
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8119–8129
November 7–11, 2021. c©2021 Association for Computational Linguistics

8119

Matching-oriented Product Quantization For Ad-hoc Retrieval

Shitao Xiao1†, Zheng Liu2∗, Yingxia Shao1∗, Defu Lian3, Xing Xie2
1: Beijing University of Posts and Telecommunications, Beijing, China

2: Microsoft Research Asia, Beijing, China
3: University of Science and Technology of China, Hefei, China

{stxiao,shaoyx}@bupt.edu.cn
{zhengliu,xingx}@microsoft.com

defulian@ustc.edu.cn

Abstract
Product quantization (PQ) is a widely used
technique for ad-hoc retrieval. Recent stud-
ies propose supervised PQ, where the embed-
ding and quantization models can be jointly
trained with supervised learning. However,
there is a lack of appropriate formulation of
the joint training objective; thus, the improve-
ments over previous non-supervised baselines
are limited in reality. In this work, we pro-
pose the Matching-oriented Product Quantiza-
tion (MoPQ), where a novel objective Multi-
noulli Contrastive Loss (MCL) is formulated.
With the minimization of MCL, we are able
to maximize the matching probability of query
and ground-truth key, which contributes to
the optimal retrieval accuracy. Given that
the exact computation of MCL is intractable
due to the demand of vast contrastive sam-
ples, we further propose the Differentiable
Cross-device Sampling (DCS), which signif-
icantly augments the contrastive samples for
precise approximation of MCL. We conduct
extensive experimental studies on four real-
world datasets, whose results verify the effec-
tiveness of MoPQ. The code is available at
https://github.com/microsoft/MoPQ.

1 Introduction

Ad-hoc retrieval is critical for many intelligent
services, like web search and recommender sys-
tems (Liu et al., 2021; Zhu et al., 2021; Ma et al.,
2019). Given a query (e.g., a search request
from user), ad-hoc retrieval selects relevant keys
(e.g., webpages) from a massive set of candidates.
It is usually treated as an approximate nearest
neighbour search (ANNS) problem, where prod-
uct quantization (PQ) (Jegou et al., 2010) is one of
the most popular solutions thanks to its competi-
tive memory and time efficiency. PQ is built upon

†. Work is done during the internship at Microsoft.
∗. Corresponding author.

“codebooks”, with which an input embedding can
be quantized into a Cartesian product of “code-
words” (preliminaries about the codebooks and
codewords will be given in Section 2.1). By this
means, the original embedding can be compressed
into a highly compact representation. More im-
portantly, it significantly improves the retrieval ef-
ficiency, as query and key’s similarity can be ap-
proximated based on the pre-computed distances
between query and codewords.

Existing Limitation. The original PQ algo-
rithms (Jegou et al., 2010; Ge et al., 2013) are
non-supervised: based on the well-trained em-
beddings, the quantization model is learned with
heuristic algorithms (e.g., k-means). In recent
years, many works are dedicated to supervised
PQ (Cao et al., 2016, 2017; Klein and Wolf,
2019; Gao et al., 2019; Chen et al., 2020), where
the embedding model and the quantization model
are trained jointly. The supervised PQ requires
an explicit training objective for the quantization
model. Most of the time, “the minimization of re-
construction loss” is used for granted: the dis-
tortion between the original embedding (z) and
its quantization result (z̃) needs to be reduced as
much as possible for all the keys (k) in database:
min

∑
k ‖zk− z̃k‖2. The above objective is seem-

ingly plausible, as a “small enough distortion”
will make the quantized embeddings equally ex-
pressive as the original embeddings. However, it
implicitly hypothesizes that the distortion can be
made sufficiently small, which is not always real-
istic in practice. This is because the reconstruction
loss is subject to a lower-bound determined by the
codebooks scale. As over-scaled codebooks result
in prohibitive memory and time costs, there will
always exist a positive reconstruction loss in real-
ity. In this case, it can be proved that the mini-
mization of reconstruction loss doesn’t lead to the

8120

optimal retrieval accuracy. It’s also empirically
verified that the supervised PQ’s advantage over
the non-supervised baselines are limited and not
consistently positive when the reconstruction loss
minimization is taken as the training objective (see
Section 2.2 and 4 for detailed analysis).

Our Work. To address the above challenge, we
propose the Matching-oriented Product Quantiza-
tion (MoPQ), with a novel objective MCL formu-
lated to optimize PQ’s retrieval accuracy, together
with a sample augmentation strategy DCS to en-
sure the effective minimization of MCL.

• The Multinoulli Contrastive Loss (MCL) is
formulated as the new quantization training objec-
tive. The PQ-based ad-hoc retrieval can be proba-
bilistically modeled by a cascaded generative pro-
cess: 1) select codewords for the input key, based
on which the quantized key embedding is compos-
ited; 2) sample query from the Multinoulli distri-
bution determined by the quantized key embed-
ding. The negative of the generation likelihood
is referred as the Multinoulli Contrastive Loss
(MCL). By minimizing MCL, the expected query-
key matching probability will be optimized, which
means the optimal retrieval accuracy.

• The contrastive sample augmentation is de-
signed to facilitate the minimization of MCL. The
computation of MCL is intractable as it requires
the normalization over vast contrastive samples
(the quantized embeddings of all the keys). Thus,
it has to be approximated by sampling whose
effect is severely affected by sample size. In
this work, we propose the Differentiable Cross-
device Sampling (DCS), where a distributed em-
bedding sharing mechanism is introduced for con-
trastive sample augmentation. As the gradients are
stopped at the cross-device shared embeddings,
we propose a technique called the “combination of
Primary and Image Losses”, where the shared em-
beddings are made virtually differentiable to keep
the model update free from distortions.

In summary, our work identifies a long-existing
defect about the training objective of supervised
PQ; meanwhile, a simple but effective remedy is
proposed, which optimizes the expected retrieval
accuracy of PQ. We make extensive experimental
studies with four benchmark text retrieval datasets,
where our proposed methods significantly outper-
form the SOTA supervised PQ baselines. Our code
and datasets will be made public-available to facil-
itate the research progress in related areas.

