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Abstract

Neural language models have contributed to
state-of-the-art results in a number of down-
stream applications including sentiment anal-
ysis, intent classification and others. However,
obtaining text representations or embeddings
using these models risks encoding personally
identifiable information learned from language
and context cues that may lead to privacy leaks.
To ameliorate this issue, we propose Context-
Aware Private Embeddings (CAPE), a novel
approach which combines differential privacy
and adversarial learning to preserve privacy
during training of embeddings. Specifically,
CAPE firstly applies calibrated noise through
differential privacy to maintain the privacy of
text representations by preserving the encoded
semantic links while obscuring sensitive infor-
mation. Next, CAPE employs an adversarial
training regime that obscures identified private
variables. Experimental results demonstrate
that our proposed approach is more effective
in reducing private information leakage than
either single intervention, with approximately
a 3% reduction in attacker performance com-
pared to the best-performing current method.

1 Introduction

Deep learning has provided remarkable advances
in language understanding and modelling tasks in
recent years (Vaswani et al., 2017; Devlin et al.,
2019; Brown et al., 2020). However, this increased
utility may harm user privacy, as neural models
trained with datasets containing personal identifi-
able information can unintentionally leak informa-
tion that users may prefer to keep private (Carlini
et al., 2019; Song et al., 2017). Even seemingly
innocuous collections of metadata (Xu et al., 2008)
such as data provided by the users (e.g. at regis-
tration time on social media) or data which has
been cleansed of identifying attributes (Sun et al.,
2012), can provide latent information for the re-
identification of participants.
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Using social media data can also raise ethi-
cal considerations (Townsend and Wallace, 2016).
Users may have edited or deleted posts that mod-
els continue to rely on in existing datasets, and
may unintentionally reveal information they would
rather keep private (Bartunov et al., 2012; Pontes
etal.,2012; Goga et al., 2013). Research has shown
practical attacks that exploit trained models to es-
tablish whether a particular individual formed part
of a model’s training dataset, in an attack known
as membership inference (Leino and Fredrikson,
2020; Truex et al., 2019). Personally identifiable
attributes such as age, gender, or location can be
reliably reconstructed given the output of such a
model (Fredrikson et al., 2015; Zhang et al., 2020).
Neural representations of input data, including lan-
guage embeddings, have proven to be a vulnera-
bility for these inferences (Song and Raghunathan,
2020), thus privacy-preserving techniques should
be applied to these text representations when they
form part of a machine learning pipeline.

To minimise the risk of such attacks in uncover-
ing sensitive information, previous work has em-
ployed an adversarial training objective (Coavoux
et al., 2018; Li et al., 2018) by modifying the loss
function of the model to impose a penalty when a
simulated attacker task, such as predicting a private
variable from the input sequence, performs well.
However, this approach provides no formal pri-
vacy guarantees nor privacy loss accounting system.
Phan et al. (2020) proposed an approach which im-
plements classical differential privacy in an adver-
sarial learning paradigm, however, this work relies
on adversarial objectives to promote robustness to
adversarial samples rather than privacy.

Providing a privacy guarantee leads to the notion
of differential privacy (DP), as defined by Dwork
and Roth (2013). This definition quantifies privacy
loss as the maximum possible deviation between
the same aggregate function applied to two datasets
which differ only in a single record, which can be



expressed by the variable e.

Definition 1.1 (e-differential privacy). The level of
private information leaked by a computation M
can be expressed by the variable € where for any
two data sets A and B, and any set of possible
outputs S C Range(M),

Pr[M(A) € S] < Pr[M(B) € S] x exp(e x |A® B|)

This notion of e-differential privacy has been ex-
tended to text embeddings through the application
of calibrated noise (Fernandes et al., 2019; Beigi
etal., 2019). Lyu et al. (2020) proposed a method
based on local differential privacy—an extension
to the schema under which noise is applied to the
input data before it leaves the user’s device and
is encountered by the model owner—producing a
private representation which can be sent to a server
for classification. However, this approach uses sim-
ulated attacker performance as a test benchmark
for private information leakage, rather than during
training to improve privacy outcomes.

Determining the state-of-the-art in a task of rela-
tively recent provenance and with somewhat lim-
ited practical research such as this proves challeng-
ing, however we consider the adversarial learning
approach of Coavoux et al. (2018) and the local DP
approach of Lyu et al. (2020) the focus of the most
current research (Alnasser et al., 2021; Dayanik and
Padd, 2021; Kaneko and Bollegala, 2021; Friedrich
etal., 2019; Vuet al., 2019).

