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Abstract

Term weighting schemes are widely used in
Natural Language Processing and Information
Retrieval. In particular, term weighting is the
basis for keyword extraction. However, there
are relatively few evaluation studies that shed
light about the strengths and shortcomings of
each weighting scheme. In fact, in most cases
researchers and practitioners resort to the well-
known tf-idf as default, despite the existence
of other suitable alternatives, including graph-
based models. In this paper, we perform an
exhaustive and large-scale empirical compar-
ison of both statistical and graph-based term
weighting methods in the context of keyword
extraction. Our analysis reveals some interest-
ing findings such as the advantages of the less-
known lexical specificity with respect to tf-idf,
or the qualitative differences between statisti-
cal and graph-based methods. Finally, based
on our findings we discuss and devise some
suggestions for practitioners.1

1 Introduction

Keyword extraction has been an essential task in
many scientific fields as a first step to extract rele-
vant terms from text corpora. Despite the simplicity
of the task, it still poses practical problems, and
often researchers resort to simple but reliable tech-
niques such as tf-idf (Jones, 1972). In turn, term
weighting schemes such as tf-idf paved the way for
developing large-scale Information Retrieval (IR)
systems (Ramos et al., 2003; Wu et al., 2008). Its
simple formulation is still widely used nowadays,
not only for keyword extraction but also as an im-
portant component in IR (Jabri et al., 2018; Marcos-
Pablos and García-Peñalvo, 2020) and Natural Lan-
guage Processing (NLP) tasks (Riedel et al., 2017;
Arroyo-Fernández et al., 2019).

1Source code to reproduce our experimental results, includ-
ing a keyword extraction library, are available in the following
repository: https://github.com/asahi417/kex

While there exist supervised and neural tech-
niques (Lahiri et al., 2017; Xiong et al., 2019; Sun
et al., 2020), as well as ensembles of unsupervised
methods (Campos et al., 2020; Tang et al., 2020)
that can provide competitive performance, in this
paper we go back to the basics and analyze in detail
the single components of unsupervised methods for
keyword extraction. In fact, it is still common to
rely on unsupervised methods for keyword extrac-
tion given their versatility and the lack of training
sets in specialized domains.

In order to fill this gap, in this paper we per-
form an extensive analysis of single unsupervised
keyword extraction techniques in a wide range of
settings and datasets. To the best of our knowledge,
this is the first large-scale empirical evaluation per-
formed across base statistical and graphical key-
word extraction methods. Our analysis sheds light
on some properties of statistical methods largely
unknown. For instance, our experiments show that
a statistical weighting scheme based on the hyper-
geometric distribution such as lexical specificity
(Lafon, 1980) can perform at least as well as or
better than tf-idf (Jones, 1972), while having ad-
ditional advantages with respect to flexibility and
efficiency. As for the graph-based methods, they
can be more reliable than statistical methods with-
out being considerably slower in practice. In fact,
graph-based methods initialized with tf-idf or lexi-
cal specificity performs best overall.

2 Keyword Extraction

Given a document with m words [w1 · · ·wm], key-
word extraction is a task to find n noun phrases,
which can comprehensively represent the docu-
ment. As each of such phrases consists of con-
tiguous words in the document, the task can be
seen as an ordinary ranking problem over all candi-
date phrases appeared in the document. A typical
keyword extraction pipeline is thus implemented
as, first, to construct a set of candidate phrases Pd

https://github.com/asahi417/kex
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Figure 1: Overview of the keyword extraction pipeline.

for a target document d and, second, to compute
importance scores for all of individual words in d.2

Finally, the top-n phrases {yj |j = 1 . . . n} ⊂ Pd
in terms of the aggregated score are selected as the
prediction (Mihalcea and Tarau, 2004). Figure 1
shows an overview of the overarching methodology
for unsupervised keyword extraction.

To compute word-level scores, there are mainly
two types of approach: statistical and graph-based.
There are also contributions that focus on training
supervised models for keyword extraction (Wit-
ten et al., 2005; Liu et al., 2010). However, due
to the absence of large labeled data and domain-
specificity, most efforts are still unsupervised,
which is the focus of this paper.

2.1 Statistical Models
A statistical model attains an importance score
based on word-level statistics or surface features,
such as the word frequency or the length of word.3

A simple keyword extraction method could be to
simply use term frequency (tf) as a scoring function

2In the case of multi-token candidate phrases, this score is
averaged among its tokens.

3The term Statistical may not be strictly accurate to refer
to tf-idf or purely frequency-based models, but in this case we
follow previous conventions by grouping all these methods
based on word-level frequency statistics as statistical (Aizawa,
2003).

for each word, which tend to work reasonably well.
However, this simple measure may miss important
information such as the relative importance of a
given word in a corpus. For instance, prepositions
such as in or articles such as the tend to be highly
frequent in a text corpus. However, they barely rep-
resent a keyword in a given text document. To this
end, different variants have been proposed, which
we summarize in two main alternatives: tf-idf (Sec-
tion 2.1.1) and lexical specificity (Section 2.1.2).

2.1.1 TF-IDF

As an extension of tf, term frequency–inverse doc-
ument frequency (tf-idf) (Jones, 1972) is one of
most popular and effective methods used for sta-
tistical keyword extraction (El-Beltagy and Rafea,
2009), as well as still being an important compo-
nent in modern information retrieval applications
(Marcos-Pablos and García-Peñalvo, 2020; Guu
et al., 2020).

Given a set of documents D and a word w from
a document d ∈ D, tf-idf is defined as the pro-
portion between its word frequency and its inverse
document frequency4, as

stfidf(w|d) = tf(w|d) · log2
|D|

df(w|D)
(1)

where we define | · | as the number of elements in a
set, tf (w|d) as a frequency of w in d, and df (w|D)
as a document frequency of w over a dataset D. In
practice, tf (w|d) is often computed by counting the
number of times that w occurs in d, while df (w|D)
by the number of documents in D that contain w.

To give a few examples of statistical models
based on tf-idf and its derivatives in a keyword ex-
traction context, KP-miner (El-Beltagy and Rafea,
2009) utilizes tf-idf, a word length, and the abso-
lute position of a word in a document to determine
the importance score, while RAKE (Rose et al.,
2010) uses the term degree, the number of different
word it co-occurs with, divided by tf. Recently,
YAKE (Campos et al., 2020) established strong
baselines on public datasets by combining various
statistical features including casing, sentence posi-
tion, term/sentence-frequency, and term-dispersion.
In this paper, however, we focus on the vanilla
implementation of term frequency and tf-idf.

4While there are other formulations and normalization
techniques for tf-idf (Paik, 2013), in this paper we focus on
the traditional inverse-document frequency formulation.
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2.1.2 Lexical specificity
Lexical specificity (Lafon, 1980) is a statistical
metric to extract relevant words from a subcorpus
using a larger corpus as reference. In short, lexi-
cal specificity extracts a set of most representative
words for a given text based on the hypergeometric
distribution. The hypergeometric distribution rep-
resents the discrete probability of k successes in n
draws, without replacement. In the case of lexical
specificity, k represents the word frequency and n
the size of a corpus. While not as widely adoped
as tf-idf, lexical specificity has been used in similar
term extraction tasks (Drouin, 2003), but also in
textual data analysis (Lebart et al., 1998), domain-
based disambiguation (Billami et al., 2014), or as
a weighting scheme for building vector representa-
tions for concepts and entities (Camacho-Collados
et al., 2016) or sense embeddings (Scarlini et al.,
2020) in NLP.