2 Revisit of Supervised PQ

We start with the preliminaries of PQ’s application
in ad-hoc retrieval. Then, we analyze the defect
of taking the reconstruction loss minimization as
supervised PQ’s training objective.

2.1 Preliminaries

• Product Quantization (PQ). PQ is a popu-
lar approach for learning quantized representa-
tions. It is based on the foundation of M code-
books C: {C1, ...,CM}; each Ci consists of L
codewords: {Ci1, ...,CiL}; each Cij is a vec-
tor whose dimension is d/M . Given an embed-
ding z (with dimension d), it is firstly sliced into
to M sub-vectors [z1, z2, ..., zM]; then the sub-
vector zi is assigned to one of the codewords of
codebook Ci, whose ID is denoted by the one-
hot vector bi. The assignment is made by the
codeword selection function, which maps each
sub-vector zi to its most relevant codeword, e.g.,
bi = one hot(argmin||zi −Ci∗||2). As a result,
the embedding z is quantized into a collection of
codes: B = {b1, ...,bM}, where the embedding
itself is approximated by the concatenation of the
assigned codewords: z̃ = [C1b1, ...,CMbM].

Non-supervised PQ takes the well-trained em-
beddings as input, and learns the quantization
model with heuristic algorithms, like k-means. In
contrast, supervised PQ jointly learns the embed-
ding and quantization models based on labeled
data (the paired query and key). Specifically, it
learns the query and key’s embeddings: zq and
zk, such that the query and key’s relationship can
be predicted based on their inner product 〈zq, zk〉.
Furthermore, it learns the codebooks where the
quantized embeddings may preserve the same ex-
pressiveness as the original embeddings.
• PQ for ad-hoc retrieval. PQ is also widely

applied for ad-hoc retrieval. On one hand, the
float vectors are quantized for high memory effi-
cency. On the other hand, the retrieval process can
be significantly accelerated. For each key within
database, the embedding zk is quantized as z̃k =
[C1b1, ...,CMbM]1. For a given query embed-
ding zq, the inner-product with the M codebooks
can be enumerated and kept within the distance ta-
ble Tq, where Tq[i, j] = 〈zqi ,Cij〉. Finally, the
query and key’s inner product 〈zq, z̃k〉 can be effi-
ciently derived by looking up the pre-computed re-

1. We adopt the Asymmetric Distance Computation (ADC) (Jégou et al.,
2011), where only keys need to be quantized.

8121

sults within Tq:
∑

1,...,M Tq[i,bi], where no more
dot product computations are needed.

2.2 Defect of Reconstruction Loss

The reconstruction loss minimization is usually
adopted as the quantization model’s training ob-
jective in supervised PQ (Cao et al., 2016; Gao
et al., 2019; Chen et al., 2020). It requires the dis-
tortions between key embedding and its quantiza-
tion result to be reduced as much as possible:

min
∑

k
‖zk − z̃k‖2. (1)

The minimization of reconstruction loss is seem-
ingly plausible given the following hypothesises.

Hypothesis 2.1. The quantized keys’ embeddings
are less accurate in predicting query and key’s rel-
evance, compared with the non-quantized ones.

Hypothesis 2.2. The loss of prediction accuracy
is a monotonously increasing function of the re-
construction loss (defined in Eq. 1).

The first hypothesis can be “assumed correct” in
reality, considering that the quantized embeddings
are less expressive than the original embeddings
(due to the finite number of codewords). How-
ever, the second hypothesis is problematic. In the
following part, we analyze the underlying defect
from both theoretical and empirical perspectives.

2.2.1 Theoretical Analysis2

We theoretically analyze two properties about the
reconstruction loss: 1) it is indelible; and 2) de-
creasing of the reconstruction loss does not neces-
sarily improve the prediction accuracy.

Theorem 2.1. (Positive Reconstruction Loss)
The reconstruction loss is positive if the code-
books’ scale is smaller than the key’s scale.

That is to say, the input will always be changed
after quantization given a reasonable scale of
codebooks, making it impossible to keep the quan-
tized embeddings equally expressive as the origi-
nal embeddings by eliminating the reconstruction
loss. Moreover, we further show that the reduc-
tion of the reconstruction loss doesn’t necessarily
improve the prediction accuracy.

We start by showing the existence of “quanti-
zation invariant perturbation”, i.e., the codeword
assignment will stay unchanged when such pertur-
bations are added to the codebooks.

2. Proofs of Theorem 2.1 and Lemma A are put to the appendix.

Lemma 2.1. For each codebook Ci, there will al-
ways exist perturbation vectors like εi, where the
manipulation of codewords: Ĉi∗ ← Ci∗ + εi,
doesn’t affect the codeword assignment.

On top of the existence of quantization invariant
perturbations, we may derive the “Non-monotone”
about the relationship between the prediction ac-
curacy and the reconstruction loss.

Theorem 2.2. (Non-Monotone) PQ’s prediction
accuracy is not monotonically increasing with the
reduction of the reconstruction loss.

Proof. The statement is proved by contradic-
tion. For each codebook, we generate a per-
turbation which satisfies Lemma A and add it to
the codewords: Ĉi∗ ← Ci∗ + εi. According to
the Lemma A, the codeword assignment will not
change, so the quantized key embedding become:
ẑk = z̃k + ε, where ε = [ε1, ε2, ..., εM]. Now we
may derive the following relationship about the re-
construction losses:

E‖zk − ẑk‖2 =
(
E(zk − z̃k)2 + E(ε)2

)1/2
> E‖zk − z̃k‖2.

(The first equivalence holds conditioned on the in-
dependence between zk − z̃k and ε.)3 That is to
say, the reconstruction loss is increased after the
perturbation. At the same time, we may also de-
rive the query and key’s relationship before (R)
and after (R̂) the perturbation:

R̂(q, k) =
exp

(
〈zq, ẑk〉

)∑
k′ exp

(
〈zq, ẑk′〉

)
=

exp
(
〈zq, z̃k + ε〉

)∑
k′ exp

(
〈zq, z̃k′ + ε〉

)
=

exp
(
〈zq, z̃k〉

)∑
k′ exp

(
〈zq, z̃k′〉

) = R(q, k).

