Efficient Mind-Map Generation via Sequence-to-Graph and Reinforced
Graph Refinement

Mengting Hu!~
I College of Software, Nankai University
3 IBM Research - China

Honglei Guo®* Shiwan Zhao®
2 Tianjin Key Laboratory of Operating System
4 Institute for Public Safety Research, Tsinghua University

Hang Gao* Zhong Su®

mthu@nankai.edu.cn, gachang@mail.tsinghua.edu.cn
{guohl, zhaosw, suzhong}@cn.ibm.com

Abstract

A mind-map is a diagram that represents the
central concept and key ideas in a hierarchi-
cal way. Converting plain text into a mind-
map will reveal its key semantic structure and
be easier to understand. Given a document,
the existing automatic mind-map generation
method extracts the relationships of every sen-
tence pair to generate the directed semantic
graph for this document. The computation
complexity increases exponentially with the
length of the document. Moreover, it is diffi-
cult to capture the overall semantics. To deal
with the above challenges, we propose an effi-
cient mind-map generation network that con-
verts a document into a graph via sequence-
to-graph. To guarantee a meaningful mind-
map, we design a graph refinement module
to adjust the relation graph in a reinforcement
learning manner. Extensive experimental re-
sults demonstrate that the proposed approach
is more effective and efficient than the exist-
ing methods. The inference time is reduced by
thousands of times compared with the existing
methods. The case studies verify that the gen-
erated mind-maps better reveal the underlying
semantic structures of the document.

1 Introduction

A mind-map is a hierarchical diagram that can de-
pict the central concept, linked with the major ideas
and other ideas branch out from these (Kudeli¢
etal., 2011; Wei et al., 2019). It is organized in cog-
nitive structures and much easier to understand than
plain text (Dhindsa et al., 2011). Thus in practice, it
can be utilized for education resources, organizing,
and planning. Many tools can help people make
mind-map manually, such as FreeMind, MindGe-
nius and Visual Mind, etc (Kudeli¢ et al., 2011). To
save human labors, some automatic methods have
been proposed to generate mind-map from text,
which focus on analyzing the semantic relations

*Honglei Guo is the corresponding author.

0. Three basic tips on writing a good research paper title.

1. The primary function of a title is to provide a precise summary of the
Iz)aper’s content, so keep the title brief and clear.)
. Captures the reader’s attention by important points and avoiding lengthy

title.
3. Differentiates the paper from the other papers of the same subject area
through appropriate descriptive words.

(a) Original text

0. basic tips, a good

0. Three basic tips on writing
a good research paper title.
Pt N

research paper title

3. Differentiates
the paper from the
other papers of the
same subject area
through appropriate
descriptive words.

1. The primar

function of a title
is to provide a
precise summary
of the paper’s
content, so keep
the title brief and
clear.

3. appropriate
descriptive
words

2. Captures the

reader s attention

(c) Key-snippet-based

2. Captures the reader’s
mindmap (KSM)

attention by important

oints and avoiding
engthy title.

(b) Salient-sentence-based mindmap (SSM)

Figure 1: The original text (a) is converted into mind-
maps, in which a node is the entire sentence (b) or key-
words (c).

within a sentence by pre-defined rules (Brucks and
Schommer, 2008; Rothenberger et al., 2008) or
syntactic parser (Elhoseiny and Elgammal, 2012).

Recently, researchers (Wei et al., 2019) propose
to generate a mind-map automatically by detect-
ing the semantic relation cross sentences in the
document. It mines the structured diagram of the
document, in which a node represents the meaning
of a sentence in the format of the entire sentence or
its keywords, and an edge represents the governing
relationships between the precursor and the succes-
sor. We illustrate two types of mind-map in Figure
1, i.e. salient-sentence-based mind-map (SSM) and
key-snippet-based mind-map (KSM).

Wei et al. (2019) propose a promising pipeline
approach (see Figure 2(a)), which first converts
the whole document into a relation graph and then
prunes the extra edges to obtain the mind-map.
However, the first phase tends to be less efficient
since it needs to predict all the governing scores at
the sentence pair level (see Figure 2(b)). The num-
ber of sentence pairs increases exponentially with

8130

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8130-8141
November 7-11, 2021. (©)2021 Association for Computational Linguistics

Sentence 1
Phase I

Phase II

Sentence 2

-

Sentence N Graph

(a) Mind-Map Generation

Document
Sentence 1
Sentence 2 @ HEH
Sentence 1 i
Sentence 3 @ """"

(b) Compute the governing score
of each sentence pair

Sentence 1

Sentence 2

Sentence N

(¢) Our method

Figure 2: (a) Mind-map generation procedure. (b)
MRDMF (Wei et al., 2019) predicts the relation graph
at the sentence pair level. (c¢) Our method predicts the
relation graph at the document level.

the length of the document, which raises the com-
putational complexity. In addition, each governing
score in the graph is computed separately without
considering the overall semantics in the document.
The sequential information of all sentences might
be helpful to mine the hierarchical and structured
semantics.

We propose an efficient mind-map generation
network (EMGN) to address the above issues (see
Figure 2(c)). The proposed method encodes all
sentences sequentially and generates the graph via
sequence-to-graph. It makes the first phase more
efficient and can easily process multiple documents
in parallel. The model training requires all the re-
lation labels of sentence pairs in each graph. How-
ever, manually annotating costs much. We exploit
DistilBert (Sanh et al., 2019) to automatically an-
notate a graph for each document, which provides
pseudo labels to train our model. In advance, Dis-
tilBert has been fine-tuned to detect the governing
relation between two sentences. The performance
of DistilBert indicates it can be an “annotator” with
high confidence.