Formally, the lexical specificity for a word w in
a document d is defined as

sspec(w|d) = − log10

F∑
l=f

Phg(x=l,md,M, f, F )

(2)
where md is the total number of words in d and
Phg(x=l,m,M, f, F ) represents the probability
of a given word to appear l times exactly in d ac-
cording to the hypergeometric distribution parame-
terised with md, M , f , and F , which are defined
as below.

M =
∑
d∈D

md, f = tf(w|d), F =
∑
d∈D

tf(w|d) (3)

Note also that, unlike in tf-idf, for lexical speci-
ficity a perfect partition of documents of D (refer-
ence corpus) is not required. This also opens up to
other possibilities, such as using larger corpora as
reference, for example.

2.2 Graph-based Methods
The basic idea behind graph-based methods is to
identify the most relevant words from a graph con-
structed from a text document, where words are
nodes and their connections are measured in differ-
ent ways (Beliga et al., 2015). For this, PageRank
(Page et al., 1999) and its derivatives have proved
to be highly successful (Mihalcea and Tarau, 2004;
Wan and Xiao, 2008a; Florescu and Caragea, 2017;
Sterckx et al., 2015; Bougouin et al., 2013).

Formally, let G = (V, E) be a graph where V and
E are its associated set of vertices and edges. In a

typical word graph construction on a document d
(Mihalcea and Tarau, 2004), V is defined as the set
of all unique words in d and each edge ewi,wj ∈ E
represents a strength of the connection between two
words wi, wj ∈ V . Then, a Markov chain from wj

to wi on a word graph can be defined as

p(wi|wj) = (1− λ)
ewi,wj∑

wk∈Vi
ewi,wk

+ λpb(wi)

(4)
where Vi ⊂ V is a set of incoming nodes to wi,
pb(·) is a prior probabilistic distribution over V ,
and 0 ≤ λ ≤ 1 is a parameter to control the effect
of pb(·). This probabilistic model (4) is commonly
known as the random surfer model (Page et al.,
1999). The prior term pb(·), which is originally a
uniform distribution, is introduced to enable any
transitions even if there are no direct connections
among them. Once a word graph is built, PageRank
is applied to estimate a probability p̂(w) for every
word w ∈ V , which is used as an importance score.

TextRank (Mihalcea and Tarau, 2004) uses an
undirected graph and defines the edge weight as
ewi,wj = 1 if wi and wj co-occurred within l
contiguous sequence of words in d, otherwise
ewi,wj = 0. SingleRank (Wan and Xiao, 2008a)
extends TextRank by modifying the edge weight as
the number of co-occurrence of wi and wj within
the l-length sliding window and ExpandRank (Wan
and Xiao, 2008b) multiplies the weight by cosine
similarity of tf-idf vector within neighbouring doc-
uments. To reflect a statistical prior knowledge
to the estimation, recent works proposed to use
non-uniform distributions for pb(·). Florescu and
Caragea (2017) observed that keywords are likely
to occur very close to the first few sentences in a
document in academic paper and proposed Posi-
tionRank in which pb(·) is defined as the inverse of
the absolute position of each word in a document.
TopicalPageRank (TPR) (Jardine and Teufel, 2014;
Sterckx et al., 2015) introduces a topic distribution
inferred by Latent Dirichlet Allocation (LDA) as a
pb(·), so that the estimation contains more seman-
tic diversity across topics. TopicRank (Bougouin
et al., 2013) clusters the candidates before running
PageRank to group similar words together, and
MultipartiteRank (Boudin, 2018) extends it by em-
ploying a multipartite graph for a better candidate
selection within a cluster.

Finally, there are a few other works that directly
run graph clustering (Liu et al., 2009; Grineva et al.,
2009), using edges to connect clusters instead of
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Data Size Domain Type Divers. # NPs # tokens Vocab size # keyphrases
total multi-words

avg std avg std avg std avg std avg std

KPCrowd 500 - news 0.44 77 62.0 447 476.7 197 140.6 16.5 12.0 3.7 3.8
Inspec 2000 CS abstract 0.55 27 12.3 138 66.6 76 28.6 5.8 3.5 4.8 3.2

Krapivin2009 2304 CS article 0.12 815 252.1 9131 2524.4 1081 256.2 3.8 2.1 2.9 1.9
Nguyen2007 209 - article 0.15 618 113.9 5931 1023.1 909 142.4 7.2 4.3 4.8 3.2

PubMed 500 BM article 0.18 566 196.5 4461 1626.4 800 223.7 5.7 2.7 1.5 1.3
Schutz2008 1231 BM article 0.29 630 287.7 4201 2251.1 1217 468.4 28.5 10.3 10.1 4.9

SemEval2010 243 CS article 0.13 898 207.7 9740 2443.4 1218 209.1 11.6 3.3 8.8 3.3
SemEval2017 493 - paragraph 0.54 40 12.9 198 60.3 106 27.5 9.3 4.9 6.3 3.4
citeulike180 183 BI article 0.21 822 173.0 5521 978.8 1171 202.9 7.8 3.4 1.1 1.0

fao30 30 AG article 0.21 774 93.2 5438 927.5 1125 157.1 15.9 5.6 5.5 2.6
fao780 779 AG article 0.19 776 147.2 5591 902.4 1087 210.3 4.2 2.3 1.6 1.3

theses100 100 - article 0.21 728 131.3 5397 958.4 1134 192.3 2.4 1.5 0.8 0.8
kdd 755 CS abstract 0.59 16 17.0 82 93.0 48 45.7 0.7 0.9 0.6 0.8

wiki20 20 CS report 0.15 817 322.4 7146 3609.8 1088 295.4 12.8 3.2 6.7 2.7
www 1330 CS abstract 0.58 18 16.5 91 89.1 53.0 43.3 0.9 1.0 0.5 0.7

Table 1: Dataset statistics, where size refers to the number of documents; diversity refers to a measure of variety
of vocabulary computed as the number of unique words divided by the total number of words; number of noun
phrases (NPs) refers to candidate phrases extracted by our pipeline; number of tokens is the size of the dataset;
vocab size is the number of unique tokens, and number of keyphrase shows the statistics of gold keyphrases for
which we report the total number keyphrases, as well as the number of keyphrases composed by more than one
token (multi-tokens). In terms of statistics, we show the average (avg) and the standard deviation (std).

words, with semantic relatedness as a weight. Al-
though these techniques can capture high-level se-
mantics, the relatedness-based weights rely on ex-
ternal resources such as Wikipedia (Grineva et al.,
2009), and thus add another layer of complexity in
terms of generalization. For these reasons, they are
excluded from this study.

3 Experimental Setting

In this section, we explain our keyword extrac-
tion experimental setting. All our experiments are
run on a 16-core Ubuntu computer equipped with
3.8GHz i7 core and 64GiB memory.5

Datasets. To evaluate the keyword extraction
methods, we consider 15 different public datasets
in English.6 Each entry in a dataset consists of
a source document and a set of gold keyphrases,
where the source document is processed through
the pipeline described in Section 3 and the gold
keyphrase set is filtered to include only phrases

5All the details to reproduce our experiments are available
at https://github.com/asahi417/kex

6All the datasets were fetched from a public data reposi-
tory for keyword extraction data: https://github.com/
LIAAD/KeywordExtractor-Datasets: KPCrowd
(Marujo et al., 2013), Inspec (Hulth, 2003), Krapivin2009
(Krapivin et al., 2009), SemEval2017 (Augenstein et al.,
2017), kdd (Gollapalli and Caragea, 2014), www (Gollapalli
and Caragea, 2014), wiki20 (Medelyan and Witten, 2008),
PubMed (Schutz et al., 2008), Schutz2008 (Schutz et al.,
2008), citeulike180 (Medelyan et al., 2009), fao30 and fao780
(Medelyan and Witten, 2008), guyen2007 (Nguyen and Kan,
2007), and SemEval2010 (Kim et al., 2010).

which appear in its candidate set. Table 1 pro-
vides high-level statistics of each dataset, including
length and number of keyphrases7 (both average
and standard deviation).

