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Abstract

The ability to identify and resolve uncertainty
is crucial for the robustness of a dialogue sys-
tem. Indeed, this has been confirmed em-
pirically on systems that utilise Bayesian ap-
proaches to dialogue belief tracking. How-
ever, such systems consider only confidence
estimates and have difficulty scaling to more
complex settings. Neural dialogue systems,
on the other hand, rarely take uncertainties
into account. They are therefore overconfident
in their decisions and less robust. Moreover,
the performance of the tracking task is often
evaluated in isolation, without consideration of
its effect on the downstream policy optimisa-
tion. We propose the use of different uncer-
tainty measures in neural belief tracking. The
effects of these measures on the downstream
task of policy optimisation are evaluated by
adding selected measures of uncertainty to the
feature space of the policy and training poli-
cies through interaction with a user simulator.
Both human and simulated user results show
that incorporating these measures leads to im-
provements both of the performance and of the
robustness of the downstream dialogue policy.
This highlights the importance of developing
neural dialogue belief trackers that take uncer-
tainty into account.

1 Introduction

In task-oriented dialogue, the system aims to assist
the user in obtaining information. This is achieved
through a series of interactions between the user
and the system. As the conversation progresses, it
is the role of the dialogue state tracking module to
track the state of the conversation. For example,
in a restaurant recommendation system, the state
would include the information about the cuisine of
the desired restaurant, its area as well as the price
range that the user has in mind. It is crucial that
this state contains all information necessary for the
dialogue policy to make an informed decision for
the next action (Young et al., 2007). Policy training

optimises decision making in order to complete
dialogues successfully.

It has been proposed within the partially observ-
able Markov decision process (POMDP) approach
to dialogue modelling to track the distribution over
all possible dialogue states, the belief state, instead
of a single most-likely candidate. This approach
successfully integrates uncertainty to achieve ro-
bustness (Williams and Young, 2007; Thomson and
Young, 2010; Young et al., 2016, 2007). However,
such systems do not scale well to complex multi-
domain dialogues. On the other hand, discrimina-
tive neural approaches to dialogue tracking achieve
state-of-the-art performance in the state tracking
task. Nevertheless, the state-of-the-art goal ac-
curacy on the popular MultiwOZ (Budzianowski
et al., 2018) multi-domain benchmark is currently
only at 60% (Heck et al., 2020; Li et al., 2020a).
In other words, even the best neural dialogue state
trackers at present incorrectly predict the state of
the conversation in 40% of the turns. What is par-
ticularly problematic is that these models are fully
confident about their incorrect predictions.

Unlike neural dialogue state trackers, which pre-
dict a single best dialogue state, neural belief track-
ers produce a belief state (Williams and Young,
2007; Henderson et al., 2013). State-of-the-art
neural belief trackers, however, achieve an even
lower goal accuracy of approximately 50% (van
Niekerk et al., 2020; Lee et al., 2019), making the
more accurate state trackers a preferred approach.
High-performing state trackers typically rely on
span-prediction approaches, which are unable to
produce a distribution over all possible states as
they extract information directly from the dialogue.

Ensembles of models are known to yield im-
proved predictive performance as well as a cali-
brated and rich set of uncertainty estimates (Ma-
linin, 2019; Gal, 2016). Unfortunately, ensemble
generation and, especially, inference come at a high
computational and memory cost which may be pro-
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hibitive. While standard ensemble distillation (Hin-
ton et al., 2015) can be used to compress an en-
semble into a single model, information about en-
semble diversity, and therefore several uncertainty
measures, is lost. Recently Malinin et al. (2019)
and Ryabinin et al. (2021) proposed ensemble dis-
tribution distillation (EnD?) - an approach to distill
an ensemble into a single model which preserves
both the ensemble’s improved performance and full
set of uncertainty measures at low inference cost.