Contributions: In this work, we propose an ap-
proach that combines perturbed pre-trained embed-
dings with a privacy-preserving adversarial training
function that helps preserving the encoded seman-
tic links in the input text while obscuring sensitive
information. We demonstrate that our approach
achieves comparable task performance against a
competitive baseline while preserving privacy. We
experiment with a dataset that contains personally
identifiable information namely gender, location
and birth year. To minimize harm, we experiment
with a publicly available English-language dataset
(Hovy et al., 2015). Specifically:

* We introduce CAPE, "Context-Aware Private
Embeddings"!, an approach that applies both
DP-compliant perturbations and an adversar-
ial learning objective to privatize the embed-
ding outputs of pre-trained language models.

!Code base available at https://github.com/
NapierNLP/CAPE

* We establish metrics for testing the privacy re-
sult of our system against non-DP-compliant
models by offering an empirical framework
for determining the level of success of simu-
lated attacks.

* We find that attacker inferences demonstrate
differing levels of accuracy depending on the
type of the private attribute targeted.

* We establish superior privacy outcomes for
our method compared to a sample adversar-
ial learning approach (Coavoux et al., 2018)
and a perturbation-only method (Lyu et al.,
2020) representing the dominant approaches
currently applied to other task domains.

2 Methodology

We consider the possibility that an attacker may
have access to the intermediate feature representa-
tions extracted from text from a published language
model along with a supervision signal that may
allow them to train a model to recover private in-
formation about the text author, possibly garnered
from access to a secondary data source as demon-
strated in Narayanan and Shmatikov (2008) and
Carlini et al. (2020). To mitigate this risk, we intro-
duce a DP-compliant layer to the feature extractor
that perturbs the representations by adding cali-
brated noise. We train a second classifier to predict
known private variables in addition to our main tar-
get task classifier, then pass the error gradient from
the secondary classifier through a reversal layer to
promote embedding invariance to the private fea-
tures. Figure 1 shows the system architecture.
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Figure 1: CAPE model diagram. Solid lines indicate
data flow, dotted lines indicate gradient updates.

2.1 Task Formulation & Data

We experiment with multi-class sentiment analysis
on the UK section of the Trustpilot dataset (Hovy
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et al., 2015), which provides text reviews with an
attached numerical rating from 1-5 as well as three
demographic attributes: gender, location and birth
year. Sentiment analysis from text reviews repre-
sents a popular task to which pre-trained language
models are well suited. We use the gender as re-
ported in the dataset, as a binary attribute, while
birth years are separated into six equal-sized age
range bins (<1955, 1955-1963, 1964-1971, 1972-
1978, 1979-1985, >1986), and locations are trans-
lated from latitude/longitude pairs into Geohash
strings with a precision of two characters, which re-
sults in five potential location classes. This dataset
covers multiple regions and languages, however for
ease of implementation we include only English
language results from the UK region in these ex-
periments. A summary of this dataset is included
in Table 1.

Label Private Info Size
rating gender train: 28,000
birth year test: 15,000

location (lat/long)  validation: 7,000

Table 1: Summary of Trustpilot UK dataset

We treat gender here as a binary categorical vari-
able, since this is the way the value is represented
in the dataset. We recognise that this dualism may
not fully represent the range of potential gender
expressions (Cao and Daumé 111, 2020), and would
advocate for a wider conception of potential gender
representations in further dataset releases. Age of
the respondent is listed in the dataset as a year of
birth. We separate these values into six equal-sized
bins, assigning each bin an integer ID which re-
places the year in our input data. The location vari-
able is encoded as a Geohash string 2 of length 2,
which translates into a precision of £630 km. This
level of precision avoids the risk of under-poulated
classes; with a more extensive dataset it would
make sense to increase precision by extending the
length of the Geohash string. This set of strings (a
total of five possible strings) for our dataset frac-
tion, is also given a categorical integer ID. Thus
bucketed, these attributes are suitable variables for
classification modelling.

In our initial baseline experiment, we train a
feature extractor consisting of a pre-trained BERT
model (Devlin et al., 2019) along with two dense
layers in order to extract useful features from the

https://github.com/vinsci/geohash/

Parameter Search Values  Optimal
Hidden units 128, 256, 512 256
Dropout 0,0.2,04 0.4
Learning rate 0.01, 0.001, 0.0001
0.0001

Table 2: Model hyper-parameters

input text z. We obtain the final hidden state of the
pre-trained model for each token in the input, then
take a mean average over the sequence to produce
an embedding for the full text, such that:

ze = f(x) ey

Sentiment analysis is then carried out by a clas-
sifier which learns to predict the review rating label
y given the embedding vector.