Preprocessing. Before running keyword extrac-
tion on each dataset, we apply standard text pre-
processing operations. The documents are first tok-
enized into words by segtok8, a python library for
tokenization and sentence splitting. Then, each
word is stemmed to reduce it to its base form
for comparison purpose by Porter Stemmer from
NLTK (Bird et al., 2009), a widely used python li-
brary for text processing. Part-of-speech annotation
is carried out using NLTK tagger. To select a can-
didate phrase set Pd, following the literature (Wan
and Xiao, 2008b), we consider contiguous nouns in
the document d that form a noun phrase satisfying
the regular expression (ADJECTIVE)*(NOUN)+.9

We then filter the candidates with a stopword list
taken from the official YAKE implementation10

(Campos et al., 2020). Finally, for the statistical
methods and the graph-based methods based on
them (i.e., LexRank and TFIDFRank), we compute

7We use keyword and keyphrase almost indistinctly, as
some datasets contain keyphrases of more than a single token.

8https://pypi.org/project/segtok/
9While the vast majority of keywords in the considered

datasets follow this structure, there are a few cases of differ-
ent Part-of-Speech tags as keywords, or where this simple
formulation can miss a correct candidate. Nonetheless, our
experimental setting is focused on comparing keyword extrac-
tion measures, within the same preprocessing framework.

10https://github.com/LIAAD/yake

https://github.com/asahi417/kex
https://github.com/LIAAD/KeywordExtractor-Datasets
https://github.com/LIAAD/KeywordExtractor-Datasets
https://pypi.org/project/segtok/
https://github.com/LIAAD/yake
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Metric Dataset
Statistical Graph-based

FirstN TF Lex TFIDF Text Single Position Lex TFIDF Single Topic
Spec Rank Rank Rank Rank Rank TPR Rank

P@5

KPCrowd 35.8 25.3 39.0 39.0 30.6 30.5 31.8 32.0 32.1 26.9 37.0
Inspec 31.0 18.9 31.0 31.5 33.2 33.8 32.7 32.9 33.3 30.4 31.3
Krapivin2009 16.7 0.1 8.7 7.6 6.6 9.1 14.3 9.7 9.7 7.4 8.5
Nguyen2007 17.8 0.2 17.2 15.9 13.1 17.3 20.6 18.6 18.6 14.0 13.3
PubMed 9.8 3.6 7.5 6.7 10.1 10.6 10.1 8.9 8.8 9.3 7.8
Schutz2008 16.9 1.6 39.0 38.9 34.0 36.5 18.3 38.9 39.4 14.5 46.6
SemEval2010 15.1 1.5 14.7 12.9 13.4 17.4 23.2 16.8 16.6 12.8 16.5
SemEval2017 30.1 17.0 45.7 47.2 41.5 43.0 40.5 46.0 46.4 34.3 36.5
citeulike180 6.6 9.5 18.0 15.2 23.0 23.9 20.3 23.2 24.4 23.7 16.7
fao30 17.3 16.0 24.0 20.7 26.0 30.0 24.0 29.3 29.3 32.7 24.7
fao780 9.3 3.2 11.7 10.5 12.4 14.3 13.2 13.2 13.1 14.5 12.0
kdd 11.7 7.0 11.2 11.6 10.6 11.5 11.9 11.6 11.9 9.4 10.7
theses100 5.6 0.9 10.7 9.4 6.6 7.8 9.3 10.6 9.1 8.3 8.1
wiki20 13.0 13.0 17.0 21.0 13.0 19.0 14.0 22.0 23.0 19.0 16.0
www 12.2 8.1 11.9 12.2 10.6 11.2 12.6 11.6 11.7 10.2 11.2
AVG 16.6 8.4 20.5 20.0 19.0 21.1 19.8 21.7 21.8 17.8 19.8

MRR

KPCrowd 60.1 45.5 73.6 72.4 62.4 61.6 64.0 65.8 65.2 50.2 60.7
Inspec 57.3 33.0 52.4 52.8 51.4 52.4 57.1 53.3 53.7 50.5 57.8
Krapivin2009 36.1 1.3 22.9 21.0 18.1 22.2 31.4 23.6 23.8 19.1 21.8
Nguyen2007 43.0 2.8 38.1 41.2 30.8 34.6 43.2 36.4 37.9 29.8 33.7
PubMed 23.1 13.3 23.5 21.4 31.7 30.5 30.6 26.9 26.3 26.0 19.8
Schutz2008 24.6 8.6 76.6 76.7 68.9 70.9 38.5 75.5 76.3 33.7 67.3
SemEval2010 49.7 4.5 35.8 34.6 32.9 35.5 47.8 35.3 36.4 28.7 35.9
SemEval2017 52.0 32.7 68.6 68.7 61.4 63.5 62.4 67.3 67.2 54.3 63.7
citeulike180 20.9 23.6 55.5 47.7 58.2 62.6 51.0 63.0 65.7 62.5 40.3
fao30 31.1 38.3 61.8 49.1 60.2 70.0 48.6 66.1 67.0 74.6 50.6
fao780 17.0 8.5 39.0 35.9 36.1 38.6 35.9 39.5 38.9 38.4 31.6
kdd 26.1 13.0 27.0 27.8 24.5 26.5 28.1 27.9 28.8 18.3 26.2
theses100 15.1 3.1 32.5 31.6 23.2 26.3 24.9 31.6 31.1 26.1 26.9
wiki20 27.5 27.7 52.7 47.7 40.1 45.7 31.1 52.2 46.5 39.6 35.5
www 29.7 17.1 30.5 30.6 26.5 27.6 30.4 29.2 30.1 21.7 27.9
AVG 34.2 18.2 46.0 44.0 41.8 44.6 41.7 46.2 46.3 38.2 40.0

Table 2: Mean precision at top 5 (P@5) and mean reciprocal rank (MRR). The best score in each dataset is
highlighted using a bold font.

prior statistics including term frequency (tf), tf-idf,
and LDA by Gensim (Řehůřek and Sojka, 2010)
within each dataset.

Comparison Models. As statistical models, we
include keyword extraction methods based on tf,
tf-idf, and lexical specificity referred as TF, TFIDF,
and LexSpec11 respectively.12 Each model uses its
statistics as a score for the individual words and
then aggregates them to score the candidate phrases
(see Section 2.1). We also add a heuristic base-
line which takes the first n phrases as its prediction
(FirstN). As graph-based models, we compare five
distinct methods: TextRank (Mihalcea and Tarau,
2004), SingleRank (Wan and Xiao, 2008a), Posi-
tionRank (Florescu and Caragea, 2017), SingleTPR

11For lexical specificity, we follow the implementation of
Camacho-Collados et al. (2016).

12As mentioned in Section 2.1, we do not include YAKE
(Campos et al., 2020) as our experiments are focused on ana-
lyzing single features on their own in a unified setting. YAKE
utilizes a unified preprocessing and a combination of various
textual features, which are out of scope in this paper.