In this work we use EnD? to distill an ensemble

of neural belief trackers into a single model and in-
corporate additional uncertainty measures, namely
confidence scores, total uncertainty (entropy) and
knowledge uncertainty (mutual information), into
the belief state of the neural dialogue system. This
yields an uncertainty-aware neural belief tracker
and allows downstream dialogue policy models
to use this information to resolve confusion. To
our knowledge, ensemble distillation, especially
ensemble distribution distillation, and the derived
uncertainty estimates, have not been examined for
belief state estimation or any downstream tasks.

We make the following contributions:

1. We present SetSUMBT, a modified SUMBT
belief tracking model, which incorporates set
similarity for accurate state predictions and
produces components essential for policy op-
timisation.

2. We deploy ensemble distribution distillation
to obtain well-calibrated, rich estimates of un-
certainty in the dialogue belief tracker. The
resulting model produces state-of-the-art re-
sults in terms of calibration measures.

3. We demonstrate the effect of adding addi-
tional uncertainty measures in the belief state
on the downstream dialogue policy models
and confirm the effectiveness of these mea-
sures both in a simulated environment and in
a human trial.

2 Background
2.1 Dialogue Belief Tracking

In statistical approaches to dialogue, one can
view the dialogue as a Markov decision process
(MDP) (Levin et al., 1998). This MDP maintains a
Markov dialogue state in each turn and chooses its
next action based on this state.

Alternatively, we can model the dialogue state as
a latent variable, maintaining a belief state at each
turn, as in partially observable Markov decision

processes (POMDPs) (Williams and Young, 2007;
Thomson and Young, 2010). While attractive in
theory, the POMDP model is computationally ex-
pensive in practice. Although there are practical im-
plementations, they are limited to single-domain di-
alogues and their performance fall short of discrim-
inative statistical belief trackers (Williams, 2012).
The inherent problem lies in the generative nature
of POMDP trackers where the state generates noisy
observations. This becomes an issue for instance
when the user wants to change the goal of a con-
versation, e.g., the user wants an Italian instead of
a French restaurant. Henderson (2015) has shown
empirically that discriminative models model a
change in user goal more accurately.

In discriminative approaches, the state depends
on the observation, making it easier for the sys-
tem to identify a change of the user goal. Tradi-
tional discriminative approaches suffer from low
robustness, as they depend on static semantic dic-
tionaries for feature extraction (Henderson et al.,
2014; Mrksi¢ et al., 2017b). Integrated approaches
on the other hand utilise learned token vector rep-
resentations, leading to more robust state track-
ers (Mrksic et al., 2017a; Ramadan et al., 2018; Lee
et al., 2019). However, highly over-parameterised
models, such as neural networks — when trained via
maximume-likelihood on finite data — often yield
miscalibrated, over-confident predictions, placing
all probability mass on a single outcome (Pleiss
et al., 2017). Consequently, belief tracking is re-
duced to state tracking, losing the benefits of un-
certainty management. State-of-the-art approaches
to dialogue state tracking redefine the problem as
a span-prediction task. These models extract the
values directly from the dialogue context (Chao
and Lane, 2019; Zhang et al., 2020; Heck et al.,
2020) and manage to achieve state-of-the-art results
on MultiwOZ (Budzianowski et al., 2018; Eric
et al., 2020). Span-prediction models at present do
not produce probability distributions, so additional
work is needed to apply our proposed uncertainty
framework to them. Neural belief and state trackers
rarely model the correlation between domain-slot
pairs, except for works by Hu et al. (2020) and
Ye et al. (2021). Due to scalability issues we do
not include these approaches in our investigation.
We therefore consider the slot-utterance matching
belief tracker (SUMBT) (Lee et al., 2019) a bet-
ter starting point, as it is readily able to produce a
belief state distribution.
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In theory, well-calibrated belief trackers have
an inherent advantage over state tracking, produc-
ing uncertainty estimates that lead to more robust
downstream policy performance. This raises the
question: Is it possible to instil well-calibrated un-
certainty estimates in neural belief trackers? And
if so, do these estimates have a positive effect on
the downstream policy optimisation in practice?