In other words, the relationship between query
and key is preserved despite the increased recon-
struction loss. Thus, a contradiction is obtained
for the monotonous relationship between the pre-
diction accuracy and reconstruction loss. �

2.2.2 Empirical Analysis
To further verify the theoretical conclusions, we
empirically analyze the relationship between the
prediction accuracy and the reconstruction loss

3. The ε is generated based on an arbitrary unit vector, so the independence
condition always holds.

8122

Code
Assign

Code-
books

Key: “Nike Therma Men's Winterized
Full-Zip Training Vest. Nike.com”

Encoding Networks

100

010

010

Query: “Nike Therma Vest”𝒛𝒌 𝒛෤𝒌 𝒛𝒒

I. Quantization II. Matching

Encoding Networks

Figure 1: PQ’s retrieval workflow: (I) Quantization: the key’s embedding (zk) is assigned to codes, whose related codewords
are composited as the quantized key embedding (z̃k); (II) Matching: the quantized key embedding (one of the centroids of the
Voronoi diagram) confines the targeted query embedding zq within its own Voronoi cell.

Search Ads Quora News Wiki

Methods R-loss Recall R-loss Recall R-loss Recall R-loss Recall
DQN 1e-3 16.6820 0.1045 16.6647 0.5172 20.2182 0.2357 18.3501 0.0535

DQN 1e-2 7.5604 0.1433 5.6794 0.5436 9.2987 0.3138 6.9921 0.0720
DQN 1e-1 1.4021 0.1132 2.5604 0.4798 1.9051 0.2636 1.4542 0.0547

DQN 1.0 0.2575 0.0575 0.5038 0.1869 0.7624 0.1488 0.3043 0.0085

Table 1: Relationships between the reconstructive loss (R-Loss) and PQ’s accuracy (Recall@10). The reconstruction loss is
monotonously reduced when its weight becomes larger. However, the smallest reconstruction loss (marked by “ ”) doesn’t
lead to the optimal accuracy (marked in bold).

as Table 1, by taking the deep quantization net-
work (Cao et al., 2016) (DQN for short) as the
example4. The weight of reconstruction loss is
tuned as: 1, 1e-1, 1e-2, 1e-3 (larger weights will
lead to higher loss reduction), and the weight of
embedding learning is fixed to 1. We find that
the reconstruction loss is monotonously reduced
when a larger learning weight is used. However,
the smallest reconstruction loss doesn’t bring the
highest prediction accuracy (measured with Re-
call@10), which echos our theoretical analysis.
More experimental studies in Section 4 demon-
strate that the supervised PQ’s advantages over
the non-supervised baselines are inconsistent and
sometimes insignificant, when the reconstruction
loss minimization is taken as the objective (even
with the optimally tuned weights).

To summarize, the reconstruction loss cannot be
eliminated with a feasible scale of codebooks, and
the reduction of the reconstruction loss doesn’t
necessarily improve the retrieval accuracy. As
such, we turn around to formulate a new objective,
where the model will stay with the reconstruction
loss but optimize the PQ’s retrieval accuracy.

4. More detailed experiment settings are given in Section 4.

3 Matching-oriented PQ

We present the Matching-oriented PQ (MoPQ) in
this section. In MoPQ, a new quantization objec-
tive MCL is proposed, whose minimization opti-
mizes the query-key’s matching probability, there-
fore bringing about the optimal retrieval accuracy.
Besides, the DCS method is introduced, which fa-
cilitates the effective minimization of MCL.

3.1 Multinoulli Contrastive Loss

The ad-hoc retrieval with PQ can be divided into
two stages, shown as Figure 1. The first stage is
called Quantization. The key embedding is as-
signed to a series of binary codes, each of which
is corresponding to one codeword within a code-
book. The assigned codewords are composited
as the quantized key embedding, which is a cen-
troid of the Voronoi diagram determined by the
codebooks. The second stage is called Matching,
where the quantized key embedding confines the
targeted query embedding within its own Voronoi
cell. The above matching process is probabilisti-
cally modeled as the Multinoulli Generative Pro-
cess (as Figure 2):

• For each codebook i, a codeword is sampled
from the Multinoulli distribution: Mul(Cij |zki),
denoted as z̃ki ; the quantized key embedding z̃k

is generated as the concatenation of {z̃ki }M .

8123

௞
௜
௞

ଵ
௞

ெ
௞

௤௞

…
…

Quantize: 𝒛෤௜
௞ ∼ Mul(𝑪௜௝|𝒛௜

௞) Match: 𝒛௤∼ Mul(𝒛௤|𝒛෤௞)

Figure 2: The Multinoulli Generative Process.

• The query is sampled from the distribution:
Mul(zq|z̃k), parameterized by the quantized
key embedding z̃k and query embedding zq.

Thus, the matching probability can be factorized
by the joint distribution of making codeword se-
lection from all codebooks:

∏
i P (Cij |zki), and

sampling query based on zq and z̃k: P (zq|z̃k):

P (zq|zk) =
∑

j

∏
i
P (Cij |zki)P (zq|z̃k).

(“
∑

j” indicates the enumeration of all possible
codeword selection.) We expect to maximize the
above query-key matching probability so as to
achieve the optimal retrieval accuracy. However,
the exact calculation is intractable due to: 1) the
almost infinite combinations of codewords, and 2)
the unknown distribution of the queries. In this
place, the following transformations are made.

Firstly, we leverage the Straight Through Esti-
mator (Bengio et al., 2013), where P (Cij |zki) is
transformed by the hard thresholding function:

P ′(Cij |zki) =

{
1, if j = argmax{P (Ci∗|zki)};
0, otherwise.

The above probability is calculated as P ′ = (P ′−
P).sg() + P such that the gradients can be back
propagated (“sg() ” is the stop gradient operation).
Now the generation probability is simplified as:

P (zq|zk) =
∏

i
P ′(Cij∗ |zki)P (zq|z̃k),

where j∗ = argmax{P (Ci∗|zki)}. (“
∑

j” can be
removed because P ′(Cij |zki) = 0, ∀j 6=j∗.)