(Sterckx et al., 2015), and TopicRank (Bougouin
et al., 2013). Additionally, we propose two exten-
sions of SingleRank, which we call TFIDFRank
and LexRank, where a word distribution computed
by tf-idf or lexical specificity is used for pb(·).
As implementations of graph operations such as
PageRank and word graph construction, we use
NetworkX (Hagberg et al., 2008), a graph analyzer
in Python.

4 Results

In this section, we report our main experimental re-
sults comparing unsupervised keyword extraction
methods. Table 2 shows the results obtained by all
comparison systems.13 The algorithms in each met-
ric that achieve the best accuracy across datasets
are TFIDFRank for P@5, and LexSpec and TFIDF
for MRR. In the averaged metrics over all datasets,

13Results are reported according to standard metrics in key-
word extraction and IR: precision at 5 (P@5) and mean recip-
rocal rank (MRR). The appendix includes details about these
metrics and results for additional metrics.
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Prior Model Time Time Time
prior total per doc

tf
TF

10.2
11.5 0.0058

LexSpec 12.1 0.0061
LexRank 25.5 0.0128

tf-idf TFIDF 10.3 22.4 0.0112
TFIDFRank 26.5 0.0133

LDA SingleTPR 16.2 29.4 0.0147

-

FirstN

-

11.5 0.0058
TextRank 14.9 0.0075

SingleRank 15.0 0.0075
PositionRank 15.0 0.0075

TopicRank 19.0 0.0095

Table 3: Average clock time (sec.) to process the In-
spec dataset over 100 independent trials.

lexical specificity and tf-idf based models (TFIDF,
LexSpec, TFIDFRank, and LexRank) are shown
to perform high in general. In particular, the hy-
brid models LexRank and TFIDFRank achieve the
best accuracy on all the metrics, with LexSpec and
TFIDF being competitive in MRR. Overall, despite
their simplicity, both lexical specificity and tf-idf
appear to be able to exploit effective features for
keyword extraction from a variety of datasets, and
perform robustly to domain shifts including doc-
ument size, format, as well as the source domain.
Moreover, TF gives a remarkably low accuracy
on every metric and the huge gap between TF and
TFIDF can be interpreted as the improvement given
by the normalization provided by the inverse docu-
ment frequency. However, as we discuss in Section
6.1, this IDF normalization relies on a corpus parti-
tion, which may not be available in all cases. On the
other hand, a measure such as lexical specificity
only needs overall term frequencies, which may
have advantages in practical settings. In the follow-
ing sections we perform a more in-depth analysis
on these results and the global performance of each
type model.

Execution time. In terms of efficiency for each
algorithm, we report the average process time over
100 independent trials on the Inspec dataset in Ta-
ble 3, which also includes the time to compute each
statistical prior over the dataset. In general, none of
the models perform very slowly. Not surprisingly,
statistical models are faster than graph-based mod-
els due to the overhead introduced by the PageRank
algorithm, although as a drawback they need to per-
form prior statistical computations for each dataset
beforehand.

5 Analysis

Following the main results presented in the previ-
ous section, we perform an analysis on different
aspects of the evaluation. In particular, we focus
on the agreement among methods, overall perfor-
mance (Section 5.1), and the features related to
each dataset leading to each method’s performace
(Section 5.2).

5.1 Mean Precision Analysis

The objective of the following statistical analysis is
to compare the overall performance of the keyword
extraction methods in terms of their mean perfor-
mance (i.e., P@5 and MRR). For this analysis, all
117,447 documents are considered individually.

Table 4 illustrates the mean P@5 and MMR for
each key extraction method. Across all the metrics,
the best results are obtained by TFIDFRank. The
differences between the models are tested for sta-
tistical significance using paired Wilcoxon rank
sum tests.14 A method is said to dominate an-
other in terms of performance if it is non-worse
in all the metrics and strictly better in at least one
metric. Following this rule, it is possible to rank
the methods according to their dominance order
(i.e., the Pareto ranking): the top methods are those
that are non-dominated, followed by those that are
dominated only by methods of the first group, et
cetera. The resulting ranking, which only considers
statistically significant differences, is presented in
the following: (1) TFIDFRank; (2) LexRank and
LexSpec; (3) SingleRank and TFIDF; (4) Position-
Rank and TopicRank; (5) TextRank; (6) FirstN; (7)
SingleTPR; (8) TF.

As can be observed in this ranking and in the
results of Table 4, the best method is TFIDFRank,
which dominates all the others. LexSpec slightly
but consistently outperforms TFIDF, which is an in-
teresting result on its own given the predominance
in the use of TFIDF in the literature and in practical
applications. We extend the discussion about the
comparison of LexSpec and TFIDF in Section 6.1.

5.2 Regression Analysis

The objective of this analysis is to understand what
are a dataset’s characteristics that make one method
better than another at extracting keywords. For
this purpose, a regression model is built for every

14For the sake of space, the full statistical significance anal-
yses are presented in the appendix. However, these are also
commented in our discussion (Section 6).
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Method P@5 MRR

Statistical

FirstN 18.8 37.1
TF 7.9 16.1
LexSpec 20.8 42.9
TFIDF 20.5 42.2

Graph-based

TextRank 19.5 39.2
SingleRank 21.0 41.2
PositionRank 20.0 40.9
LexRank 21.4 42.9
TFIDFRank 21.6 43.3
SingleTPR 16.4 33.2
TopicRank 21.0 40.3

Table 4: Key extraction methods’ mean P@5 and MRR.
Each column is independently colour-coded according
to a gradient that goes from green (best/highest value)
to red (worst/lowest value).

performance metric (P@5 and MRR) and pair of
key extraction methods (m1 and m2). Formally,
each observation is a pair in the Cartesian prod-
uct (dataset ×method) in the regression models.
The following independent variables are consid-
ered: avg_word and sd_word (i.e., average and
standard deviation of the number of tokens in
the dataset, representing the length of the docu-
ments); avg_vocab and sd_vocab (i.e., average
and standard deviation of the number of unique
tokens in the dataset, representing the lexical rich-
ness of the documents); avg_phrase and sd_phrase
(i.e., average and standard deviation of the num-
ber of noun phrases in the dataset, representing
the number of candidate keywords in the docu-
ments); avg_keyword and sd_keyword (i.e., aver-
age and standard deviation of the number of gold
keyphrases associated to the dataset).15 The re-
gression models estimate the dependent variable
as ∆avg_score = avg_scorem1 − avg_scorem2,
where avg_scorem1 and avg_scorem2 are the aver-
age performance metrics obtained by the methods
m1 and m2 on the dataset’s documents, respec-
tively. Feature selection is carried out by forward
stepwise-selection using BIC penalization to re-

15It can be noticed that not all the variables from Table 1
have been included in the regression analysis. The reasons
for that are detailed in the following. The variable size repre-
sents the number of documents in the dataset. As this is not
a characteristic of the documents comprising the dataset, it
has been disregarded (note that the size of each document is
indeed included in the analysis, i.e., ‘avg_word’). Variables
domain and type are too sparse to be relevant. Finally, the
variable diversity is computed as avg_vocab

avg_word
. Since both terms

are already included in the regression model, adding diver-
sity would result in an interdependence among the variables,
consequently decreasing the interpretability of the results.

move non-significant variables. Each model con-
siders 15 observations and, overall, 110 regression
models are fitted.