We believe SUMBT is a fitting approach to in-
vestigate these questions, as it has been shown that
an ensemble of SUMBT models can achieve state-
of-the-art goal L2-Error when trained using spe-
cialised loss functions aiming at inducing uncer-
tainty in the output (van Niekerk et al., 2020).

2.2 Ensemble-based Uncertainty Estimation

Consider a classification problem with a set of
features x, and outcomes y € {wi, w2, ...,wx }.
In dialogue state tracking, & would be features
of the input to the tracker and y would be a di-
alogue state. Given an ensemble of M models
{P(yle, 0}

tained as follows:

, the predictive posterior is ob-

M M
P(y|x, 9(7”)) r(m)
= _ = —_— 1
P(y|z, D) mgl m§1 (1)

Predictions made using the predictive posterior are
often better than those of individual models. The
entropy H[] of the predictive posterior is an esti-
mate of fotal uncertainty. Ensembles allow decom-
posing total uncertainty into data and knowledge
uncertainty by considering measures of ensemble
diversity. Data uncertainty is the uncertainty due
to noise, ambiguity and class overlap in the data.
Knowledge uncertainty is uncertainty due to a lack
of knowledge of the model about a test data (Ma-
linin, 2019; Gal, 2016) — ie, uncertainty due to
unfamiliar, anomalous or atypical inputs. Ideally,
ensembles should yield consistent predictions on
data similar to the training data and diverse predic-
tions on data which is significantly different from
the training data. Thus measures of ensemble di-
versity yield estimates of knowledge uncertainty'.
These quantities are obtained via the mutual in-
formation Z[y, 0] between predictions and model
parameters. The quantity in the Equation 2 is a mea-
sure of ensemble diversity, and therefore, knowl-
edge uncertainty. This quantity is the difference

'In-depth overviews of ensemble methods are available
in Malinin (2019); Gal and Ghahramani (2016); Ashukha et al.
(2020); Ovadia et al. (2019).

between the entropy of the predictive posterior (to-
tal uncertainty) and the average entropy of each
model in the ensemble (data uncertainty).

Tly,0|x, D] =
Knowledge unc.

M y|m o ))] )

Total uncertainty

Data uncertainty

2.3 Ensemble Distillation

While ensembles provide improved predictive
performance and a rich set of uncertainty mea-
sures, their practical application is limited by their
inference-time computational cost. Ensemble dis-
tillation (EnD) (Hinton et al., 2015) can be used to
compress an ensemble into a single student model
(with parameters ¢) by minimising the Kullback-
Leibler (KL) divergence between the ensemble pre-
dictive posterior and the distilled model predic-
tive posterior, significantly reducing the inference
cost. Unfortunately, a significant drawback of this
method is that information about ensemble diver-
sity, and therefore knowledge uncertainty, is lost
in the process. Recently, Malinin et al. (2019) pro-
posed ensemble distribution distillation (EnD?) as
an approach to distill an ensemble into a single
prior network model (Malinin and Gales, 2018),
such that the model retains information about en-
semble diversity. Prior networks yield a higher-
order Dirichlet distribution over categorical out-
put distributions 7r and thereby emulate ensembles,
whose output distributions can be seen as samples
from a higher-order distribution”. Formally, a prior
network is defined as follows:

p(r|z; ¢) = Dir(mla), o = e
X 3)
z = f($7¢), ag > 07 Qg = Zaka
k=1

where Dir(-|av) is a Dirichlet distribution with con-
centration parameters «, and f(-; ¢) is a learned
function which yields the logits z. The predictive
posterior can be obtained in closed form though
marginalisation over 7r, thereby emulating (1).
This yields a softmax output function:

Ep(r|z:p) [P(y = wk|m)]
e (4)
Zszl e

=[Py = wilo), -,

P(y = wi|z; @) =

: Py = wklz)]".
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Closed form estimates of all uncertainty mea-
sures are obtained via Eq. (5), which emulates
the same underlying mechanics as Eq. (2), as fol-
lows (Malinin, 2019):

Iy, wlx; @] =

—_—

Knowledge unc.