Moreover, a meaningful mind-map tends to or-
ganize the major ideas of a document close to the
root node. To achieve this goal, we design a graph
refinement module to adjust the generated graph
by using the documents with highlights. The high-
lights written by the editors summarize the key
ideas of a document. During training, we leverage
this prior human knowledge as a reference to refine
the governing scores in the graph via self-critical
reinforcement learning (Rennie et al., 2017).

In summary, the main contributions of this paper
are as follows.

* We propose an efficient mind-map method

that can consider the document-level seman-
tics by sequence-to-graph.

* In the training phase, we design a graph re-
finement module to refine the generated graph
by leveraging the manual highlights and self-
critical reinforcement learning.

» Extensive experimental results demonstrate
the proposed method can generate a better-
performed mind-map efficiently. The infer-
ence time is reduced by thousands of times
compared with the existing approaches.

2 Methodology
2.1 Problem Definition

Assume a document has N sentences D =
{sk}2_,, each sentence is a word sequence sj, =
{wl,wi, ..., w,f’“}, where Ly, is the length of the
sentence. We define the mind-map generation as a
two-phase task.

D—-G—->M (D)

where the input text D is first processed to obtain
the relation graph G. Then the graph is pruned to
gain the final mind-map M.

The detailed methodology for this two-phase
task is described in the following sections. Con-
cretely, we depict the network architecture for the
first phase D — G in Figure 3. We generate the
relation graph from a document by graph detec-
tor (§2.2). The graph is simultaneously refined to
make the generated mind-map more meaningful
(§2.3). For the second phase G — M, we generate
two types of mind-maps based on the graph (§2.5).

2.2 Graph Detector

As shown in Figure 3, the graph detector aims to
extract the relation graph for an input document.
It considers the overall semantics and obtains the
graph efficiently.

2.2.1 Sentence Encoder

Given a sentence si, we first map it into an
embedding sequence {ej, €2, ..., eﬁ’“} through a
pre-trained embedding matrix GloVE (Penning-
ton et al., 2014). Then we exploit a Bi-directional
LSTM (BiLSTM) (Graves et al., 2013) to encode
the embedding sequence into the hidden states
{h},h2,...h*}. To compute the vector repre-
sentation for each sentence, we apply a simple

8131

Graph » RL Refine
Refinement Loss

Sentence 1 T

— MSE Loss

G f

DistilBERT
Annotated
Label

Sentence 2

Sentence N

Document: D

Figure 3: The network architecture of the proposed ap-
proach for converting the document to a graph (Phase
I). SE, DE, and S2G refer to the sentence encoder, docu-
ment encoder, and sequence-to-graph modules, respec-
tively.

max-pooling operation over the hidden states.

S = max(h,:t, ...,hi’“) 2)

2.2.2 Document Encoder

The sequential information of sentences indicates
the semantic coherence and logical structure of a
document. This information is essential in under-
standing the entire document and extracting a clear
mind-map. To model the sentence-level context,
we encode the vector representations of all sen-
tences {sg }_, with another BiILSTM and obtain
H = {h1,h2,....AN}.

2.2.3 Sequence-to-Graph

In a graph G, a node represents a sentence from
the document. G; ; is the governing score between
sentence s; and s;, which indicates the probability
that s; semantically implies s;. Thus the graph is
directed since the governing relationships are dif-
ferent between G; ; and G ;. Inspired by (Dozat
and Manning, 2017; Zhang et al., 2019), we utilize
sequence-to-graph to process the sentence-level se-
quence into graph efficiently. Concretely, we first
compute the representations of all sentences when
they are regarded as the start or end nodes in the
edges. Exploiting separate parameters help learn
distinct representations for a sentence.

h)gstart) _ MLP(start) (hz)

3)
hgend) — MLP(end) (hg)

where MLP is a linear transformation. Then we
calculate the governing scores in G € RY*V with
a bilinear operation or biaffine operation.

G, ; = Bilinear(h(Start)7 h(.end))
start) 4 (4)
G, ; = Biaffine(h; R

Graph Refinement

[Sampled Decisions
Reward

RL Refine
Highlights Loss

Reference

Argmax
Reward

¢

For the purpose
of adjusting G

Figure 4: The idea of the graph refinement module aims
to adjust the governing scores in G with the help of
highlights. Sampling decisions and greedily selecting
by argmax are both consistent with the mind-map de-
tector (§2.5). This builds a bridge between the learning
of a graph (Phase I) and extracting a mind-map from
the graph (Phase II).

where Bilinear and Biaffine are defined as below.

Bilinear(ml, 1132) = U((IllU:Ez =+ b)
Biaffine(x1, x2) = o(x1Uzz + Wz1; z2] + b)

where U and W are the parameter matrix, b is the
bias. o is the sigmoid operation, guaranteeing that
each governing score is between 0 and 1.

2.3 Graph Refinement

According to (Buzan, 2006), a mind-map is orga-
nized as a tree structure with the central concept
as its root node, and the major ideas are connected
directly to the root. Other ideas branch out from the
major ideas. Therefore, a clear mind-map tends to
organize the main opinions of a document close to
the root node. To achieve this goal, we leverage the
human-written highlights to refine the graph G via
reinforcement learning (RL) algorithm (Williams,
1992), more specifically, self-critical RL (Rennie
et al., 2017). The main idea is depicted in Figure 4.

