al. (2020) we
convert this to a binary classification task where
each rationale/question/answer triplet forms an in-
stance and each candidate answer has a label of
True or False.

SEMEVAL Nakov et al. (2013): The Semeval
2017 dataset for Task 4 Subtask A which consists
of tweets and the task is to classify whether the
message is of positive, negative, or neutral senti-
ment.

B TextRank Training

We run for 10 steps, or until convergence, with a
window of 4 words, a damping coefficient of 0.85
and normalize the salience scores to make them
more compatible to attention distributions.

C Model Hyper-Parameters

Table 6 presents the hyper-parameters used to train
the models across different datasets, along with F1
macro performance on the development set. Mod-
els where finetuned across 3 runs for 10 epochs,
with the exception of the SEMEVAL dataset which
was finetuned for 20. We implement our models us-
ing the Huggingface library (Wolf et al., 2020) and
use default parameters of the ADAMW optimizer
apart from the learning rates and a linear scheduler.

SPLITS
DATA H Av. [W| C TRAIN/DEV/TEST
SST 18 2 6,920/872 /1,821
AG 36 4 102,000/ 18,000/ 7,600
EV.INF. 363 3 5,789 /684 /720
M.RC 305 2 24,029/3,214/4,848
SEMEVAL 20 3  6,000/2,000/20,630

Table 5: Dataset statistics including average words per
input, number of classes and splits (see also Appx. A).

DATASET MODEL Ir™ Ir¢ F1

SST BERT-BASE  1E-5 1E-4|.91 £ .00
AG BERT-BASE  1E-5 1E-4[.93 4+ .00
EV.INF. SCIBERT S5E-6 2E-4|.84 4+ .01
M.RC ROBERTA-BASE 2E-6 2E-4|.75 + .01
SEMEVAL BERT-BASE  1E-5 1E-4|.59 + .02

Table 6: Model and their hyper-parameters for each
dataset, including learning rate for the model (Ir"*) and
the classifier layer (Ir°) and F1 macro scores on the de-
velopment set across three runs.

Each experiment is run on a single Nvidia Tesla
V100 GPU.

We found that the learning rate of our proposed
objective, does not impact significantly F1 macro
performance. As such, since our objective is im-
proving faithfulness, our A selection includes train-
ing then evaluating on the development set the aver-
age fraction of tokens required to cause a decision
flip. We use the model with the lowest fraction of
tokens scores and report on the test set.

D Further Details on Evaluating
Faithfulness

Erasure (Serrano and Smith, 2019; Nguyen,
2018b): Jacovi and Goldberg (2018b) propose
that an appropriate measure of faithfulness of an
explanation can be obtained through input erasure
(the most relevant parts of the input—according to
the explanation—are removed). We therefore record
the average fraction of tokens required to be re-
moved across instances to cause a decision flip. Re-
moval is conducted in descending token importance
order at every 5% of the length in the sequence, as
searching at every token is computationally expen-
sive (Atanasova et al., 2020). Note that we conduct
all experiments at the input level (i.e. by remov-
ing the token from the input sequence instead of
only removing its corresponding attention weight)
as we consider the scores from importance met-
rics to pertain to the corresponding input token
following related work (Arras et al., 2016, 2017;
Nguyen, 2018a; Vashishth et al., 2019; Grimsley
et al., 2020).

FRESH (Jain et al., 2020): A pipeline com-
posed of a support model-extractor-classifier,
whereby the support model is the model trained
on the full text and allocates importance to tokens,
extractor the approach used and extract the ratio-
nales according to the importance from the sup-
port model and classifier the model trained on the
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rationales. The higher the classifier’s predictive
performance the more faithful the rationales by the
support model.

Similar to Jain et al. (2020), for FRESH we ex-
tract rationales of a fixed ratio compared to the
sequence length by two thresholder approaches
(THRESH.):

* ToPK: The fop-k tokens as indicated by the
corresponding importance metric, treating
each word independently.

* CONTIGUOUS: The span of length & that re-
sults in the highest overall score as indicated
by the importance metric.

E Further Details on Feature Attribution
Approaches

* o Importance rank corresponding to normal-
ized attention scores.

e aVa: Scales the attention scores «; with
their corresponding gradients Vo, = o9

oo *
Serrano and Smith (2019)'°

* xVx (InputXGrad) (Kindermans et al., 2016;
Atanasova et al., 2020): Ranking words by
multiplying the gradient of the input by the in-
put with respect to the predicted class, where

* 1.G. (Integrated Gradients) (Sundararajan
etal., 2017): Ranking words by computing the
integral of the gradients taken along a straight
path from a baseline input to the original in-
put, where the baseline input is a sequence of
zero embedding vectors.

F Further Results on FRESH

In Table 7 we present complementary results on
the F1 macro scores of the classifier trained on
extracted contiguous rationales. Rational ratios for
datasets SST, AG, EV.INF. and M.RcC are from
Jain et al. (2020), whilst for SEMEVAL we choose
a 20% ratio.

We can first observe that models trained on con-
tiguous rationale extracted from models trained
with SALOSS, obtain comparable performance to
models without (BASE). Additionally, results show
that classifier performance does not reach those

9Serrano and Smith (2019) show that gradient-based atten-
tion ranking metrics (V) are better in providing faithful
explanations compared to just using attention (cx).