HIP(yl2; )] — Epimima) [HP(y])] -

Data uncertainty

&)

Total uncertainty

Originally, Malinin et al. (2019) implemented
EnD? on the CIFAR10, CIFAR100 and TinyIma-
geNet datasets. However, Ryabinin et al. (2021)
found scaling to tasks with many classes chal-
lenging using the original Dirichlet Negative log-
likelihood criterion. They analysed this scaling
problem and proposed to a new loss function,
which minimises the reverse KL-divergence be-
tween the model and an intermediate proxy Dirich-
let target derived from the ensemble. This loss
function was shown to enable EnD? on tasks with
arbitrary numbers of classes. In this work we use
this improved loss function, as detailed in the Ap-
pendix Section B.2.

2.4 Policy Optimisation

In each turn of dialogue, the dialogue policy selects
an action to take in order to successfully complete
the dialogue. The input to the policy is constructed
using the output of the belief state tracker, thus
being directly impacted by its richness.
Optimising dialogue policies within the origi-
nal POMDP framework is not practical for most
cases. Therefore, the POMDP is viewed as a con-
tinuous MDP whose state space is the belief space.
This state space can be discretised, so that tabular
reinforcement learning (RL) algorithms can be ap-
plied (Gasi¢ et al., 2008; Thomson et al., 2010).
Gaussian process RL can be applied directly on the
original belief space (Gasi¢ and Young, 2014). This
is also possible using neural approaches with less
computational effort (Jurcicek et al., 2011; Weisz
etal., 2018; Chen et al., 2020). Current state-of-the-
art RL algorithms for multi-domain dialogue man-
agement (Takanobu et al., 2019; Li et al., 2020b)
utilise proximal policy optimisation (Schulman
et al., 2017) operating on single best dialogue state.

3 Effects of Uncertainty on Downstream
Tasks

We take the following steps in order to examine the
effects of the additional uncertainty measures in

the dialogue belief state:

1. Modify the original SUMBT model (Lee et al.,
2019) to arrive at a competitive baseline. We
call this model SetSUMBT.

2. Produce ensembles of SetSUMBT following
the work of van Niekerk et al. (2020).

3. Apply EnD and EnD? as introduced in Sec-
tion 2.3.

4. Apply policy optimisation that uses belief
states from distilled models.

3.1 Neural Belief Tracking Model

We propose a neural belief tracker which one can
easily incorporate in a full dialogue system pipeline.
We base our tracker on the slot-utterance matching
belief tracker (SUMBT) (Lee et al., 2019), but we
make two important changes. First, we ensure our
tracker is fully in line with the requirements of the
hidden information state (HIS) model for dialogue
management (Young et al., 2007) by adding user
action predictions to our tracker. These are not pro-
duced by the SUMBT model and nor by other avail-
able neural trackers. However, they are essential
for integration into a full dialogue system. Second,
in order to improve the understanding ability of
the model, we utilise a set of concept description
embeddings rather than a single embedding for se-
mantic concepts. We use this set of embeddings
for information extraction and prediction, hence
we call our model SetSUMBT. In this section we
describe each component in detail, also depicted in
Figure 1.