Concretely, the graph detector module can be
considered as an agent that follows a policy func-
tion to decide an action given a state. We regard
an input document as the state and the extracted
graph G as the action distribution. After we sam-
ple selected sentences over the graph, a delayed
reward is calculated that indicates the similarity
between selected sentences and highlights. Max-
imizing the expected reward helps to refine the
governing scores in the graph G. Next, we will
introduce the graph refinement module in detail.
Policy The policy is described as below.

Sampled Decisions ~ g (G|D) (5)

where © is the parameters of the graph detector, D
is the document and G is the extracted graph. We
sample sentences over the graph as follows.

8132

Sampled Decisions The main reason why RL can
improve the reward is that it accords with the trial-
and-error process, which samples and update the
parameters accordingly. To bridge with the strategy
in the second phase (§2.5), i.e. detecting mind-map
from a graph, we sample the upper nodes given
the graph in the same way. At first, we sample a
sentence as the root node of the mind-map.

go = softmax(rowsum(G)) (6)

where rowsum is row-wise summation. Its result
is the salience score that a sentence governs all
other sentences. A larger salience score indicates
that a sentence is more likely to represent the key
ideas of the document. We sample a root node
based on multinomial distribution gg. Next, we
remove the sampled root from the graph and cluster
the remaining nodes into two sets, obtaining two
subgraphs, i.e., G1 and Go. Similar with the root
node, its two child nodes are also sampled based
on the distributions g1 = softmax(rowsum(G))
and g2 = softmax(rowsum(Gay)), respectively.
The reason why we sample three sentences is
that the average number of sentences in highlights
is around 3.55. We also found that sampling more
nodes does not improve performance. A possible
reason is that more upper nodes introduce noise
when comparing with highlights.
Reward The definition of reward is crucial for RL
as it determines the optimizing objective. To ensure
that the upper nodes of the mind-map represent the
central concept and major ideas of the document,
we treat the manual highlights as a reference. The
ROUGE score (Lin, 2004) between the sampled
decisions and the highlights A is used to define the
reward. Multiple variants of the ROUGE score are
proposed (Lin, 2004). Among them, ROUGE-1
(R-1), ROUGE-2 (R-2), ROUGE-L (R-L) are the
most commonly utilized. We employ the average
of ROUGE variants to define a reward function.

R-1(X, A) + R-2(X, A) + R-L(X, A)

3
@)
Assume the sampled sentences are Dg and Dy C
D, the reward is computed as follows.

Sim(X, A) =

r = Sim(Ds, A) 8)

RL Refine Loss According to (Sutton et al.,
2000), RL training objective is to maximize the
expected reward. Therefore, we define the RL loss
for graph refinement is to minimize the negative

Algorithm 1 Graph Detector Training Process
Input: Training data B: {B', B2, ..., BX}

1: Randomly initialize ©

2: repeat

3 for B* ¢ Bdo

4 Calculate graphs by graph detector

5: Initialize temp batch loss L+ 0

6 for each document in B* do

7 Compute £, by Eq. (11)

8 Compute £, by Eq. (10)

9: Compute joint loss £ by Eq. (12)

10: Update temp batch loss £ < L+ L

11 Optimize © by £/|B*|

12: until performance on the validation set does
not improve in 3 epochs

reward (see Eq. (9)). More concretely, assume the
sampled sentences Ds = {ap, a1, as}, where ag
is the root, a; and ay are independent child nodes.
Based on the conditional independence (Dawid,
1979), we have

p(Ds) = plagaraz) = p(ao)p(ailao)p(azlao)

Therefore, p(Ds) = gogi1g2, where g; is the
probability of the sampled sentence in g;. When
we only sample one sentence as the root node,

p(Ds) = go.

Ly =—r-p(Dg)=—r]]a ©)

To reduce the variance caused by sampling, we
associate the reward with a reference reward or
baseline (Rennie et al., 2017) and define it as
b = Sim(Dy, A). Dy is the sentences chosen greed-
ily by the argmax operation on the multinomial
distributions. With the likelihood ratio trick, the
optimizing objective can be formulated as.

Ly =—(r—b) Zlog(g» (10)

2.4 Training

We train the graph detector module by a combina-
tion of two optimizing objectives, i.e., fitting the
pseudo graphs annotated by DistilBert and refining
the generated graphs.

Since it costs too much to manually annotating
the relation labels in the graph, we automatically
annotate a pseudo graph Y by DistilBert (Sanh

8133

et al., 2019). In advance, DistilBert is fine-tuned
by sentence pairs constructed from news articles.
In this way, our method can take advantage of
the prior knowledge from the pre-trained model,
but also the local semantic association of sentence
pairs. The fine-tuning details of DistilBert will be
introduced in §3.2.1. The proposed model fits the
pseudo graph by a mean square error (MSE) loss.

Ly = % ZZ(GM - Yi,j)Q (ID)
i

where Y is the pseudo graph.

Then we combine the MSE loss and graph refine-
ment as an overall training objective to optimize
the parameters ©. The entire training process of
the proposed model is described in Algorithm 1.

L=1Ly+ M, (12)

where A balances the effect of graph refinement.

2.5 Mind-Map Detector

In this section, we introduce how to generate a
mind-map from a graph, i.e. G — M. The graph
G covers all the sentences in the document, which
might be redundant. To highlight the major ideas,
we convert the graph into a mind-map through the
strategy proposed by (Wei et al., 2019) to prune the
extra edges. The algorithm works recursively to
determine the governing relationship of sentences.
First, it chooses a governor by picking the highest
row-wise aggregation scores in the graph. Then
except for the governor, it clusters the remaining
nodes into two sub-groups with k-means algorithm.
The sub-groups are processed recursively to extract
the final mind-map. We enclose the full algorithm
in the Appendix.