Secondly, we make a further transformation for
the query’s generation probability:

P (zq|z̃k) = P (z̃k|zq)P (zq)
P (z̃k)

∝ P (z̃k|zq),

where P (zq) and P (z̃k) are the prior probabilities
regarded as unknown constants. The conditional

Algorithm 1: DCS Method

1 begin
2 for Device i = 1 ... D do
3 {Qi∗,Ki

∗}N ← Encode({qi∗, ki∗}N);
4 broadcast {Qi∗,Ki

∗}N ;

5 for Device i = 1 ... D do
6 Lip ← primary loss;
7 for Device j 6=i do
8 Ljic ← image loss for Device-j;

9 ∇iθ ← ∇θ

(
Lip +

∑
j L

ji
c

)
10 Update model w.r.t.

∑
i∇iθ.

probability P (z̃k|zq) calls for the normalization
over the quantized key embeddings {z̃k}, which is
deterministic and predefined. Now the generation
probability is transformed as:

P (zq|zk) ∝
∏

i
P ′(Cij∗ |zki)P (z̃k|zq) = (2)∏

i

exp(s(zki ,Cij))∑
j exp(s(z

k
i ,Cij))

∗ exp(〈z̃k, zq〉)∑
k′ exp(〈z̃k′ , zq〉)

,

where “s(·)” is the code assignment function (de-
tailed forms will be discussed in Section 4.1).

The negative logarithm of the final simplifica-
tion in Eq. 2 is called the Multinoulli Contrastive
Loss (MCL). It is used as our quantization train-
ing objective, whose minimization optimizes the
query and key’s matching probability.

3.2 Approximating MCL with DCS
MCL calls for the normalization over all keys’
quantized embeddings {z̃k}, whose computation
cost is huge. It has to be approximated by nega-
tive sampling (Bengio et al., 2013; Huang et al.,
2020), where a subset of keys are encoded as
the normalization term. Recent works (Gillick
et al., 2019; Luan et al., 2020; Wu et al., 2020b;
Karpukhin et al., 2020) use in-batch contrastive
samples, which are free of extra encoding cost: for
the i-th training instance within a mini-batch, the
j-th key’s quantized embedding (j 6= i) will be
used as a contrastive sample. Thus, there will be
N − 1 cost free contrastive samples in total (N :
batch size). Recent studies also leverage cross de-
vice in-batch sampling for sample augmentation in
distributed environments (Qu et al., 2020). Partic-
ularly, a training instance on one device may take
advantage of quantized key embeddings on other
devices as its contrastive samples. Thus, the con-
trastive samples will be increased by ×D times

8124

Labels

Primary Loss for (𝑄ଵ
ଵ, 𝐾ଵ

ଵ)

1 0 0 0 0 0

Image Loss for (𝑄ଵ
ଵ, 𝐾ଵ

ଵ) on Device (i)

1 0 0 0 0 0

𝐾ଵ
ଵ 𝐾୒

ଵ… 𝐾ଵ
௜ 𝐾୒

௜… 𝐾ଵ
஽ 𝐾୒

஽… 𝐾ଵ
ଵ 𝐾୒

ଵ… 𝐾ଵ
௜ 𝐾୒

௜… 𝐾ଵ
஽ 𝐾୒

஽…

𝐾ଵ
ଵ𝑄ଵ

ଵ

𝐾ଶ
ଵ𝑄ଶ

ଵ

𝐾୒
ଵ𝑄୒

ଵ

… …

𝑄ଵ
ଵ

Encoding on 1st Device

Device-1 Device-i Device-D… …

𝐾ଵ
௜𝑄ଵ

௜

𝐾ଶ
௜𝑄ଶ

௜

𝐾୒
௜𝑄୒

௜
… …

𝑄ଵ
ଵ

Encoding on 𝒊-th Device

Device-1 Device-i Device-D… …

Embedding Broadcast

𝑄ଵ…୒
ଵ , 𝐾ଵ…୒

ଵ

𝑄ଵ…୒
௜ , 𝐾ଵ…୒

௜

Figure 3: Contrastive sample augmentation based on DCS. The primary loss and the image loss are combined to make the
contrastive samples shared from other devices (shaded boxes) virtually differentiable.

(D: the number of devices). A problem about the
cross device in-batch sampling is that the shared
embeddings from other devices are not differen-
tiable (because the shared values need to be de-
tached from their original computation graphs).
As a result, the partial gradients cannot be back-
propagated through the cross-device contrastive
samples, which causes distortions of the model’s
update, thus undermines the optimization effect.

• DCS Method. We propose the Differentiable
Cross-device in-batch Sampling (DCS), which en-
ables partial gradients to be back propagated for
the cross-device contrastive samples. The over-
all workflow is summarized with Alg. 1, where
the core technique is referred as the “combina-
tion of Primary and Image losses”. Suppose a
total of D GPU devices are deployed, each one
processes N training instances. The training in-
stances encoded on the i-th Device are denoted as
{Qi1...N ,Ki

1...N}.5 The embeddings generated on
each device will be broadcasted to all the other
devices. As a result, the i-th device will main-
tain two sets of embeddings: 1) {Qi1...N ,Ki

1...N},
which are locally encoded and differentiable, and
2) {Q6=i1...N ,K

6=i
1...N}, which are broadcasted from

other devices and thus non-differentiable. Each
training instance (Qij ,K

i
j) will have two losses

computed in parallel: the primary loss on the de-
vice where it is encoded (i.e., Device-i), and the
image loss on the devices where it is broadcasted.

Take the first instance on Device-1 (Q1
1,K

1
1) for

illustration (as Figure 3). The query-key matching

5. Qi
j and Ki

j : the query embedding (zq) and the quantized key embed-
ding (z̃k) of the j-th training instance on device i.

probability P (K1
1 |Q1

1) on Device-1 is:

exp(〈Q1
1,K

1
1 〉)∑

j exp(〈Q1
1,K

1
j 〉) +

∑
6=1 exp(〈Q1

1,K
∗
j 〉)

. (3)

The cross-device embeddings are detached, there-
fore, the partial gradients are stopped at these vari-
ables (marked as Q and K). The above query-key
matching probability will be used by MCL (for
“P (z̃k|zq)”) in Eq. 2, whose result is called the
primary loss w.r.t. (Q1

1,K
1
1); the sum of primary

losses for all (Q1
∗,K

1
∗) is denoted as L1

p.
Meanwhile, the query-key matching probability

P (K1
1 |Q1

1) is also computed on all other devices.
For the i-th device (i 6= 1), P (K1

1 |Q1
1) becomes:

exp(〈Q1
1,K

1
1 〉)∑

j exp(〈Q1
1,K

i
j〉) +

∑
6=i exp(〈Q1

1,K
∗
j 〉)

. (4)

The differentiability is partially inverted compared
with P (K1

1 |Q1
1) in Eq. 3: Ki

j becomes differen-
tiable, but Q1

1 and K1
j become non-differentiable.