Given a regression model, its adjusted coefficient
of determination (adjR2) is used as a measure of
its goodness of fit. In fact, an adjR2 > 0.50 indi-
cates that the independent variables explain most
of the differences in performance between the mod-
els. The distribution of the adjR2 obtained by the
regression models shows overall good explanatory
capabilities: the 0%, 25%, 50%, 75%, and 100%
quantiles are 0, 0.6479, 0.7760, 0.8729, and 0.9776,
respectively. Thus, ∼75% of the models have an
adjR2 > 0.65, and ∼50% have adjR2 > 0.78,
suggesting that, in general, the considered dataset’s
characteristics explain satisfactorily the differences
in the results obtained by the key extraction meth-
ods. Therefore, the variables can be used to deter-
mine what method is more performant for a given
dataset. In the rest of the paper, only the mod-
els having an adjR2 > 0.50 and their statistically
significant variables (i.e., p-value < 0.05) are con-
sidered for interpretation.16

The coefficients of the regression models can
be used to understand under what circumstances
each model is preferable. In fact, a positive coeffi-
cient identifies a variable that positively correlates
with a greater precision for m1, while a negative
coefficient corresponds to a variable that positively
correlates with a greater precision for m2. Table 5
illustrates the significant variables for a selection
of regression models. These are used in the fol-
lowing section to draw insights on the methods’
preferences in terms of dataset features.

6 Discussion

In this section, we provide a focused comparison
among the different types of model, highlighting
their main differences, advantages and disadvan-
tages. First, we discuss the two main statistical
methods analyzed in this paper, namely LexSpec
and TFIDF (Section 6.1). Then, we analyze graph-
ical methods, and in particular SingleRank and
TopicRank (Section 6.2). Finally, we provide an
overview of the main differences between statisti-
cal and graph-based methods (Section 6.3).

16More details about individual regression analyses and the
significance of their variables are available in the appendix.
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m1 metric statistically significant variables metric m2

LexSpec
P@5 avg_word (***), sd_vocab (*) sd_word (***) P@5

TFIDF
MRR avg_phrase (**) avg_keyword (*) avg_word (**), avg_vocab (**) MRR

SingleRank
P@5 avg_phrase (**), sd_phrase (**), avg_keyword (**) sd_word (**), sd_vocab (***), sd_keyword (*) P@5

TopicRank
MRR avg_phrase (***), avg_keyword (*) avg_word (***), avg_vocab (**) MRR

LexSpec P@5 sd_word (*), avg_vocab (**), sd_keyword (**) avg_phrase (**), avg_keyword (**) P@5 SingleRank

SingleRank
P@5 avg_phrase (*), avg_keyword (*) sd_word (*), avg_vocab (*), sd_keyword (*) P@5

TFIDF
MRR avg_phrase (*), avg_keyword (*) sd_word (*), avg_vocab (*), sd_keyword (*) MRR

Table 5: Significant variables in the regression models comparing key-extraction methods’ performance. Columns
m1 and m2 report the compared methods; columns‘metric’ shows the performance metric considered; the central
columns illustrate the statistically significant variables that positively affect the performance of each model. The
significance of the variables is indicated between parenthesis, according to the following scale: 0 ‘***’ 0.001 ‘**’
0.01 ‘*’ 0.05. Only models having adjR2 > 0.5 are included, as those are the variables that explain most of the
differences in performance between the incumbent models.

6.1 LexSpec vs. TFIDF

According to Table 4, LexSpec and TFIDF have
similar average performance, although LexSpec
obtains slightly better scores in both metrics. These
differences are also statistically significant. As for
the Pareto ranking, LexSpec ranks second, while
TFIDF ranks third. Therefore, the former should
be preferred over the latter performance-wise.

However, TFIDF still performs better than
LexSpec in certain datasets (see Table 2). Accord-
ing to Table 5, the choice of the key-extraction
method strongly depends on the metric used. For
P@5, TFIDF performs better in datasets hav-
ing a higher variability in the number of words
(sd_word), while LexSpec prefers datasets with
longer documents (avg_word) and more variability
in terms of lexical richness (sd_vocab). For MRR,
LexSpec exhibits a very different behaviour, per-
forming significantly better in datasets with high
average number of noun phrases (avg_phrase) and
high variability in the number of gold keywords
(sd_keyword). On the other hand, TFIDF prefers
datasets with longer and lexically richer documents
(avg_word and avg_vocab).

Broadly speaking, LexSpec and TFIDF have
qualitative differences. Being based on the hyper-
geometric distribution, LexSpec has a statistical
nature and probabilities can be directly inferred
from it. While TFIDF can also be integrated within
a probabilistic framework (Joachims, 1996) or in-
terpreted from an information-theoretic perspective
(Aizawa, 2003), it is essentially heuristics-based.
In practical terms, LexSpec has the advantage of
not requiring a partition into documents unlike the
traditional formulation of TFIDF. Moreover, given
its statistical nature, LexSpec has been shown to be
more robust to different document sizes (Camacho-
Collados et al., 2015), as we could also empirically

corroborate in the variable correlation analysis in
the appendix. On the flip side, TFIDF is generally
found to be relatively simple to tune for specific
settings (Cui et al., 2014).

6.2 SingleRank vs. TopicRank
In this analysis we compare two qualitatively dif-
ferent graph-based methods, namely Single Rank
(a representative of vanilla graph-based methods)
and TopicRank, which leverages topic models. The
two methods have similar performances in term of
P@5; however, SingleRank achieves a much better
average MRR score, as illustrated in Table 4. The
latter is also statistically significant. For this rea-
son, SingleRank completely dominates TopicRank.
This is also reflected in the Pareto ranking, where
the former ranks third and the latter fourth. There-
fore, in general, SingleRank should be preferred.

The insights drawn from the regression models
are summarised in the following. Table 5 shows
that the performance of TopicRank depends on
the metric used. On the other hand, SingleRank
has a more stable set of preferences. However,
it is still possible to identify a pattern. In fact,
TopicRank is positively influenced by the num-
ber of words and the lexical richness of the doc-
uments in a dataset (sd_word and sd_vocab for
P@5, and avg_word and avg_vocab for MRR),
while SingleRank is affected by the number of noun
phrases and keyphrases associated to the docu-
ments (avg_phrase, sd_phrase, and avg_keyword).

6.3 Statistical vs. Graph-based
When comparing SingleRank versus TFIDF and
LexSpec in terms of average performance (see Ta-
ble 4), it can be seen that SingleRank performs
better in terms of average P@5 (albeit only the
difference with TFIDF is statistically significant);
however, it performs worse than both the statistical
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methods in terms of average MRR (albeit no differ-
ence is statistically significant). Still, SingleRank
ranks third (as TFIDF), because it is dominated by
LexRank (all differences statistically significant).
As LexSpec ranks second, it is recommendable
to use this method instead of the other two. On
the other hand, this is not a definitive argument
in favour of using only statistical methods. In
general, statistical methods tend to dominate in
MRR over vanilla graph-based techniques. How-
ever, the method that achieves the highest scores
across all the documents is TFIDFRank, which
is graph-based in nature but initialized with TF-
IDF. Results suggest that while statistical meth-
ods can be reliably used to extract relevant terms
when precision is required (reminder that MRR
rewards systems extracting the first correct candi-
date in top ranks), graphical methods can extract a
more coherent set of keywords overall thanks to its
graph-connectivity measures. This finding should
be investigated more in detail in future research.