Layer size, dropout rate and other hyper-
parameters were optimised with a grid search, se-
lecting the most effective with respect to the tar-
get task F1 score metric. Optimal parameters are
shown in Table 2.

A sample setup as created for CAPE model test-
ing is shown in Appendix A. Adversarial only,
differentially-private only, and baseline setups are
similar, omitting the noise layer, attacker classifier,
or both respectively.

We simulate a task that an attacker may wish to
perform on the input text by training a secondary
classifier along with the target task that attempts
to predict the value of private information vari-
ables z. Following Coavoux et al. (2018), we tar-
get several features of the respondent as extracted
from the dataset, namely gender, location, and birth
year. These features, while in reality not being pri-
vate by virtue of being public information provided
by users, represent good proxies for sensitive at-
tributes that users may not wish to be inferred from
similar public datasets. In this sense, they provide
a useful benchmark of the potential privacy risk,
while allowing us to avoid unethical inferences con-
cerning private attributes not shared by the user.

2.2 Adversarial Training

In order to promote invariance in the text rep-
resentation with respect to our private variables,
we adopt the approach pioneered by Ganin et al.
(2017). Initially designed to promote domain-
independent learning, this system involves train-
ing a secondary objective to predict features we do
not wish to be distinguishable via gradient descent,
then passing the loss through a gradient reversal
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layer into a target task objective, represented in our
experiments by the feature extractor.

For a single instance of our data (x.,y, z) the
adversarial classifier optimizes:

£a(x67 Y, z; Ha) = —logP(z]me; ea) (2)

Hence, the combination of both target and at-
tacker classifiers lead to the following objective
function, where 0,., 0, 0, represent the parameters
of the feature extractor, classifier and adversarial
classifier respectively:

L(xe,y,2;0r,0p,0,) =—logP(y|xe; 0r,0p)
- )‘logp(_"z’xeS ea)
3)
where — indicates that the log likelihood of the pri-
vate label z is inverted, and A is the regularization
parameter scaling the gradient from our adversarial
classifier.

The combined classification section therefore
consists of two separate classification heads, one
for our base task and one for our simulator attacker
task. Each consists of two densely-connected lay-
ers separated by a dropout layer. The attacker clas-
sifier includes a gradient reversal layer which flips
the sign of the gradient during the backwards pass.

2.3 Embedding Perturbation

Since it is also desirable to provide a measure of
general privacy alongside the specific attacker task
we simulate in our adversarial training, we initially
adopted the local DP method of Lyu et al. (2020)
to perturb the feature representations we produce.
Converting the generated embedding into a DP-
compliant representation requires us to inject cal-
ibrated Laplace noise into the hidden state vector
obtained from the pre-trained language model as
follows:

Te =Te+ N “)

where n is a vector of equal length to x. containing
i.i.d. random variables sampled from the Laplace
distribution centred around O with a scale defined
by %, where € is the privacy budget parameter and
Af is the sensitivity of our function.

Since determining the sensitivity of an un-
bounded embedding function is practically infea-
sible, we followed the initial work in constraining
the range of our representation to [0,1], as rec-
ommended by Shokri and Shmatikov (2015). In
this way, the maximum L1 norm of our function
summed across n dimensions of . is 1. However,

as detailed in Maheshwari et al. (2022), Lyu et al.
make a fundamental error in their algorithm, result-
ing in a real sensitivity of 1 % n. We adopt instead
the corrected methodology proposed by Mahesh-
wari et al., resulting in a maximal sensitivity of
2 and concordant noise sampled from a distribu-
tion of Lap(2). Results obtained using the original
methodology are preserved in Appendix B.

Algorithm 1: Context-Aware Private Em-
beddings (CAPE)

Input : Input data x, Label y, Private label z
1 Extract features from input: z. = f(z);
2 Normalise representation: . < x/| x|
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3 Apply perturbation: Z, = z, + Lap(%);

4 Train classifiers: £(Ze,y, z;6;,0,) =
—logP(y|Ze; 0y, 0p) — NogP(—2z|Ze; 0,)

2.4 Context-Aware Private Embeddings

To preserve the general privacy benefits of DP-
compliant embeddings with invariance to the spe-
cific private variable identified for adversarial train-
ing, we combine both processes in a system we
call Context-Aware Private Embeddings (CAPE).
Algorithm 1 presents the joint adversarial training
scheme with perturbed embedding sequences de-
rived from our feature extractor.