The above probability is used to derive another
MCL, which is called the image loss of (Q1

1,K
1
1)

on Device-i; the sum of image losses of all
(Q1
∗,K

1
∗) on Device-i is denoted as L1i

c . Clearly,
the above image loss will compensate the stopped
gradients (related to Ki

j) in the primary loss.
The primary losses and image losses are gath-

ered from all GPU devices and added up, based on
which the model parameters θ are updated w.r.t.
the following partial gradients:

∇θ

(∑
i

(
Lip +

∑
j 6=i
Lijc
))
. (5)

It can be verified that the above results are equiv-
alent to the partial gradients derived from the fol-

8125

lowing full-differentiable distributions:

N∑
k=1

N∑
l=1

exp(〈Qkl ,Kk
l 〉)∑N

j=1

∑D
i=1 exp(〈Q1

k,K
i
j〉)
. (6)

Thus, the partial gradients are free from distortions
caused by the non-differentiable variables, which
enables MCL to be precisely approximated with
the cross-device augmented contrastive samples.

4 Experimental Studies

4.1 Experiment Settings

• Data. We use three open datasets. Quora6,
with question pairs of duplicated meanings (Wang
et al., 2019); we use one question to retrieve its
counterpart. News7, with news articles from Mi-
crosoft News (Wu et al., 2020a); we use the head-
line to retrieve the news body. Wiki8, with pas-
sages from Wikipedia; we use the first sentence to
retrieve the remaining part of the passage. One
large industrial dataset Search Ads, with user’s
search queries and clicked ads from a worldwide
search engine; we use search queries to retrieve
the titles of clicked ads. (As Table 2.)
• Baselines. We consider both supervised and

non-supervision PQ as our baselines. For super-
vised PQ, the embedding model and the quantiza-
tion model are learned jointly. For non-supervised
PQ, the embedding model is learned at first; then
the quantization model is learned with fixed em-
beddings. We consider the following supervised
methods. DQN (Cao et al., 2016), which is
learned with two objectives: the embedding model
is learned to match the query and key, and the
quantization model is learned to minimize the re-
construction loss. DVSQ (Cao et al., 2017), which
adapts the reconstruction loss to minimize the dis-
tortion of query and key’s inner product. SPQ
(Klein and Wolf, 2019), which minimizes the dis-
agreement between the hard and soft allocated
codewords. DPQ (Chen et al., 2020), which still
minimizes the reconstruction loss as DQN, but
leverages a different quantization module. We also
include 2 non-supervised baselines: the vanilla
PQ (Jégou et al., 2011), and OPQ (Ge et al.,
2013).Although OPQ is non-supervised, it learns
the transformation of the input embeddings such
that the reconstruction loss can be minimized.

6. https://www.kaggle.com/c/quora-question-pairs
7. https://msnews.github.io
8. https://deepgraphlearning.github.io/project/wikidata5m

Train Valid Test #Keys
News 79,122 9,891 9,891 98,388

Quora 68,240 9,055 24,041 537,340

Wiki 289,623 10,000 10,000 1,902,625

Ads 1,169,453 10,000 10,000 1,738,237

Table 2: Specifications of Datasets.

We implement two MoPQ alternatives: 1)
MoPQb, the basic form with MCL and conven-
tional in-batch sampling; 2) MoPQa, the ad-
vanced form with both MCL and DCS.
• Implementations. We use BERT-like Trans-

formers (Devlin et al., 2018) for text encod-
ing: the #layer is 4 and the hidden-dimension
is 768. The input text is uncased and tokenized
with WordPiece (Wu et al., 2016). The algo-
rithms are implemented in PyTorch 1.8.0. We
consider the following codeword selection func-
tions : 1) l2 (default option in reality), where
the codeword is selected based on Euclidean
distance: Cij ← argmax{−‖zki − Ci∗‖2};
2) Cosine, where the codeword is selected by:
Cij ← argmax{cos(zki ,Ci∗)}; 3) Product,
where the codeword is selected by: Cij ←
argmax{〈zki ,Ci∗〉}; 3) Bi-linear, where the code-
word is selected by: Cij ← argmax{zkiWCT

i∗}
(W is a learnable square matrix). Our code and
data will be made public-available. Pseudo codes
for the algorithms, more comprehensive results
and implementation details are put into supple-
mentary materials.

4.2 Experiment Analysis

The experimental studies focus on three major is-
sues: 1) the overall comparisons between MoPQ
and the existing PQ baselines; 2) the impact of
DCS; 3) the impacts of codebook configurations,
like codeword selection and codebook size.
• Overall Comparisons. The overall compar-

ison results are shown in Table 3. The matching
accuracy is measured by Recall@N (R@N). We
use 8 codebooks by default, each of which has 256
codewords (M = 8, L = 256). The best perfor-
mances are marked in bold; the most competitive
baseline performances are underlined.