We extract two types of mind-map, i.e. salient-
sentence-based mind-map (SSM) and key-snippet-
based mind-map (KSM). Given the graph G of
a document, we first prune it into SSM, and then
extract the key phrases in each sentence (Rose et al.,
2010) to obtain the KSM. Therefore, SSM and
KSM have the same structure. The only difference
is that a node in SSM is a sentence, while a node
in KSM is the key phrases. In the case of KSM, if
no key phrase is found, the whole sentence is kept
in the mind-map.

3 Experiments

3.1 Dataset

We build an evaluation benchmark with 135 arti-
cles, which are randomly selected from CNN news
articles (Hermann et al., 2015; Cheng and Lapata,
2016). The size of the benchmark is about 98,181
words. The average length of the news article is
about 727 words. Two experts manually annotate
the ground-truth mind-maps for these articles. If
one of the experts disagrees with any content of
the mind-map, they discuss to reach consensus. In
the experiments, the benchmark is split into two
datasets: a testing set D; with 120 articles and a
validation set D, with 15 articles.

3.2 Experimental Settings

3.2.1 Automatically Annotate Graphs for
EMGN Training

Sentence Pairs for Fine-tuning DistilBert To
save time in fine-tuning and subsequent annotation,
we choose DistilBert as the “annotator” to obtain
the relationships of all sentence pairs in the graph.

To construct the training pairs for fine-tuning
DistilBert, we first randomly select 90k CNN news
articles Dpeys, Which has no overlap with the
benchmark. Each news consists of content and
highlights. Because highlights summarize the ma-
jor concepts of the news, they are regarded as the
governors. To find the sentence pairs with govern-
ing relationships, we exploit TFIDF as the similar-
ity metric. Concretely, a highlight governs each
sentence in a paragraph when it is similar to one
or some sentences in the paragraph. The negative
samples are generated randomly.

In this way, we build a large-scale training cor-
pus, which has 641,476 pairs from these news ar-
ticles. Then we split all the pairs into 600k for
training and 41,476 for testing.

Fine-tuning DistilBert Using the training pairs,
we fine-tune DistilBert for 3 epochs with a learning
rate of 5e-5 and a training batch size of 32. The
accuracy and F1 on the testing pairs are both more
than 99.35%. Thus DistilBert can annotate pseudo
graphs with high confidence.

Annotate Pseudo Graphs We select 44,450 ar-
ticles from D5 by setting the max length of
sentence in the article as 50 and max number of
sentences as 50!. After annotating these articles by

! According to our statistical analysis on the CNN dataset,
the average length of articles is 33.87 sentences and the aver-
age length of sentences is 21.25 words.

8134

Models SSM KSM

R-1 R-2 R-L Avg R-1 R-2 R-L Avg

Random 3271 2351 3008 2877 | 29.73 2650 29.67 28.63

Compared LexRank 3453 2504 3179 3045 | 31.04 2775 31.00 29.93

Methods ~ MRDMF 3819 2951 3572 3447 | 33.18 3026 33.08 3218

DistilBert 42.15 3334 39.66 3838 | 40.00 3692 39.92 3895

EMGN(root) 46.04 3805 4373 4261 | 4328 40.69 4323 4240

Model EMGN(root)+greedy | 4327 35.11 4093 3977 | 4030 37.62 4024 39.39

Variants EMGN-GR 45.06" 37.08" 42757 41.637 | 41.627 39.07T 41577 40.75'

EMGN(biaffine) 4573 37.62 4335 4223 | 4290 40.15 42.84 41.96

Full Model EMGN | 46147 3821" 4384 42.73" | 43.33" 4067 4328" 4243
Table 1: Evaluation results of the salient-sentence-based mind-map (SSM) and key-snippet-based mind-map

(KSM) in terms of R-1 (%), R-2 (%), R-L (%) and the average score (%). The marker T refers to p-value<0.01
when comparing with DistilBert. The marker * refers to p-value<0.01 when comparing with EMGN-GR.

DistilBert, they are exploited to train our mind-map
generation model EMGN.

3.2.2 Mind-Map Evaluation

We evaluate the generated mind-map by comparing
the tree similarity with the human-annotated mind-
map (Wei et al., 2019). We first remove the weak
edges from a generated mind-map to ensure that
it has the same number of edges as the annotation.
The similarity between two edges is computed as
below. We utilize Sim as Eq. (7).

Sim(s;, 5q) + Sim(s;, sp)

f(8i = 85,80 = sp) = 5

Then for each edge in the annotation, the strategy
finds the most similar edge in the generated mind-
map. The final score is the average similarity score
of all greedily selected pairs.

3.2.3 Implementation Details

We initialize the word embeddings with 50-
dimension GloVE (Pennington et al., 2014) and
fine-tune during training. All other parameters are
initialized by sampling from a normal distribution
of N(0,0.02). The hidden size of BILSTM is set
to be 25x2. The models are optimized by Adam
(Kingma and Ba, 2015) with a learning rate of le-4.
The batch size is 64. And X is set to 0.01. We
employ an early stop strategy during training if
the evaluation score on the validation set D,, does
not improve in 3 epochs, and the best model is
selected for evaluating testing set D;. For all base-
lines and our model, the reported results are the
average score of 5 runs.

The full results are presented in the Appendix.

3.3 Experimental Methods

Compared Methods We validate the effective-
ness of the proposed method by comparing with
the following baselines.

* Random: We randomly sample a graph G
for an input document. Each governing score
G; ; ranges from zero to one.

* LexRank: It computes the governing score of
sentence pair by the cosine similarity of their
TFIDF vectors. It follows the well-known
LexRank algorithm (Erkan and Radev, 2004),
which is an extension of PageRank in the doc-
ument summarization domain.