3 Evaluation and Results

3.1 Evaluation

We evaluate performance on the target task (i.e.
sentiment analysis) and on our simulated attacker
task (i.e. classifying each private attribute) with the
accuracy metric, as well as providing a measure
of the F1-score along with standard deviation of
those results. It should be noted that lower results
for the attacker classifier denote greater empirical
evidence of privacy (i.e., the attacker cannot predict
the target variable), and therefore the lowest score
in each scenario is indicated in bold, whereas the
highest score for the target task is likewise indi-
cated.

All evaluations were performed by randomly se-
lecting 70% of the data for training (the remaining
30% for testing). We compute mean and standard
deviation of the F1-score over 4 runs.

3.2 Results

Results for our target and attacker tasks using the
English-language only reviews drawn from the UK



section of the Trustpilot dataset are listed below.
Table 3 shows the results for each system, with e
and )\ parameters static at 0.1 and 1.0 respectively.
These values are derived from a set of experiments
with a range of privacy parameter values as detailed
in Table 4.

Target Attacker
Approach Acc. F1 SD  Acc. Fl SD
Location
Base 0.818 0.776 0.006 0.853 0.785 0.001
Adv. 0.817 0.762 0.005 0.846 0.783 0.009
DP 0.744 0.635 5¢7° 0.852 0.783 0.004
CAPE 0.746  0.637 0.005 0.844 0.780 0.002
Gender
Base 0.820 0.772 0.003 0.659 0.762 0.006
Adv. 0.818 0.772 0.009 0.632 0.752 0.007
DP 0.744 0.635 5¢™° 0.605 0.754 0.005
CAPE 0.746  0.637 0.005 0.603 0.751 0.001
Age Range
Base 0.816 0.773 0.008 0.234 0.210 0.018
Adv. 0.824 0.779 0.007 0.188 0.098 0.004
DP 0.744 0.635 5¢™° 0.179 0.054 0.001
CAPE 0.746  0.637 0.005 0.177 0.053 0.002

Table 3: Results for the target task and the simulated at-
tacker task. SD = Standard Deviation of F1 score over
four cross-validation runs. CAPE outperforms all other
approaches in terms of privacy-preservation for all vari-
ables.

3.3 Influence of privacy parameters

In order to determine the impact of increasing the
stringency of privacy guarantees on performance,
we tested our CAPE model with the gender private
variable using several values of € while maintaining
a value of 1.0 for A. A similar experiment was car-
ried out for values of A with e static at 0.1. Results
for both experiments are shown in Table 4.

Target Attacker
Value  Acc. F1 Acc. F1
Baseline  0.873 0.816 0.723  0.691
e 001 0741 0.631 0.602 0.747
0.1 0.747 0.639 0.603 0.751
0.5 0.744 0.635 0.604 0.753
1.0 0.749 0.641 0.611 0.758
A 0.1 0.747 0.739 0.606 0.754
0.5 0.741 0.630 0.599 0.750
1.0 0.740 0.620 0.584 0.748
1.5 0.723 0.614 0.552 0.688

Table 4: Impact of privacy parameters. Lower € and
higher )\ values lead to increased privacy, but increase
performance impact.

4 Discussion and Conclusion

These results demonstrate the enhanced privacy af-
forded by the CAPE approach over either privacy
approach applied in isolation. We provide evidence
that adversarial training can produce superior out-
comes to a DP-only approach, if we consider the
private variable targeted in training. Adding DP
noise clearly harms performance outcomes, indi-
cating that we require further work to implement
alternate processes for perturbing embeddings. Per-
turbed embeddings generated in Euclidean space
perform more poorly as the privacy guarantee in-
creases, so projecting embeddings into Hyperbolic
space (Dhingra et al., 2018) or implementing a
search mechanism to select semantically-similar
vectors that represent real words (Feyisetan et al.,
2020) could produce better outcomes with lower
privacy budgets.

Interestingly, we find that different private at-
tributes are predictable by an attacker at different
rates—while the attacker can predict the correct
gender or location class effectively, results for age
range are barely above random chance. It may well
be the case in the UK that word choice varies more
between areas and genders than age cohorts, for
example, a reviewer who cites the product’s "lush
vanilla taste” may reside in the West of England,
while calling a bad service "shite" may indicate
they are Scottish. This is an interesting counter-
finding to Welch et al. (2020) which found bet-
ter embedding performance with age- and gender-
aware representations in a global population. Dif-
fering privacy requirements for separate attributes
are a feature of multiple variations on differential
privacy regimes (Kamalaruban et al., 2020; Alag-
gan et al., 2017; Jorgensen et al., 2015).