Slot-utterance matching The slot-utterance
matching (SUM) component performs the role
of language understanding in the SUMBT
architecture. The SUM multi-head attention mech-
anism (Vaswani et al., 2017) attends to the relevant
information in the current turn for a specific
domain-slot pair. In the process of slot-utterance
matching, SUMBT utilises BERT’s (Devlin et al.,
2019) [CLS] sequence embedding to represent
the semantic concepts in the model ontology.
Instead of using the single [CLS] embedding, we
make use of the sequence of embeddings for the
domain-slot description. We choose to make this
expansion, as approaches which utilise a sequence
of embeddings outperform approaches based on
a single embedding in various natural language
processing tasks (Poerner et al., 2020; Choi et al.,
2021). We further use RoBERTa as a feature
extractor (Liu et al., 2019).
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Dialogue context tracking The first of the three
components of the HIS model is a representation
of the dialogue context (history). In the SUMBT
approach, a gated-recurrent unit mechanism tracks
the most important information during a dialogue.
The resulting context conditioned representations
for the domain-slot pairs contain the relevant infor-
mation from the dialogue history. Similar to the
alteration in the SUM component, we represent the
dialogue context as a sequence of representations.
This sequence, C7, represents the dialogue context
for domain-slot pair s across turns 1 to ¢, while
it dimension being independent of ¢. Besides the
above modification, we add a further step where
we reduce this sequence of context representations
to a single representation y;. We do this reduction
using a learned convolutional pooler, which we call
the Set Pooler. See Appendix Section C for more
details regarding the implementation.

User goal prediction The second component of
the HIS model is the user goal. This is typically the
only component that neural tracing models explic-
itly model as a set of domain-slot-value pairs. Here,
we follow the matching network approach (Vinyals
et al., 2016) utilised by SUMBT, where the pre-
dictive distribution is based on the similarity be-
tween the dialogue context and the value candi-
dates. To obtain the similarity between the dia-
logue context and a value candidate we make use
of cosine similarity, Scos (-, -). Based on these sim-
ilarity scores, we produce a predictive distribution,
Equation 6, for the value of domain-slot pair s at
turn ¢ v{, the user and system utterances at turn ¢,
ui*" and u;”", and the dialogue context represen-
tations at turn ¢ — 1 C_;. Contrary to the SUMBT
approach, each value candidate is represented by
the sequence of value description embeddings from
a fixed RoBERTa model. The Set Pooler, with the
same parameters used for pooling context represen-
tations, reduces this sequence of value description
representations to a representation y,,, for value v.

P (vf = vlu", u¥, ts,l) =
exp (Secos (Y5, ¥v)) (6)

Zv’ €xp (Scos (yfa YU’)) ’

User action prediction To be fully in line with
the HIS model, we further require the predicted
user actions. In order to predict the user actions,
we categorise them into general user actions and
user request actions. Further, since our system

is a multi-domain system, we include the current
active domain in the hidden information state of
the system.

General user action includes actions such as the
user thanking or greeting the system, which do not
rely on the dialogue context. Hence, we can infer
general user actions from the current user utterance.
A user request action is an action indicating that the
user is requesting information about an entity. Zhu
et al. (2020) shows that simple rule-based estimates
of these actions lead to poor downstream policy
performance. Hence, we propose predicting this
information within the belief tracking model.

Since we can infer the general actions from the
current user utterance, we use a single turn repre-
sentation ! to predict such actions. The single
turn representation, &Y, is the representation for
the RoBERTa sequence representation <s>, which
is equivalent to the BERT [CLS] representation.
That is:

P (a?en _ a|ugsr7 u:gsl) —

7
softmax (W9¢"x{ + b, @

where a € {none, thank_you, goodbye}.

The more difficult sub-tasks include active user
request and active domain prediction. For user
request prediction we utilise the dialogue context
representation y; for a specific domain-slot pair to
predict whether the user has requested information
relating to this slot. That is:

P (Tf = 1|ug8r,ufgsp 5_1) =

sigmoid (w"*%y; + b"?) ,

(®)

where 7} indicates an active request for domain-slot
s by the user in turn ¢.

Last, to predict active domains in the dialogue,
we incorporate information relating to all slots as-
sociated with a specific domain. We do so by
performing mean reduction across the context rep-
resentations of all the slots associated with a do-
main. The resulting domain representations are
used to predict whether a domain is currently be-
ing discussed in the dialogue. That is, for active
domain d;, S, the set of slots within domain d, and
CLy = [C} 4], the set of context representa-
tions for all domain-slot pairs in Sy at turn ¢ — 1,
we have the active domain distribution:

P(dr = dlui, w, CLy ) =
€)

1
. . dom ~ dom
sigmoid | w*™ — g y;+0b )
|5l !