* MRDMF (Wei et al., 2019): This is the
state-of-the-art semantic mind-map genera-
tion work. It presents a multi-perspective re-
current detector to extract the governing rela-
tionship and then prunes the extra edges.

* DistilBert (Sanh et al., 2019): It is a lighter
version of BERT (Devlin et al., 2019). It pro-
vides the pseudo graphs for our method train-
ing.

Method Variants The proposed full model is the
efficient mind-map generation network (EMGN),
with bilinear operation in the sequence-to-graph
module. We explore the impact of individual mod-
ules by comparing with its variants. Minus (-)
means removing the module from the full model.

* EMGN(root): It only samples root node for
refining the graph.

* EMGN(root)+greedy: It chooses root node
by greedily selecting the sentence with maxi-
mum similarity with highlights.

8135

SSM Avg KSM Avg
Models <25 25 | <25 >25
Random 3194 2663 | 3253 2622
LexRank 3354 2807 | 3399 2728
MRDMF 3083 3058 | 36.76 28.69
DistilBert 4436 3434 | 4427 3489
EMGN (root) 4991 3732 | 4939 3724
EMGN-GR 4922 3622 | 4681 3614
EMGN(biaffine) | 49.54 37.00 | 4836 37.13
EMGN 5023 3738 | 49.48 37.44

Table 2: Evaluation results by splitting the testing set
with the number of sentences in a document. Among
all 120 files in D, there are 50 files with the number of
sentences < 25, and 70 files with the number > 25.

* EMGN-GR: It removes the graph refinement
(GR) module from EMGN, which lefts the
graph detector module for the purpose of
sequence-to-graph.

* EMGN(biaffine): It computes the graph by
biaffine operation in EMGN.

3.4 Experimental Results

Overall Results The experimental results for
two types of mind-maps are displayed in Table
1. Firstly, we find that our method EMGN signif-
icantly outperforms MRDMF by 8.26% on SSM
and 10.25% on KSM in terms of the average score.
This indicates the effectiveness of EMGN. Then
comparing DistilBert and EMGN, we can see that
EMGN achieves significant improvements. This
shows that the proposed method successfully ex-
ploits the pseudo labels and further improves the
performances. Finally, we observe that DistilBert
consistently outperforms MRDMF. Thus Distil-
Bert is more effective in matching sequences than
the multi-hop attention of MRDMF. Annotating
pseudo graphs by DistilBert has higher confidence,
which contributes to the subsequent learning of the
proposed approach.

Compare with Model Variants We further in-
vestigate the impact of individual components (see
the second part of Table 1). We observe that
EMGN-GR significantly outperforms DistilBert.
By leveraging the sequential information of the
document and early stop strategy, EMGN-GR can
prevent overfitting the pseudo graphs and extract
better mind-maps than DistilBert. By comparing
EMGN-GR and EMGN, we found that EMGN sig-
nificantly outperforms EMGN-GR. This verifies
that the graph refinement module can successfully
refine the graph to obtain a meaningful mind-map.

Models | D D,
LexRank 349.21 95.24
MRDMF 467.07 62.49
DistilBert 1219.51 201.04
EMGN-GR 0.13 0.02
EMGN(root) 3.18 0.44
EMGN(root) w/o sample 0.14 0.02
EMGN 10.27 1.42
EMGN w/o sample 0.15 0.02

Table 3: Total inference time (second) in Phase I of dif-
ferent methods. “w/o sample” indicates that removing
the sampling in graph refinement module since we do
not need to sample during evaluation.

Then, by comparing EMGN(root) and

EMGN(root)+greedy, we see that EMGN(root)
gains many improvements. A possible reason
is that EMGN(root)+greedy only greedily en-
larging the governing scores in the graph for
a specific sentence, i.e. the one which has the
maximum ROUGH similarity with highlights.
This might ignore the exploration on other nodes.
EMGN(root) performs better by sampling more
sentences and compares them relatively. Finally,
we found that EMGN performs slightly better
than EMGN(root). This shows that refining more
upper nodes achieves better performance than only
refining the root node.
Effects of the Document Length Table 2 dis-
plays the evaluation results by splitting the testing
set D; with the document length, i.e. the number
of sentences in a document. We found that EMGN
consistently achieves the best performances. By
comparing the results on two subsets, we can see
that the results are highly related to the number of
sentences in the article. It is still very challenging
to extract meaningful mind-maps for the longer
articles.

3.5 Further Analysis

Inference Time To validate the efficiency of the
proposed method, we compare the inference time
of the testing set D; and validation set D, (see
Table 3). Since all methods share Phase 11, we only
report the inference time of Phase I in Table 3 to
show the merits of the proposed method. The total
inference time of Phase II is around 23.54 seconds
in D; and 2.94 seconds in D,,.

We set the batch size of MRDMEF and DistilBert
as 256 (256 sentence pairs in a batch). The batch
size of EMGN related methods is 32 (32 documents

8136

(b) reward-baseline (r — b)

(a) Loss

0.02-

0.00-

—0.02-

—0.04 -

—e— EMGN(root) ~ —0.06-

—6— EMGN(root)

—0.8- —— EMGN —%— EMGN
—0.08 -
1234567 89101112 1234567 89101112
Epoch Epoch

Figure 5: The loss and reward curves in the graph re-
finement module.

in a batch). We observe that the inference time of
the existing methods, e.g. MRDMF and Distil-
Bert, are more than 3,000 times compared with our
method. As depicted in Figure 2, the main reason
is that we significantly reduce the computational
complexity of a relation graph from the sentence
pair level to the document level.