We note finally that English exhibits fewer gram-
matical markers that indicate gender than some
other languages (Boroditsky and Schmidt, 2000),
a peculiarity which may affect the utility of the
model in significant ways. Further exploration on
different language families will shed light on how
privacy-preserving methods can assist in conceal-
ing private information.
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A Model Setup

input:

] ] [Mone.512)] | [ ] iput. | [(None, 512)]
input_L: TpufLayer | inf32 input_2: TpufLayer | inf32
output: | [Mone, 512)] output: | [Mone, 512)]
\ input: | (None, 512)
tf_bert_model TF float32 —_ . . .
[ output: | TFBaseModeloutputwithPooling(last_hidden_state=(None, 512, 768). pooler_output=(None, 768), hidden_states=None, aftentions=None) |
input. | (None, 512, 768)
tEmath reduce_mean: TFOpLambda | float32
- output: | (Noe, 768)
) input. | (None, 768) input. | (None, 768) input. | (None, 768)
tEmath reduce_min: TFOpLanibda | float32 tEmath reduce_max: TEOpLambda | float32 tEmath subfract: TFOpLambda | float32
output: | (1.1) output | (1.1) output: | (None, 768)
put. | (1.1) ) input._ | (None, 768)
tEmath subtract_L: TEOpLambda | float32 tEmathy truediv: TFOpLambda | float32
output: | (1.1) output: | (None, 768)
input._ | (Noue, 768)
tf__operators__add: TEOpLambda | float32
— — output: | (None, 768)
input. | (None, 768)
dense Dense | float32
output: | (None, 256)
nput: | (None, 256)
dropout_37: Dropout | float32
(None, 256)
input. | (None, 256)
dense_1: Dense | float32
- output: | (None, 236)
~ =
input: | (None, 236) input: | (Noe, 256)
aradient_reversal: GradientReversal | ‘ | dense_2: Dense | float32
[ output. | @¥one, 256) | output: | (None, 256)
|:| Feature Extractor l
R . input. | (None, 256 input: | (None, 256
l:l C||pp|ng/No|5e dense_3: Dense | floatz2 [t | X ) dropout_38: Dropout | floataz [P | & )
output: | (None, 256) output: | (None, 256)
[ ] Attacker Task l
input. | (None, 256 iput. | (None, 256
dropont_39: Dropont | floaa2 |22 | ¥ ) base: Dense | o2, [mrs | (X )
I:‘ Target Task output: | (None, 256) output: | (None, 5)
iput. | (None, 256
attacker: Dense | fontzz. [ 2t | 0¥ )
output: | (None, 95)

Figure 2: Complete Model Diagram




B Original results

Preserved here are the original results obtained for
experiments using the erroneous methodology of
Lyu et al. (2020), which fails to constrain the L1
norm of the embedding representation to 1. Results
in the main body of the paper instead use the cor-
rected methodology proposed in Maheshwari et al.

(2022).
Target Attacker

Approach Acc. Fl1 SD  Acc. Fl SD
Location
Base 0.818 0.776 0.006 0.853 0.785 0.001
Adv. 0.817 0.762 0.005 0.846 0.783 0.009
DP 0.745 0.637 0.000 0.847 0.781 0.004
CAPE 0.748 0.639 0.001 0.833 0.756 0.009
Gender
Base 0.820 0.772 0.003 0.659 0.762 0.006
Adv. 0.818 0.772 0.009 0.632 0.752 0.007
DP 0.746 0.637 0.000 0.610 0.755 0.004
CAPE 0.749 0.642 0.005 0.620 0.733 0.008
Age Range
Base 0.816 0.773 0.008 0.234 0.210 0.018
Adv. 0.824 0.779 0.007 0.188 0.098 0.004
DP 0.744 0.637 0.001 0.183 0.053 0.003
CAPE 0.748 0.634 0.008 0.171 0.052 0.002

Table 5: Results for the target task and the simulated
attacker task. SD = Standard Deviation of F1 score over
four cross-validation runs.

Target Attacker
Value  Acc. F1 Acc. F1

Baseline  0.873 0.816 0.723  0.691
e 001 0847 0.777 0.498 0.662
0.1 0.846 0.774 0.498  0.655

0.5 0.844 0.772 0.496 0.669

1.0 0.843 0.772 0511 0.678

A 0.1 0.848 0.778 0.512 0.676
0.5 0.841 0.768 0.506 0.672

1.0 0.839 0.766 0.498 0.674

1.5 0.847 0.776 0499  0.669

Table 6: Impact of privacy parameters.