DATASET BASELINE SaLoss
TEXTRANK UNIFORM
SST (20%) 82(.00) [ .83 (.00) T .80 (.00)
AG (20%) .90 (.00) | .89 (.00) .89 (.00)
EV.INF. (10%) .79 (.00) | .78 (.00) .78 (.00)
M.RC (20%) .70 (.00) | .67 (.00) .71 (.00)
SEMEVAL (20%)|| .46 (.03) | .47 (.01)t .42 (.00)

Table 7: F1 macro on models trained with extracted
rationales (CONTIGUOUS and «) using FRESH for
BASELINE and SALOSS models. Bold denotes best
performance in each dataset. 1 indicates that SA-
Loss rationales perform significantly better (t-test, p <
0.05).

with TOPK rationales. We can therefore assume
that TOPK rationales result to inherently faithful
classifiers with higher performance. It is encourag-
ing to notice that in the datasets where performance
is comparable with our approach (AG, EV.INF.,
M.RO0), it is likely due to reaching close to FULL-
TEXT performance. For example, classifier perfor-
mance trained on CONTIGUOUS rationales from
BASE. in SST is at .82 compared to .83 with SA-
Loss rationales.

Results also suggest that our uninformative base-
line (UNIF.), reduces the faithfulness of rationales
in most cases resulting in lower classifier perfor-
mance. We hypothesize that in cases where per-
formance is comparable with BASE. and SALOSS,
it is due to the task being relatively easy and as
such the loss function not impacting the faithful-
ness of rationales. We consider this direction as an
interesting area for future work.

G PoS Importance Allocation

We also conduct an analysis whereby we record
the average importance scores under each Part of
Speach (PoS) tag. We run a pretrained PoS tagger
from spaCy (Honnibal et al., 2020) across the text
and compute average importance calculated from a
feature attribution approach for each PoS tag. We
therefore aim to observe differences in allocation
of importance in linguistic features between mod-
els trained with out our proposed approach (BASE.)
and with (SALOSS). In Figure 1 we present distri-
bution of importance (calculated with oV ) across
PoS tags, on three datasets (SST, AG and EV.INF.).

Observing Figure la, we can see that aVa
with SALOSS places greater importance on proper
nouns (PROPN), auxiliary words (AUX), pronouns
(PRON) and interjections (INTJ). In comparison
the most prominent tags with BASE are INTJ,
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PROPN, coordinating conjunctions (CCONJ) and
nouns (NOUN). In a sentiment analysis task, it is
notable that both BASE. and SALOSS base high
importance on average on interjections, which typ-
ically demonstrate feelings or emotions. Both ap-
pear to highlight particularly well adjectives, which
we consider more important for sentiment analysis
as they name attributes of other words. On the other
end we also observe that SALOSS places lower im-
portance on average to CCONJ and punctuation
(PUNCT) compared to BASE. This suggests that
for SST, SAL0OSS models possibly shift their im-
portance to more informative for the task word
groups.

Moving on to Figure 1b, we observe a very high
peak on proper nouns (PROPN) and unidentified
tokens (X) with SALOSS compared to BASE.. In a
news classification task proper nouns such as the
NATO and other organization or city names can in-
dicate the topic of a sequence. We assume that for
SALOSS to place such great importance on proper
nouns, we manage with our approach to shift the
model’s attention to more informative for the task
tokens. However we also observe unidentified sym-
bols having large average importance scores with
SALoss. Whilst we do not study plausibility (hu-
man understandability of explanations), we con-
sider this a limitation and we consider exploring
and addressing this an interesting direction for fu-
ture work.

Finally, examining Figure lc, we observe that
both SALOSS and BASE place very high impor-
tance on particle (PART) words such as not. We
consider this encouraging, as large parts of the task
is to infer if there was a significant difference or
not based on an observation in the text. Addition-
ally, we observe that SALOSS attends highly to
subordinating conjunction (SCONJ) words such as
than, which if placed in the context of "significantly
higher than" directly relates to our task. Also with
SALOSS we observe a reduction in attention to
pronouns (PRON) compared to BASE, which we
consider encouraging as PRON words are not di-
rectly related to the task of infering relationships.
This indicates that our proposed objective manages
to guide the model’s attention away from uninfor-
mative tokens such as others and punctation, and
towards more informative for the task token types
(SCONIJ, CCONJ).

METRICHSST AG EV.INF. M.Rc SEMEVAL

RAND. || .66 .67 .51 .44 54
. 42 53 .14 .19 39
522 xVx || .61 .59 38 .30 51
E aVa || .48 50 .12 .24 41
& LG, ||.61 57 33 33 45
a2 o« 49 67 .29 .38 44
% xVUx ||.60 .59 47 34 54
& ava | .61 71 28 .33 49
S 1.G. || .58 56 .48 38 47

a 47 43 20 .33 48
% xVx ||.62 57 41 36 57
E ava |50 47 20 37 58

LG. | .58 .56 .40 .38 53

Table 8: Average fraction of tokens required to cause
a decision flip across datasets and feature attribution
metrics (lower is better).

H Input Erasure

Table 8 presents the average fraction of tokens re-
quired to cause a prediction switch (decision flip),
when training models with SALOSS and (1) TEX-
TRANK; (2) CHISQUARED; (3) TFIDF. We observe
that when models are regularized with TEXTRANK
scores, the feature attribution approaches result in
a lower average fraction of tokens to cause a pre-
diction switch compared to the other two salience
functions. We also observe that TFIDF is compara-
ble with TEXTRANK in most cases, outperforming
CHISQUARED. We hypothesize that TFIDF per-
forms poorer than TEXTRANK is due to the way
these two approaches compute their “importance”
scores. The first computes them globally, whilst the
latter locally (at instance-level) which we assume
is more beneficial for explanation faithfulness.
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Figure 1: Average importance across Part of Speech (PoS) tags as indicated by aVa with BASELINE, with our
proposed component SALOSS.
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