Loss and Reward in Graph Refinement The
graph refinement aims to optimize the upper nodes
of the mind-map for better revealing the major
ideas of the document. We achieve this goal by op-
timizing the reward of sampled decisions. In Figure
5, we plot the average loss £, and average reward
(Eq. 10) in each epoch of the training process. In
Figure 5(a), it can be seen that the loss £, gradu-
ally converges as training in both EMGN(root) and
EMGN. Also in Figure 5(b), the reward are grad-
ually increasing as the training epochs and finally
reach a relatively stable value. The training curves
further prove that the proposed graph refinement
module helps improve the similarity between the
upper nodes and human-written highlights.

Case Study In Figure 6, we depict the generated
mind-maps by varied methods for a CNN news?.
Comparing with the artificial mind-map, MRDMF
chooses an inaccurate sentence as the root node.
DistilBert and EMGN both generate the mind-map
which represents the major ideas of the document.
However, some relations between nodes in Distil-
Bert are meaningless, such as the governing rela-
tion from sentence 8 to sentence 2. EMGN gener-
ates a mind-map that captures the central concept
and grasps the directed relations among sentences.
This is because our method considers the sequen-
tial information of an article and understands it as
a whole. The case study further verifies that our
method effectively generates a mind-map to reveal

% Article is available at
www.cnn.com/2014/09/15/politics/
new-hampshire-senate-poll/index.html

https://

Document:

0 scott brown, the former senator from massachusetts who moved to new hampshire to run in
a more friendly environment, appears to be in a dead heat with democratic sen. jeanne
shaheen, a new poll shows. 1 a cnn/orc international poll out monday finds shaheen and
brown tied among likely voters, with both obtaining the support of 48% among 735 voters
surveyed. 2 a close race could mean bad news for democrats, who are struggling to maintain
control of the senate. 3 keeping the seat in the democratic column is crucial if the party want
to maintain a slim majority in the senate. 4 one thing working in shaheen's favor is her high
favorable ratings. 5 more than half of likely voters -- 54% -- have a favorable view of the first-
term incumbent, while brown's favorability is not as high. 6 his rating currently sits at 46%. 7
what could be a drag on shaheen, however, is new hampshire residents' opinion of the leader
of her party. 8 thirty-eight percent of new hampshire adults polled approve of the job president
barack obama is doing, while 60% disapprove. 9 throughout the campaign, brown has sought
to tie shaheen to obama. 10 the poll has a margin of error of plus or 3.5 percentage points. 11
paul, clinton top presidential poll in new hampshire .

Key Snippets:

0 friendly environment, democratic sen, poll shows, jeanne shaheen, dead heat, scott brown 1
cnn/orc international poll, monday finds shaheen 2 maintain control, close race, bad news 3
slim majority, democratic column 4 high favorable ratings 5 voters -- 54% -- 6 sits, rating 7
hampshire residents 8 hampshire adults polled approve, job president barack obama 9 tie

shaheen 10 5 percentage points 11 clinton top presidential poll
’ !
o A ® offolo oW
(OJORO,
® ® 0
® b &
DistilBERT EMGN

Artificial mind-map

MRDMF

Figure 6: Case study for SSM and KSM.

the underlying semantic structure for a document.

4 Related Works

A mind-map is a hierarchical diagram to reveal
the semantic structure for a document. The salient-
sentence-based mind-map (SSM) is similar with ex-
tractive summarization (Zhong et al., 2020), which
aims to choose some key sentences from the docu-
ment to describe the main ideas. Similar but com-
pletely different, mind-map generation can reveal
not only the main ideas, but also the key semantic
logic structure of the document.

One previous work LexRank (Erkan and Radev,
2004) computes an adjacency matrix of the graph
representation of sentences based on intra-sentence
cosine similarity. However, the lexical similarity
of some sentence pairs with semantic relation may
be zero. Generating a mind-map from this graph
representation tends to be less-meaningful, which
is also indicated in the experiments (see §3.4). In
addition, a few extractive summarization works
employ graph techniques. For instance, a bipartite
graph for sentence and entity nodes (Parveen and
Strube, 2015) or a weighted graph with topic nodes
(Parveen et al., 2015) are proposed to improve rank-
ing the sentences in a document. Recently, Wang
et al. (2020) propose to build a heterogeneous graph
to learn the correlation between word and sentence
nodes, which helps to select better-summarizing
sentences. Though these works involve learning the
graph knowledge, such graphs are hard to derive a
mind-map that focuses on the governing relation-
ships between sentences.

Another related direction is the policy-based re-
inforcement learning (Williams, 1992; Sutton et al.,

8137

https://www.cnn.com/2014/09/15/politics/new-hampshire-senate-poll/index.html
https://www.cnn.com/2014/09/15/politics/new-hampshire-senate-poll/index.html
https://www.cnn.com/2014/09/15/politics/new-hampshire-senate-poll/index.html

2000). Previous methods (Xiong et al., 2017; Xiao
et al., 2020) usually affect the training of the main
task by a policy network with separate parameters.
Different from them, we directly regard the main
network as the policy network and its output graph
as the action distribution. Then the main network
is optimized simultaneously when maximizing the
expected reward.

5 Conclusion

We propose an efficient mind-map generation net-
work that converts a document into a graph via
sequence-to-graph. To ensure a meaningful mind-
map, we design a graph refinement module to ad-
just the graph by leveraging the highlights in a
reinforcement learning manner. Extensive exper-
imental results demonstrate that the proposed ap-
proach is more effective and efficient than the ex-
isting methods. The inference time is reduced by
thousands of times compared with the existing ap-
proaches. The case studies further verify that the
generated mind-map can reveal the underlying se-
mantic structures of a document.