Firstly, it can be observed that the basic form
MoPQb consistently outperforms all the baselines,
with 7.8%∼19.5% relative improvements over the
most competitive baselines on different datasets.
With the enhancement of DCS, MoPQa further
improves the performances by 11.0%∼42.7%, rel-
atively. Both observations validate the effective-

8126

Search Ads Quora News Wiki

Method R10 R50 R100 R10 R50 R100 R10 R50 R100 R10 R50 R100
MoPQb 0.2141 0.3513 0.4193 0.5861 0.8381 0.9054 0.3422 0.5462 0.6334 0.1005 0.2150 0.2878

MoPQa 0.2439 0.3820 0.4563 0.6717 0.8976 0.9416 0.3799 0.5787 0.6533 0.1434 0.2658 0.3322
PQ 0.1252 0.2126 0.2682 0.3503 0.6353 0.7518 0.2028 0.4040 0.5069 0.0340 0.1015 0.1496

OPQ 0.1506 0.2507 0.3127 0.4572 0.7349 0.8359 0.2381 0.4277 0.5180 0.0558 0.1409 0.2082

DQN 0.1433 0.2520 0.3145 0.5436 0.8285 0.8977 0.3138 0.5217 0.6108 0.0720 0.1728 0.2451

DVSQ 0.1548 0.2784 0.3498 0.4061 0.7097 0.8179 0.3045 0.5105 0.6102 0.0841 0.1849 0.2602

SPQ 0.1907 0.3145 0.3844 0.5321 0.7984 0.8782 0.2470 0.4474 0.5449 0.0655 0.1648 0.2306

DPQ 0.1709 0.2953 0.3650 0.4941 0.7760 0.8621 0.2552 0.4641 0.5639 0.0599 0.1561 0.2254

Table 3: Comparisons between MoPQ (upper), non-supervised (middle) and supervised (lower) PQ baselines.

Method Ads Quora News Wiki
PQ 21.4227 13.6768 16.1511 16.9847

DQN 7.5604 5.6794 9.2987 6.9921

MoPQb 35.7987 29.7244 26.4847 26.5861

MoPQa 39.5576 30.0319 27.0710 26.8888

Table 4: Comparison of reconstruction loss.

ness of our proposed methods. As for the base-
lines: the supervised PQ’s performances are com-
paratively higher than the non-supervised ones;
however, the improvements are not consistent: in
some cases, OPQ achieves comparable or even
higher recall rates than some of the supervised PQ.

Secondly, we further clarify the relationship be-
tween the reconstruction loss and the query-key
matching accuracy. More results on reconstruc-
tion loss are reported in Table 4. For one thing,
we find that by jointly learning the embedding and
quantization models, DQN’s reconstruction losses
become significantly lower than PQ. At the same
time, DQN’s recall rates are consistently higher
than PQ. Such observations indicate that: to some
extent, the reduction of reconstruction loss may
help to improve PQ’s retrieval accuracy. On the
other hand, the reconstruction losses of MoPQb

and MoPQa are much higher than DQN, but it
dominates the baselines in terms of recall rate.
Such observations echo the theoretical and empir-
ical findings in Section 2.2: PQ’s query-key re-
trieval accuracy will not monotonously increase
with the reduction of reconstruction loss.

A brief conclusion for the above observations:
although the minimization of reconstruction loss
still contributes to PQ’s retrieval accuracy, the im-
provement is limited due to the non-monotone be-
tween both factors. In contrast, the minimiza-
tion of MCL directly maximizes the query-key’s
matching probability, which makes MoPQ achieve
much more competitive retrieval accuracy.

• Impact of DCS. More analysis about DCS

is shown in the upper of Table 5. We consider
two baselines: 1) the conventional in-batch sam-
pling, where no cross-device sampling is made;
2) the Non-differentiable Cross-device Sampling
(NCS), which also makes embeddings shared
across GPU devices for contrastive sample aug-
mentation, but no image loss is computed to com-
pensate the stopped gradients. It is observed that
both DCS and NCS outperform the in-batch sam-
pling, thanks to the augmentation of contrastive
samples. However, the improvement of NCS is
limited compared with DCS. As discussed in Sec-
tion 3.2, the gradients are stopped at the non-
differentiable variables of NCS, which causes dis-
tortions for the model’s update. Thus, the model’s
training outcome is restricted because of it.

• Impact of codeword selection. We use
MoPQb as the representative to analyze the im-
pact of different forms of codeword selections in
the lower of Table 5. We find that MoPQ’s perfor-
mances are not sensitive to the codeword selection
function, as the experiment results are quite close
to each other. Given that the l2 selection’s perfor-
mance is slightly better and no extra parameters
are introduced, it is used as our default choice.

• Impact of codebook size. We analyze the im-
pact of codebook size in Table 6; the SPQ base-
line is included for comparison. With the ex-
pansion of scale, i.e., more codebooks and more
codewords per codebook, MoPQ’s performance
can be improved gradually. In all of the settings,
MoPQ maintains its advantage over SPQ. It is also
observed that in some cases, MoPQ outperforms
SPQ with even smaller codebook size, e.g., MoPQ
(M=4, L=256) and SPQ (M=8, L=256) on News;
in other words, the higher recall rate is achieved
with smaller space and time costs.

8127

Search Ads Quora News Wiki

Method R10 R50 R100 R10 R50 R100 R10 R50 R100 R10 R50 R100
In-Batch 0.2141 0.3513 0.4193 0.5861 0.8381 0.9054 0.3422 0.5462 0.6334 0.1005 0.2150 0.2878

NCS 0.2249 0.3620 0.4305 0.6264 0.8655 0.9197 0.3569 0.5534 0.6355 0.1151 0.2320 0.2960

DCS 0.2439 0.3820 0.4563 0.6717 0.8976 0.9416 0.3799 0.5787 0.6533 0.1434 0.2658 0.3322

l2 0.2141 0.3513 0.4193 0.5861 0.8381 0.9054 0.3422 0.5462 0.6334 0.1005 0.2150 0.2878

Cosine 0.2019 0.3297 0.3987 0.5804 0.8296 0.8993 0.3215 0.5160 0.6031 0.0784 0.1828 0.2518

Product 0.2027 0.3290 0.3998 0.5578 0.8001 0.8707 0.3256 0.5307 0.6158 0.0843 0.1930 0.2617

Bi-Lin 0.2102 0.3410 0.4113 0.5878 0.8382 0.9034 0.3197 0.5210 0.6116 0.1115 0.2259 0.2965

Table 5: The impact of DCS (upper table), and the impact of codeword selection functions (lower table).