SESY
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P(af®" = alu¥", u; P(vf = v|ulsT, w3, €5_y)
User Goal:
Similarity Scorer

Vo
Set Pooler
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RoBERTa (Fixed)

Value candidate v

PO = 1T, CEy)  P(de = TS, )

All slots within a
domain are mean
pooled

0 1 2 4l |VI+1 \[
Vval  Vyal Vyval Vyal Vya

Set Pooler ]

T i sl Isl+1
Zt

3
Zi Zt

6?21—)[ Recurrent Context Tracker J—) [43

Current user utterance

Latest system utterance

D User action

User goal

Context tracking
Slot-utterance matching

Description of domain, slot pair s

Figure 1: Architecture of our SetSUMBT model, which takes as input the current user utterance, the latest system
utterance, and a domain-slot pair description. The model, further, requires a pre-defined set of plausible value
candidates for each domain-slot pair. At each turn, we encode the utterances only once, the Slot-utterance matching
and Context tracking components are utilised once for each domain-slot pair. Further, we use the Set Pooler once
for each domain-slot pair and once for each value candidate. The Ser Pooler used for pooling value candidate and
domain-slot context sequences shares the same parameters 6. SetSUMBT outputs a belief state distribution for the
relevant domain-slot pair (User goal), a distribution over general actions, and the probability of a user request for
the domain-slot pair (User action). The model also outputs the probability of an active domain.

Optimisation For each of the four tasks: user
goal prediction, general user action prediction, user
request action prediction and active domain predic-
tion, the aim of the model is to predict the correct
class. To optimise for these objectives, we min-
imise the following classification loss functions:
Egoalv ﬁgeneralv Erequest and ﬁdomain- During model
training we combine four weighted classification
objectives:

L= Qgoal £g0a1 + Qtgeneral ﬁgeneral (10)
+arequest£request + domain Ldomain,

where o, € (0, 1] is the importance of task z. In
this work, we use the label smoothing classification
loss for all sub-tasks as it results in better calibrated
predictions, as shown by van Niekerk et al. (2020),
see details in Section B.1 of the appendix.

3.2 Uncertainty Estimation in SetSUMBT

Similarly to van Niekerk et al. (2020), we construct
an ensemble of SetSUMBT models by training
each model on one of 10 randomly selected subsets
of data. We then distil this ensemble into a sin-
gle model by adopting ensemble distillation (EnD)

and ensemble distribution distillation (EnD?) as
described in Section 2.3. We refer to these dis-
tilled versions of the SetSUMBT ensemble as EnD-
SetSUMBT and EnD?-SetSUMBT, respectively.

The SetSUMBT belief tracker tracks the pres-
ence and value of each domain-slot pair s as the
dialogue progresses. For the sake of scalability
of the downstream policy, in the user goal g we
do not consider all possible values, but rather the
most likely one v® for every domain-slot pair s
and its associated probability, i.e., the confidence
score given by hgs summarised in vector h{ for all
domain-slot pairs:

v* = argmaxP (vf = o|ul", u"}, C}y) |
g . s __ usr sys S
his = max P (vf = vlup", w*y,Cyy),

hi == [v*, h{ JJvs. (11)