In terms of dataset features, Table 5 shows that
the behaviour of SingleRank is very stable. In fact,
across all metrics, SingleRank performs better for
datasets with a high average of noun phrases and
keyphrases (avg_phrase and avg_keyword). On the
other hand, the statistical methods (i.e. TFIDF and
LexSpec) achieve better performances on datasets
with a high standard deviation for the number of
words and keyphrases, and a high average num-
ber of unique tokens (sd_word, sd_keyword, and
avg_vocab). In conclusion, SingleRank performs
better in datasets having a high number of candi-
date and gold keyphrases, while its performance is
hindered in datasets having more lexical richness.

Efficiency and running time. Statistical meth-
ods are shown to be faster overall in terms of
computation time in our experiments (see Table
3). However, all methods are overall efficient in
practical settings, and this factor should not be of
especial relevant unless computations need to be
done on the fly or on a very large scale. As an ad-
vantage of graphical models, these do not require a
prior computation over the whole dataset. There-
fore, graph-based models could potentially reduce
the gap in overall execution time in online learning
settings, where new documents are added after the
initial computations.

7 Conclusion

In this paper, we have presented a large-scale em-
pirical comparison of unsupervised keyword ex-
traction techniques. Our study was focused on two
types of keyword extraction methods, namely sta-
tistical relying on frequency-based features, and
graph-based exploiting the inter-connectivity of
words in a corpus. Our analysis on fifteen diverse
keyword extraction datasets revealed various in-
sights with respect to each type of method.

In addition to well-known term weighting
schemes such as tf-idf, our comparison includes sta-
tistical methods such as lexical specificity, which
shows better performance than tf-idf while being
significantly less used in the literature. We have
also explored various types of graph-based meth-
ods based on PageRank and on topic models, with
varying conclusions with respect to performance
and execution time. Our extensive evaluation and
analysis can serve as a reference for future research
to understand in detail the advantages and disadvan-
tages of each approach in different settings, both
qualitatively and quantitatively.

As future work, we plan to extend this analy-
sis to fathom the extent and characteristics of the
interactions of different methods and their comple-
mentarity. Moreover, we will extend this empirical
comparison to other settings where the methods
are used as weighting schemes for NLP and IR
applications, and for languages other than English.
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Ipšić. 2015. An overview of graph-based keyword
extraction methods and approaches. Journal of in-
formation and organizational sciences, 39(1):1–20.

Mokhtar-Boumeyden Billami, José Camacho-
Collados, Evelyne Jacquey, and Laurence Kister.
2014. Annotation sémantique et validation termi-
nologique en texte intégral en SHS. In Proceedings
of TALN, pages 363–376.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. " O’Reilly
Media, Inc.".

Florian Boudin. 2018. Unsupervised keyphrase extrac-
tion with multipartite graphs. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 667–672, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. Topicrank: Graph-based topic ranking for
keyphrase extraction. In International joint con-
ference on natural language processing (IJCNLP),
pages 543–551.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli, and
Horacio Saggion. 2018. SemEval-2018 task 9: Hy-
pernym discovery. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
712–724, New Orleans, Louisiana. Association for
Computational Linguistics.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. NASARI: a novel ap-
proach to a semantically-aware representation of
items. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 567–577, Denver, Colorado. Association
for Computational Linguistics.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2016. Nasari: Integrating ex-
plicit knowledge and corpus statistics for a multilin-
gual representation of concepts and entities. Artifi-
cial Intelligence, 240:36–64.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alipio Jorge, Célia Nunes, and Adam Jatowt. 2020.
Yake! keyword extraction from single documents
using multiple local features. Information Sciences,
509:257–289.

Jia Cui, Jonathan Mamou, Brian Kingsbury, and Bhu-
vana Ramabhadran. 2014. Automatic keyword se-
lection for keyword search development and tuning.

In 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
7839–7843. IEEE.

Patrick Drouin. 2003. Term extraction using non-
technical corpora as a point of leverage. Terminol-
ogy, 9(1):99–115.

Samhaa R El-Beltagy and Ahmed Rafea. 2009. Kp-
miner: A keyphrase extraction system for en-
glish and arabic documents. Information systems,
34(1):132–144.

Corina Florescu and Cornelia Caragea. 2017. Position-
rank: An unsupervised approach to keyphrase ex-
traction from scholarly documents. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1105–1115.

Sujatha Das Gollapalli and Cornelia Caragea. 2014.
Extracting keyphrases from research papers using ci-
tation networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 28.

Maria Grineva, Maxim Grinev, and Dmitry Lizorkin.
2009. Extracting key terms from noisy and multi-
theme documents. In Proceedings of the 18th inter-
national conference on World wide web, pages 661–
670.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pa-
supat, and Mingwei Chang. 2020. Retrieval aug-
mented language model pre-training. In Inter-
national Conference on Machine Learning, pages
3929–3938. PMLR.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
2008. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the
7th Python in Science Conference, pages 11 – 15,
Pasadena, CA USA.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 Conference on Empirical Meth-
ods in Natural Language Processing, pages 216–
223.

Siham Jabri, Azzeddine Dahbi, Taoufiq Gadi, and Ab-
delhak Bassir. 2018. Ranking of text documents us-
ing tf-idf weighting and association rules mining. In
2018 4th International Conference on Optimization
and Applications (ICOA), pages 1–6. IEEE.

James Jardine and Simone Teufel. 2014. Topical pager-
ank: A model of scientific expertise for biblio-
graphic search. In Proceedings of the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 501–510.

Thorsten Joachims. 1996. A probabilistic analysis of
the rocchio algorithm with tfidf for text categoriza-
tion. Technical report, Carnegie-mellon univ pitts-
burgh pa dept of computer science.

https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/S18-1115
https://doi.org/10.18653/v1/S18-1115
https://doi.org/10.3115/v1/N15-1059
https://doi.org/10.3115/v1/N15-1059
https://doi.org/10.3115/v1/N15-1059
https://www.aclweb.org/anthology/W03-1028
https://www.aclweb.org/anthology/W03-1028


8099

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 task 5 : Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26, Uppsala, Swe-
den. Association for Computational Linguistics.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases ex-
traction.

Pierre Lafon. 1980. Sur la variabilité de la fréquence
des formes dans un corpus. Mots. Les langages du
politique, 1(1):127–165.

Shibamouli Lahiri, Rada Mihalcea, and Po-Hsiang Lai.
2017. Keyword extraction from emails. Nat. Lang.
Eng., 23(2):295–317.

Ludovic Lebart, A Salem, and Lisette Berry. 1998. Ex-
ploring textual data. Kluwer Academic Publishers.

Fei Liu, Feifan Liu, and Yang Liu. 2010. A supervised
framework for keyword extraction from meeting
transcripts. IEEE Transactions on Audio, Speech,
and Language Processing, 19(3):538–548.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong
Sun. 2009. Clustering to find exemplar terms for
keyphrase extraction. In Proceedings of the 2009
conference on empirical methods in natural lan-
guage processing, pages 257–266.

Samuel Marcos-Pablos and Francisco J García-
Peñalvo. 2020. Information retrieval methodology
for aiding scientific database search. Soft Comput-
ing, 24(8):5551–5560.

Luis Marujo, Márcio Viveiros, and João Paulo da Silva
Neto. 2013. Keyphrase cloud generation of broad-
cast news. arXiv preprint arXiv:1306.4606.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1318–1327, Singapore. As-
sociation for Computational Linguistics.