Method Ads Quora News Wiki
SPQ (M=4, L=128) 0.1018 0.2804 0.1569 0.0461

MoPQb (M=4, L=128) 0.1068 0.4484 0.2327 0.0563
SPQ (M=4, L=256) 0.1264 0.3006 0.1833 0.0440

MoPQb (M=4, L=256) 0.1289 0.4648 0.2649 0.0569
SPQ (M=8, L=256) 0.1907 0.5321 0.2470 0.0655

MoPQb (M=8, L=256) 0.2141 0.5861 0.3422 0.1005
SPQ (M=16, L=256) 0.2196 0.5767 0.2780 0.1029

MoPQb (M=16, L=256) 0.2574 0.6395 0.3889 0.1457

Table 6: Impact of codebook size. (Recall@10)

5 Conclusion

In this paper, we propose MoPQ to optimize PQ’s
ad-hoc retrieval accuracy. A systematic revisit is
made for the existing supervised PQ, where we
identify the limitation of using reconstruction loss
minimization as the training objective. We pro-
pose MCL as our new training objective, where
the model can be learned to maximize the query-
key matching probability to achieve the optimal
retrieval accuracy. We further leverage DCS for
contrastive sample argumentation, which ensures
the effective minimization of MCL. The experi-
ment results on 4 real-world datasets validate the
effectiveness of our proposed methods.

Acknowledgements

This work is supported by the National Natural
Science Foundation of China (No. U1936104) and
The Fundamental Research Funds for the Central
Universities 2020RC25.

References
Yoshua Bengio, Nicholas Léonard, and Aaron

Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432.

Yue Cao, Mingsheng Long, Jianmin Wang, and
Shichen Liu. 2017. Deep visual-semantic quantiza-
tion for efficient image retrieval. In Proceedings of

the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1328–1337.

Yue Cao, Mingsheng Long, Jianmin Wang, Han Zhu,
and Qingfu Wen. 2016. Deep quantization net-
work for efficient image retrieval. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 30, page 3457–3463.

Ting Chen, Lala Li, and Yizhou Sun. 2020. Differ-
entiable product quantization for end-to-end embed-
ding compression. In International Conference on
Machine Learning, pages 1617–1626.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Lianli Gao, Xiaosu Zhu, Jingkuan Song, Zhou Zhao,
and Heng Tao Shen. 2019. Beyond product quanti-
zation: Deep progressive quantization for image re-
trieval. arXiv preprint arXiv:1906.06698.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun.
2013. Optimized product quantization. IEEE trans-
actions on pattern analysis and machine intelli-
gence, 36(4):744–755.

Daniel Gillick, Sayali Kulkarni, Larry Lansing,
Alessandro Presta, Jason Baldridge, Eugene Ie, and
Diego Garcia-Olano. 2019. Learning dense repre-
sentations for entity retrieval. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning, pages 528–537.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanab-
han, Giuseppe Ottaviano, and Linjun Yang. 2020.
Embedding-based retrieval in facebook search. In
Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, page 2553–2561.

Herve Jegou, Matthijs Douze, and Cordelia Schmid.
2010. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and
machine intelligence, 33(1):117–128.

Hervé Jégou, Romain Tavenard, Matthijs Douze, and
Laurent Amsaleg. 2011. Searching in one billion
vectors: re-rank with source coding. In 2011 IEEE

8128

International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 861–864.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, pages 6769–6781.

Benjamin Klein and Lior Wolf. 2019. End-to-end su-
pervised product quantization for image search and
retrieval. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 5041–5050.

Yiding Liu, Guan Huang, Jiaxiang Liu, Weixue Lu,
Suqi Cheng, Yukun Li, Daiting Shi, Shuaiqiang
Wang, Zhicong Cheng, and Dawei Yin. 2021. Pre-
trained language model for web-scale retrieval in
baidu search. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, page 3365–3375.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2020. Sparse, dense, and at-
tentional representations for text retrieval. arXiv
preprint arXiv:2005.00181.

Jingwei Ma, Jiahui Wen, Mingyang Zhong, Weitong
Chen, and Xue Li. 2019. Mmm: Multi-source multi-
net micro-video recommendation with clustered hid-
den item representation learning. Data Science and
Engineering, pages 240–253.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2020. Rocketqa: An optimized
training approach to dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2010.08191.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juanzi Li, and Jian Tang. 2019. Kepler: A
unified model for knowledge embedding and pre-
trained language representation. arXiv preprint
arXiv:1911.06136.

Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan
Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing Xie,
Jianfeng Gao, Winnie Wu, and Ming Zhou. 2020a.
MIND: A large-scale dataset for news recommen-
dation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 3597–3606.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebas-
tian Riedel, and Luke Zettlemoyer. 2020b. Scalable
zero-shot entity linking with dense entity retrieval.
In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6397–6407.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus

Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Mingdong Zhu, Derong Shen, Lixin Xu, and Xianfang
Wang. 2021. Scalable multi-grained cross-modal
similarity query with interpretability. Data Science
and Engineering, pages 280–293.

A Proof

Theorem 2.1. (Positive Reconstruction Loss)
The reconstruction loss is positive if the code-
books’ scale is smaller than the key’s scale.

Proof. The statement is proved by induc-
tion. First of all, it’s trivial that the reconstruc-
tion loss is positive when the number of code-
words is one (L = 1). Suppose we are given
codebooks C, where L > 1 and the correspond-
ing reconstruction loss is positive. Now ass-
gin a new codeword C∗,L+1 to each codebook,
where [C1,L+1, ...,CM,L+1] = zk (zk is an arbi-
trary key’s embedding). With the augmentation of
codebooks, the reconstruction loss related to k will
become zero, which means the reconstruction loss
will be reduced by ‖zk−z̃k‖2. This is to say, when
the size of codebooks is smaller than the number
of keys, the reconstruction loss can always be re-
duced by increasing the codebooks’ scale. Consid-
ering that the reconstruction loss is lower bounded
by 0, it is obvious that the reconstruction loss is
always positive given finite codebooks. �

Lemma 2.1. For each codebook Ci, there will
always exist perturbation vectors like εi, where the
manipulation of codewords: Ĉi∗ ← Ci∗ + εi,
doesn’t affect the codeword assignment.

Proof. The existence of εi is proved by giving
one “always-valid” example. We define the follow
thresholding radius for the perturbation:

rεi ←0.5 ∗min{min{||Cil − zi||2 : l 6= j}
− ||Cij − zi||2 : ∀z},

where Cij is the assigned codeword for i-
th sub-vector zi of embedding z, i.e., j =
argmin{||Ci∗ − zi||2}.