Acknowledgements

We sincerely thank all the anonymous reviewers
for providing valuable feedback. This work is sup-
ported by the National Science and Technology Ma-
jor Project, China (Grant No. 2018YFB0204304).

References

Claudine Brucks and Christoph Schommer. 2008. As-
sembling actor-based mind-maps from text stream.
arXiv preprint arXiv:0810.4616.

Tony Buzan. 2006. The mind map book. Penguin
Books.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
484-494.

A Philip Dawid. 1979. Conditional independence in
statistical theory. Journal of the Royal Statistical So-
ciety: Series B (Methodological), 41(1):1-15.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-

gies (NAACL-HLT), pages 4171-4186.

Harkirat S Dhindsa, O Roger Anderson, et al. 2011.
Constructivist-visual mind map teaching approach
and the quality of students’ cognitive structures.
Journal of Science Education and Technology,

20(2):186-200.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In The 5th International Conference on Learn-
ing Representations (ICLR), pages 1-8.

Mohamed Elhoseiny and Ahmed Elgammal. 2012. En-
glish2mindmap: An automated system for mindmap
generation from english text. In 2012 IEEE Inter-
national Symposium on Multimedia, pages 326-331.
IEEE.

Giines Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-
search, 22:457-479.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In The 38th International Con-
ference on Acoustics, Speech, and Signal Processing

(ICASSP), pages 6645-6649.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to
read and comprehend. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 1693—
1701.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In The 3rd Inter-
national Conference on Learning Representations

(ICLR).

Robert Kudeli¢, Mladen Konecki, and Mirko
Malekovié. 2011. Mind map generator software
model with text mining algorithm. In Proceedings
of the 33rd International Conference on Information
Technology Interfaces (ITI), pages 487-494. IEEE.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Zext Summariza-
tion Branches Out, pages 74-81.

Daraksha Parveen, Hans-Martin Ramsl, and Michael
Strube. 2015. Topical coherence for graph-based ex-
tractive summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1949-1954.

Daraksha Parveen and Michael Strube. 2015. Integrat-
ing importance, non-redundancy and coherence in
graph-based extractive summarization. In Proceed-
ings of the 24th International Conference on Artifi-
cial Intelligence (IJCAI), page 1298—1304.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-

ing (EMNLP), pages 1532-1543.

8138

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7008-7024.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1:1-20.

T Rothenberger, S Oez, E Tahirovic, and Christoph
Schommer. 2008. Figuring out actors in text
streams: Using collocations to establish incremental
mind-maps. arXiv preprint arXiv:0803.2856.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. In The
5th Workshop on Energy Efficient Machine Learning
and Cognitive Computing of NeurIPS.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradient
methods for reinforcement learning with function ap-
proximation. In Advances in Neural Information
Processing Systems (NeurlPS), pages 1057-1063.

Danging Wang, Pengfei Liu, Yining Zheng, Xipeng
Qiu, and Xuanjing Huang. 2020. Heterogeneous
graph neural networks for extractive document sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 6209-6219.

Yang Wei, Honglei Guo, Jinmao Wei, and Zhong Su.
2019. Revealing semantic structures of texts: Multi-
grained framework for automatic mind-map genera-
tion. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence (1J-
CAI), pages 5247-5254.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229-256.

Ya Xiao, Chengxiang Tan, Zhijie Fan, Qian Xu, and
Wenye Zhu. 2020. Joint entity and relation extrac-
tion with a hybrid transformer and reinforcement
learning based model. Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages
9314-9321.

Wenhan Xiong, Thien Hoang, and William Yang Wang.
2017. Deeppath: A reinforcement learning method
for knowledge graph reasoning. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 564-573.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 80-94.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 6197-6208.

8139

SSM

Models R-1 (%) R-2 (%) R-L (%) Avg (%)

Random 32.71 + 0.44 23.51 +0.40 30.08 + 0.40 28.77 + 0.41
LexRank 34.53 & 0.06 25.04 & 0.07 31.79 & 0.06 30.45 + 0.06
MRDMF 38.19 + 0.29 29.51 + 0.35 35.72 + 0.30 34.47 + 031
DistilBert 42.15 4+ 0.19 33.34 & 0.25 39.66 & 0.21 38.38 £ 0.22
EMGN(root) 46.04 + 0.15 38.05 + 0.20 43.73 4+ 0.18 42.61 +0.17
EMGN(root)+greedy 4327 +0.87 35.11 & 1.01 40.93 + 0.92 39.77 & 0.93
EMGN-GR 45.06 + 0.64 37.08 + 0.61 42.75 4+ 0.63 41.63 + 0.63
EMGN(biaffine) 45.73 +0.70 37.62 & 0.91 43.35 +0.79 42.23 +0.80
EMGN | 46.14 +0.15 38.21 & 0.21 43.84 + 0.17 42.73 + 0.17

Table 4: Full evaluation results of salient-sentence-based mind-map (SSM).