Olena Medelyan and Ian H Witten. 2008. Domain-
independent automatic keyphrase indexing with
small training sets. Journal of the American
Society for Information Science and Technology,
59(7):1026–1040.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
International conference on Asian digital libraries,
pages 317–326. Springer.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation rank-
ing: Bringing order to the web. Technical report,
Stanford InfoLab.

Jiaul H Paik. 2013. A novel tf-idf weighting scheme
for effective ranking. In Proceedings of the 36th in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 343–
352.

Juan Ramos et al. 2003. Using tf-idf to determine word
relevance in document queries. In Proceedings of
the first instructional conference on machine learn-
ing, volume 242, pages 29–48. Citeseer.
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A Graph-based Models Formula

Supposing that we have computed tf-idf for a given
dataset D, the prior distribution for TFIDFRank is
defined as

pb(w) =
stfidf(w|d)∑

w̃∈V stfidf(w̃|d)
(5)

for w ∈ V . Likewise, LexRank relies on the pre-
computed lexical specificity prior (see Section 2.1.2
of the main paper), which defines the prior distri-
bution for d as

pb(w) =
sspec(w)∑

w̃∈V sspec(w̃)
. (6)

All remaining specifications follow SingleRank’s
graph construction procedure.

B Evaluation Metrics

To evaluate the keyword extraction models, we em-
ploy standard metrics in the literature in keyword
extraction and information retrieval: precision at
k (P@k) and mean reciprocal rank (MRR). In gen-
eral, precision at k is computed as

P@k =

|D|∑
d=1

|yd ∩ ŷkd |
min{|yd|, k}

(7)

where yd is the set of gold keyphrases provided
with a document d in the dataset D and ŷkd is a set
of estimated top-k keyphrases from a model for
the document. The minimum operation between
the number of gold keyphrases and gold labels in
the denominator of Eq. 7 is included as to pro-
vide a measure between 0 and 1, given the varying
number of gold labels. This formulation follows
previous retrieval tasks with similar settings such
as SemEval 2018 (Camacho-Collados et al., 2018).

MRR measures the ranking quality given by a
model as follows:

MRR =
1

|D|

|D|∑
d=1

1

min
{
k
∣∣ |ŷkd ∩ yd| ≥ 1

} (8)

In this case, MRR takes into account the position
of the first correct keyword from the ranked list of
predictions.

C Additional Results (P@10)

In addition to the metrics used in the main paper
(i.e., P@5 and MRR), in Table 6 we show the main
results for precision at 10 (P@10).

D Agreement Analysis

For a visualization purpose, we compute agreement
scores over all possible pairs of models as the per-
centage of predicted keywords the two models have
in common in the top-5 prediction, as displayed in
Table 7. Interestingly, the most similar models in
terms of the agreement score are TFIDFRank and
LexRank. Not surprisingly, TFIDF and LexSpec
also hold a very high similarity that implies those
two statistical measures capture quite close features.
However, they also have a few marked differences.
Moreover, we can see that graph-based models pro-
vide fairly high agreement scores, except for Top-
icRank, which can be due to the difference in the
word graph construction procedure. In fact, Topi-
cRank unifies similar word before building a word
graph and that results in such a distinct behaviour
among graph-based models. In the discussion sec-
tion, we investigate the relation among each model
in more detail.

E Correlation Analysis

Tables 8 and 9 illustrate the correlation between
algorithms and regression variables for P@5 and
MMR, respectively. The results of this analysis can
be interpreted in the following way: a model with

https://doi.org/10.18653/v1/D19-1521
https://doi.org/10.18653/v1/D19-1521
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Metric Dataset
Statistical Graph-based

FirstN TF Lex TFIDF Text Single Position Lex TFIDF Single Topic
Spec Rank Rank Rank Rank Rank TPR Rank

P@10

KPCrowd 33.1 23.7 31.8 32.0 24.6 25.0 26.9 26.8 27.0 23.5 32.6
Inspec 27.4 21.0 29.7 30.3 32.4 32.6 31.6 31.9 32.3 29.1 26.1
Krapivin2009 16.0 0.1 8.4 7.1 6.5 9.0 13.6 9.4 9.3 7.3 8.1
Nguyen2007 15.0 0.5 13.4 12.3 11.5 13.8 16.9 15.2 15.0 11.9 12.4
PubMed 8.1 3.5 5.2 4.9 7.2 7.4 7.6 6.2 6.0 6.6 6.9
Schutz2008 14.4 4.2 28.3 28.0 25.5 27.3 17.2 28.4 28.8 13.2 41.1
SemEval2010 12.0 0.9 11.0 10.5 11.0 13.8 17.3 13.0 13.5 10.9 14.4
SemEval2017 28.3 20.2 40.7 41.5 39.1 39.6 38.2 41.0 41.3 34.0 29.9
citeulike180 5.6 7.7 11.8 10.4 14.4 15.9 14.8 14.8 15.8 15.7 12.2
fao30 15.3 12.7 15.3 13.7 20.3 22.3 19.0 20.3 21.0 23.7 18.0
fao780 7.5 3.2 9.3 8.1 10.2 11.4 11.1 10.8 10.7 11.8 9.9
kdd 11.2 6.7 10.9 11.4 10.2 11.0 11.5 11.2 11.5 9.0 10.4
theses100 4.6 0.7 8.8 7.3 5.5 6.7 8.5 9.3 8.0 7.1 6.5
wiki20 13.0 9.5 12.0 12.0 12.0 15.0 12.5 14.0 15.0 16.5 16.0
www 11.3 7.5 11.1 11.4 9.9 10.5 11.8 10.9 10.9 9.6 10.3
AVG 14.9 8.1 16.5 16.1 16.0 17.4 17.2 17.5 17.7 15.3 17.0

Table 6: Mean precision at top 10 (P@10). The best score in each dataset is highlighted using a bold font.
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FirstN

TF

LexSpec

TFIDF

TextRank

SingleRank

PositionRank

LexRank

TFIDFRank

SingleTPR

TopicRank

100 12 18 17 16 17 29 17 17 15 29

12 100 8 8 17 16 13 11 12 31 15

18 8 100 77 40 46 37 64 63 34 31

17 8 77 100 34 38 32 53 56 28 29

16 17 40 34 100 76 40 55 56 57 25

17 16 46 38 76 100 48 69 69 66 26

29 13 37 32 40 48 100 48 47 41 23

17 11 64 53 55 69 48 100 90 51 28

17 12 63 56 56 69 47 90 100 50 28

16 31 34 28 57 66 41 51 50 100 23

29 15 31 29 25 26 23 28 27 23 100
20

40

60

80

100

Table 7: Overall pairwise agreement scores for the top
5 predictions.
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FirstN

TF

LexSpec

TFIDF

TextRank

SingleRank

PositionRank

LexRank

TFIDFRank

SingleTPR

TopicRank

-0.48 -0.3 -0.56 -0.34 -0.58 -0.41 0.34 0.62

-0.6 -0.39 -0.57 -0.45 -0.55 -0.48 0.21 0.45

-0.47 -0.25 -0.32 -0.04 -0.42 -0.24 0.66 0.78

-0.5 -0.21 -0.37 -0.05 -0.46 -0.22 0.63 0.74

-0.48 -0.32 -0.31 -0.1 -0.4 -0.28 0.6 0.68

-0.38 -0.21 -0.22 -0.03 -0.31 -0.2 0.66 0.69

-0.37 -0.36 -0.4 -0.38 -0.42 -0.43 0.34 0.52

-0.38 -0.17 -0.22 -0.01 -0.31 -0.17 0.67 0.7

-0.38 -0.16 -0.22 -0 -0.31 -0.16 0.67 0.69

-0.37 -0.33 -0.27 -0.32 -0.28 -0.37 0.37 0.46

-0.4 -0.13 -0.21 0.14 -0.33 -0.1 0.79 0.84
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Table 8: Correlations between algorithms and regres-
sion variables for metric P@5.