Let r ∼ Uniform(0, rεi), and εi←r ∗ ui (ui is
an arbitrary unit vector). In this way, ∀l 6= j :

2||εi||2 < 2rεi ≤ ||Cil−zi||2−||Cij−zi||2 (7)

Add this εi to all codewords in the codebook Ci:
Ĉi∗ ← Ci∗ + εi. According to the inequation (7)

8129

Search Ads Quora News Wiki
M&N Method R10 R50 R100 R10 R50 R100 R10 R50 R100 R10 R50 R100

M=4
N=128

PQ 0.0248 0.0633 0.0895 0.1255 0.3214 0.4368 0.1455 0.3084 0.4002 0.0302 0.0872 0.1402

OPQ 0.0365 0.0890 0.1252 0.2134 0.3214 0.4368 0.1388 0.3215 0.4218 0.0213 0.0676 0.1048

DQN 0.0319 0.0846 0.1227 0.3618 0.6722 0.7759 0.0895 0.2250 0.3119 0.0241 0.0647 0.0975

DVSQ 0.0390 0.1005 0.1483 0.3855 0.7097 0.8118 0.1628 0.3460 0.4529 0.0413 0.0703 0.1383

SPQ 0.1018 0.2166 0.2882 0.2804 0.6095 0.7373 0.1569 0.3378 0.4424 0.0440 0.1098 0.1621

DPQ 0.0454 0.1371 0.1980 0.2956 0.6431 0.7729 0.1434 0.3223 0.4260 0.0458 0.0927 0.1345

MoPQb 0.1068 0.2199 0.2876 0.4484 0.7472 0.8417 0.2327 0.4445 0.5419 0.0563 0.1428 0.2040

MoPQa 0.1342 0.2567 0.3266 0.5130 0.8012 0.8815 0.2496 0.4447 0.5372 0.0742 0.1702 0.2341

M=4
N=256

PQ 0.0348 0.0802 0.1388 0.1673 0.3893 0.5136 0.1455 0.3084 0.4002 0.0337 0.1071 0.1475

OPQ 0.0533 0.1144 0.1581 0.2556 0.5253 0.6549 0.1640 0.3561 0.4634 0.0277 0.0851 0.1307

DQN 0.0391 0.1040 0.1485 0.4421 0.7430 0.8341 0.1267 0.2892 0.3868 0.0320 0.0846 0.1238

DVSQ 0.0481 0.1287 0.1884 0.4103 0.7446 0.8446 0.2011 0.4080 0.5163 0.0447 0.1269 0.1842

SPQ 0.1264 0.2416 0.3066 0.3006 0.6142 0.7360 0.1833 0.3754 0.4679 0.0461 0.1130 0.1635

DPQ 0.0630 0.1627 0.2272 0.3111 0.6513 0.7688 0.1666 0.3606 0.4652 0.0493 0.0986 0.1446

MoPQb 0.1289 0.2627 0.3109 0.4648 0.7603 0.8545 0.2649 0.4721 0.5674 0.0569 0.1415 0.2009

MoPQa 0.1506 0.2802 0.3486 0.5285 0.8057 0.8817 0.2904 0.4909 0.5778 0.0854 0.1902 0.2615

M=16
N=256

PQ 0.2184 0.3413 0.4123 0.4520 0.7870 0.8715 0.3093 0.5269 0.6194 0.0769 0.1993 0.2718

OPQ 0.2260 0.3588 0.4227 0.3788 0.5854 0.6693 0.2381 0.4277 0.5180 0.1160 0.2322 0.3073

DQN 0.2347 0.3718 0.4414 0.6061 0.8538 0.9100 0.3667 0.5629 0.6478 0.1411 0.2784 0.3533

DVSQ 0.2257 0.3489 0.4156 05819. 0.8352 0.9046 0.3327 0.5420 0.6271 0.1291 0.2538 0.3245

SPQ 0.2196 0.3574 0.4258 0.5767 0.8354 0.8943 0.2780 0.4867 0.5798 0.1029 0.2210 0.2964

DPQ 0.2196 0.3541 0.4222 0.5254 0.7990 0.8781 0.3241 0.5260 0.6105 0.0952 0.2102 0.2845

MoPQb 0.2574 0.3893 0.4608 0.6395 0.8732 0.9291 0.3889 0.5814 0.6596 0.1654 0.2946 0.3697

MoPQa 0.2722 0.4176 0.4874 0.7075 0.9118 0.9506 0.4411 0.6217 0.6909 0.2065 0.3411 0.4077

Table 7: Performance for different codebooks’ scale. The best performances are marked in bold, and the second are underlined.

and triangle inequality, we can get:

||Ĉij − zi||2 ≤||Cij − zi||2 + ||εi||2
<||Cil − zi||2 − ||εi||2
<||Ĉil − zi||2,

where l 6= j. Therefore, it’s obvious that:

j = argmin{||Ĉi∗ − zi||2}.

The zi will still be mapped to j-th codeword in
codebook Ci. In other words, the original code-
word assignment will not be affected by εi. �

B Training Details

The models are implemented with PyTorch 1.8.0
and run with 8×Nvidia-A100-40G GPUs. We use
an average pooling over the last transformers layer
as the text embedding and then apply an addi-
tional linear layer to reduce the size of embed-
ding to 128. The weight of reconstruction loss in
baselines is tuned from {1, 1e-1, 1e-2, 1e-3, 1e-
4}. Without explicit mention, we default use eight
codebooks, each of which has 256 codewords. We
optimize the parameters with the Adam optimizer.
The learning rate is 1e-4 for pretrained transform-
ers layers and 1e-3 for other layers (e.g., product
quantization). We train the models for 50 epochs
with a batch size of 500. We evaluate the model

every epoch on the validation set and keep the best
checkpoint for the final evaluation on test sets.

C More Experiments Results

We conduct extensive experiments for MoPQ and
baselines on four datasets. The results are shown
in Table 7. The best performances with the same
settings are marked in bold, and the second are un-
derlined. The observations from this table are con-
sistent with the conclusions in our paper:

• The performance of PQ models can be im-
proved by increasing the number of code-
books and codewords.

• MoPQ consistently obtains better perfor-
mance than baselines.

• Adopting DCS method to augment con-
trastive samples, MoPQa achieves significant
improvement than MoPQb.