Models KSM
R-1 (%) R-2 (%) R-L (%) Avg (%)

Random 29.73 £ 0.51 26.50 £+ 0.57 29.67 £ 0.51 28.63 £ 0.53
LexRank 31.04 £0.33 27.75 £0.37 31.00 £ 0.34 29.93 £0.35
MRDMF 33.18 £0.43 30.26 £+ 0.38 33.08 £0.43 32.18 £0.41
DistilBert 40.00 £ 0.47 36.92 +0.45 39.92 +0.48 38.95 +£ 047
EMGN(root) 43.28 +0.03 40.69 £ 0.17 43.23 £ 0.03 42.40 4 0.07
EMGN(root)+greedy 40.30 = 0.61 37.62 £ 0.53 40.24 £+ 0.61 39.39 + 0.58
EMGN-GR 41.62 4+ 0.96 39.07 £ 0.84 41.57 £ 0.96 40.75 +0.92
EMGN(biaffine) 42.90 £ 0.64 40.15 £ 0.77 42.84 4+ 0.64 41.96 4 0.68
EMGN \ 43.33 + 0.38 40.67 + 0.39 43.28 + 0.37 42.43 £+ 0.38

Table 5: Full evaluation results of key-snippet-based mind-map (KSM).

43-
41-
39-
37-

35- —e— SSM Avg
—— KSM Avg

33- 0 0 0 0 0 0 0 0 0 '
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Training Data

Figure 7: Effects of training data scale for EMGN.

A Software and Hardware

We use Pytorch to implement all models (Python
3.5). The operating system is Red Hat Enterprise
Linux 7.8. DistilBert is trained on Tesla K80. All
other models are trained on GTX 980.

We compare the inference time of all the models
in the same software and hardware environments.

B Results Appendix

B.1 Full Results with Standard Deviations

As shown in Table 4, Table 5 and Table 6, we
display the full experimental results, including the
average score and the standard deviation of 5 runs.

43.00 -

42.75-
4250 v/\ﬂ\\‘/
42.25-

42.00 -

41.75- —e— SSM Avg

—+— KSM Avg

41.50- ' ' ' | . .

1 2 3 4 5 6 7
Sampling Times

Figure 8: Effects of sampling times for EMGN.

B.2 Effects of Training Data Scale

We also investigate the impact of the training data
size on the performance. We totally annotate
pseudo graph labels for 44,450 documents by Dis-
tilBert. The performance curves of EMGN with
different training scale are depicted in Figure 7.
It shows that training the proposed model EMGN
does not require too many labeled documents. The
performance scores are improved significantly by
changing the data scale from 1000 to 2000. The
results grow steadily as adding more training data.
A possible explanation is that compared with the
ground-truth graph, the pseudo graph labels by Dis-
tilBert are still less accurate and might have redun-

8140

SSM Avg KSM Avg

Models <25 > 25 <25 > 25

Random 3194 + 1.84 26.63 +£0.82 3253 +1.87 26.22 + 0.81
LexRank 33.54 +0.25 28.07 & 0.09 33.99 + 0.27 27.28 + 0.07
MRDMF 39.83 +£0.18 30.58 +0.23 36.76 + 0.24 28.69 £+ 0.27
DistilBert 44.36 + 0.34 34.34 + 0.14 4427 £ 0.78 34.89 4+ 0.39
EMGN(root) 4991 £+ 0.39 37.32 +£0.34 49.39 + 0.49 37.24 + 0.49
EMGN-GR 4922 +0.48 36.22 + 0.47 46.81 £ 1.05 36.14 + 0.53
EMGN(biaffine) 49.54 + 0.68 37.00 4+ 0.64 48.36 £+ 0.56 37.13 £ 0.75
EMGN 50.23 + 0.59 37.38 + 0.24 49.48 + 0.52 37.44 + 0.61

Table 6: Full evaluation results of splitting testing set with the number of sentences in a document.

Algorithm 2 Salient-Sentence-based Mind-map

Generator.
Require: a document D

Ensure: the nodes Cg, and the edges E,

1: function RECURSIVE(G,C,E,root)

2 k < length(G)

3 g < rowsum(G)

4: governor < s, s.t.,g(i) = max(g)

5: if k > 0and (k = 1org(i)/k >0.5) then
6

7

8

9

C + C U {governor}
E < E U {(root, governor)}
G « G-{G;}
root <— governor
10: if £ <1 then return
11: G, Gy clustering(G’,Z)
12: recursive(G1,C,E,root)
13: recursive(Go,C,E,root)
14: function GENERATOR(D)
15: Obtain graph G for document D

16: C;+ T, E;«— O
17: recursive(G, Cg, Eg, Null)
18: return C;, E;

dant patterns.
Therefore, in the experiments section, all our
models are trained with 5k labeled articles.

B.3 Effects of Sampling Times

In the graph refinement module, we sample the
upper nodes and improve their ROUGE similarity
with the human-written highlights. Figure 8 shows
the performance curves of different sampling times
for each document. We found that more sampling
times do not improve the performances of EMGN
significantly, while requires much more time to
train the model. Therefore, in the experiments
section, we set the sampling times as one for both
EMGN(root) and EMGN.

Algorithm 3 Evaluation for Mind-map.

Require: the edges of the manual mind-map E;,
the edges of the generated mind-map Eo

Ensure: the edge similarity score f, and the most
similar pair ms

1: function SIMFUNCTION(E{, Es)
2 r <0
3 truncate(Eo),s.t.|Eq| = |Eq]
4: for (s; — s;) in E; do
5: ms < (None, None)
6
7
8
9

for (s, — sp) in E5 do
if f(s; — sj,ms[0] = ms[1])
<f(si = 5,54 — sp) then
ms < (Sq — Sp)

10: r < f(s; = sj,ms[0] — ms[l]) +r
11: Es +— Es —ms
12: return r/|E;|

C Mind-Map Generator

The algorithm for mind-map generator is enclosed
in Algorithm 2. After calculating the graph G for a
document, the nodes and edges are built recursively.
It is worth noting that the graph refinement module
also follows this recursive way.

We also enclose the algorithm for mind-map
evaluation in Algorithm 3.

8141