a correlation close to zero can be said to be more
robust towards the corresponding variable (i.e., less
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FirstN

TF

LexSpec

TFIDF

TextRank

SingleRank

PositionRank

LexRank

TFIDFRank

SingleTPR

TopicRank

-0.28 -0.22 -0.5 -0.42 -0.47 -0.38 0.18 0.42

-0.53 -0.33 -0.46 -0.36 -0.45 -0.4 0.3 0.47

-0.29 -0.07 -0.05 0.18 -0.15 -0.02 0.8 0.83

-0.36 -0.11 -0.15 0.15 -0.26 -0.07 0.77 0.84

-0.3 -0.14 -0.04 0.15 -0.14 -0.06 0.76 0.78

-0.22 -0.09 0.04 0.17 -0.05 -0.02 0.77 0.74

-0.31 -0.35 -0.3 -0.31 -0.31 -0.38 0.38 0.6

-0.24 -0.06 0.02 0.2 -0.08 0.01 0.78 0.76

-0.25 -0.11 0.02 0.18 -0.09 -0.03 0.77 0.76

-0.14 -0.22 0.04 -0.12 0.03 -0.19 0.4 0.42

-0.4 -0.21 -0.21 0.04 -0.32 -0.18 0.73 0.79
0.4

0.2

0.0

0.2

0.4

0.6

0.8

Table 9: Correlations between algorithms and regres-
sion variables for metric MRR.

affected by changes in the variable’s value) than
another model with a higher absolute correlation.
Overall, the scores of all the algorithms are higher
for datasets with a high average number of gold
keyphrases, while they are lower for datasets with
a higher average number of tokens, unique tokens
(thus, lexical richness), and candidate keywords.
The standard deviations follow the same behavior
as the averages.

F Statistical Significance

The performances of the algorithms on both P@5
and MRR have been tested to verify if they are
statistically significant. As the data is not normally
distributed (p − values ∼ 0 in Anderson-Darling
normality tests), paired Wilcoxon rank sum tests
have been used. The results are illustrated in Table
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10.

G Regression Models

This section provides additional information re-
garding the regression models. In the following
Tables 11 - 17, the regression models for the com-
parisons considered in Section “Discussion” are
presented. For each variable, the tables show the
estimated coefficient value, the standard error, the
t-value, and the p-value. The last column identifies
the significance of the coefficient, according to the
following scale: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1. The adjusted coefficient of determination
(adjR2) is provided in the caption. Note that only
the models having adjR2 > 0.5 are reported.
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FirstN LexSpec TF TFIDF TFIDFRank TextRank SingleRank PositionRank LexRank SingleTPR TopicRank
FirstN - 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00

LexSpec 0.00 - 0.00 0.00 0.00 0.00 0.24 0.03 0.00 0.00 0.61
TF 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TFIDF 0.00 0.00 0.00 - 0.00 0.00 0.00 0.69 0.00 0.00 0.02
TFIDFRank 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.07 0.00 0.00

TextRank 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00
SingleRank 0.00 0.27 0.00 0.40 0.00 0.00 - 0.00 0.00 0.00 0.37

PositionRank 0.00 0.10 0.00 0.98 0.00 0.00 0.10 - 0.00 0.00 0.06
LexRank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.01

SingleTPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00
TopicRank 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.08 0.00 0.00 -

Table 10: P-values of paired Wilcoxon rank sum tests on the P@5 score (upper triangular matrix) and MMR (lower
triangular matrix) obtained by the algorithms on all the documents considered. A value below 0.05 indicates that
the difference between the algorithms is statistically significant.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.7718 0.4430 -1.7424 0.1093
avg_word 0.0007 0.0001 6.2946 0.0001 ***
sd_word -0.0029 0.0005 -6.2922 0.0001 ***
sd_vocab 0.0093 0.0032 2.8805 0.0150 *

Table 11: LexSpec VS TFIDF; metric: P@5; adjR2 =
0.76.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.9170 1.2298 -0.7457 0.4730
avg_word -0.0027 0.0007 -3.9583 0.0027 **
avg_vocab -0.0383 0.0106 -3.6158 0.0047 **
avg_phrase 0.0800 0.0179 4.4689 0.0012 **
avg_keyword 0.3064 0.1213 2.5251 0.0301 *

Table 12: LexSpec VS TFIDF; metric: MRR; adjR2 =
0.64.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5423 1.0236 4.4377 0.0022 **
sd_word -0.0096 0.0021 -4.4760 0.0021 **
sd_vocab -0.1277 0.0187 -6.8144 0.0001 ***
avg_phrase 0.0072 0.0021 3.4006 0.0094 **
sd_phrase 0.1810 0.0375 4.8281 0.0013 **
avg_keyword 0.6920 0.1726 4.0101 0.0039 **
sd_keyword -0.9239 0.3274 -2.8218 0.0224 *

Table 13: SingleRank VS TopicRank; metric: P@5;
adjR2 = 0.88.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.8764 2.0988 -0.8940 0.3923
avg_word -0.0061 0.0012 -5.2350 0.0004 ***
avg_vocab -0.0638 0.0181 -3.5287 0.0055 **
avg_phrase 0.1503 0.0306 4.9186 0.0006 ***
avg_keyword 0.4663 0.2071 2.2518 0.0480 *

Table 14: SingleRank VS TopicRank; metric: MRR;
adjR2 = 0.74.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.9469 1.1930 -1.6320 0.1413
sd_word 0.0073 0.0023 3.1395 0.0138 *
avg_vocab 0.0397 0.0107 3.6991 0.0061 **
avg_phrase -0.0575 0.0141 -4.0726 0.0036 **
sd_phrase -0.0518 0.0253 -2.0479 0.0748
avg_keyword -1.0153 0.2214 -4.5867 0.0018 **
sd_keyword 1.9318 0.3985 4.8471 0.0013 **

Table 15: LexSpec VS SingleRank; metric: P@5;
adjR2 = 0.76.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9891 1.7134 0.5773 0.5796
sd_word -0.0088 0.0034 -2.6226 0.0305 *
avg_vocab -0.0388 0.0154 -2.5141 0.0361 *
avg_phrase 0.0628 0.0203 3.0966 0.0147 *
sd_phrase 0.0476 0.0363 1.3103 0.2265
avg_keyword 0.9859 0.3179 3.1009 0.0146 *
sd_keyword -1.7774 0.5724 -3.1051 0.0146 *

Table 16: SingleRank VS TFIDF; metric: P@5;
adjR2 = 0.68.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1791 3.6510 0.0491 0.9621
sd_word -0.0164 0.0049 -3.3190 0.0106 *
avg_vocab -0.1326 0.0462 -2.8690 0.0209 *
sd_vocab 0.1004 0.0544 1.8446 0.1023
avg_phrase 0.1921 0.0600 3.2029 0.0126 *
avg_keyword 2.1376 0.6667 3.2062 0.0125 *
sd_keyword -3.4630 1.2615 -2.7451 0.0253 *

Table 17: SingleRank VS TFIDF; metric: MRR;
adjR2 = 0.56.