For the EnD-SetSUMBT belief tracker, we can also
calculate the total uncertainty for each domain-slot
given by the entropy, see Section 2.3. We encode

that information in h§’s“ for each domain-slot pair
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s and summarise in hy""*¢ for all domain-slot pairs:

hit’s® =M [P (v} = vluy™", w¥3, C7y)]

h;lel,TLC — [ ’llfl;';LC:IvS

For the EnD?-SetSUMBT belief tracker, can fur-
ther include the knowledge uncertainty for each
domain-slot pair s given by the mutual informa-
tion:

unc
t,s

— s usr sYs
= T[v;, w|u®", u,l,

HIRH ]
as per Eq. (5) where 7 represents the ensemble
distribution and ¢ the model parameters.
In addition, all versions of SetSUMBT include
the following vectors/variables:
h{ is the estimate of the user goal from Eq. (11),
h{*" is the estimate of user actions from Eq. (7-9),
h is the database search result’,
h;¥% is the system action,
h?9°% is the set of completed bookings,
hter™ indicates the termination of the dialogue.
This results in the following belief state:

_ usr sYs g 1.book db 1term y,unc
bt_{ht vhtflvhﬂht 7ht 7ht >ht }

For a system without uncertainty, all confidences
would be rounded to either 0 or 1 and the belief
state would not contain the h{"*“ vector.

3.3 Policy Optimisation as Downstream Task

For our experiments we optimise the dialogue pol-
icy operating on the belief state via RL using the
PPO algorithm (Schulman et al., 2017). PPO is an
on-policy actor-critic algorithm that is widely ap-
plied across different reinforcement learning tasks
because of its good performance and simplicity.
Similarly to Takanobu et al. (2019), we use super-
vised learning to pretrain the policy before starting
the RL training phase. In order to perform super-
vised learning we need to map the belief states into
system actions as they occur in the corpus. These
belief states can either be oracle states taken from
the corpus or predictions of our belief tracker that
takes corpus dialogues as input. We investigate
both options for policy training.

3Uncertainty is incorporated in the database query vector
in the form of confidence thresholds. If the confidence score
for a specific constraint is less than a chance prediction then
this constraint is ignored during the database query.

Approach JGA(%) L2-Error | ECE(%)
SUMBT 46.78 1.1075 25.46
CE-BST 48.71 1.1042 10.73
SUMBT+LaRL 51.52 - -
SetSUMBT S1.11 1.2386 15.13
EnD?-SetSUMBT | 51.22 1.1948 7.09
CE-SetSUMBT 52.04 1.1936 6.84
EnD-SetSUMBT 52.26 1.1782 7.54

Table 1: Comparison of neural belief tracking ap-
proaches on the MultiWOZ 2.1 test set. CE is an en-
semble of calibrated models, EnD is ensemble distilla-
tion and EnD? is ensemble distribution distillation.

4 Experiments

4.1 Neural Belief Tracking Performance

Overall performance Table 1 compares the
performance of our proposed SetSUMBT belief
tracker to existing approaches, which include
SUMBT, the calibrated ensemble belief state
tracker (CE-BST) (van Niekerk et al., 2020) and the
end to end trained SUMBT+LaRL approach (Lee
et al., 2020). We consider the joint goal accu-
racy (JGA), L2-Error and expected calibration er-
ror (ECE). The JGA of a belief tracking model
is the percentage of turns for which the model
correctly predicted the value for all domain-slot
pairs. The L2-Error is the L2-Norm of the differ-
ence between the predicted user distribution and
the true user goal. Further, the ECE is the average
absolute difference between the accuracy and the
confidence of a model. In this comparison, we do
not consider state tracking approaches, as they do
not yield uncertainty estimates. SetSUMBT out-
performs SUMBT and SUMBT+LaRL in terms of
calibration and accuracy. We name the variants of
SetSUMBT as follows: CE-SetSUMBT is a cali-
brated ensemble of SetSUMBT similar to CE-BST,
EnD-SetSUMBT is the distilled SetSUMBT model,
and EnD?-SetSUMBT is the distribution distilled
SetSUMBT model.

Runtime efficiency The single instance of the
SetSUMBT tracker processes a dialogue turn in
approximately 77.768 ms, whereas an ensemble
of 10 models processes a turn in approximately
768.025 ms. These processing times are averaged
across the 7372 turns in the MultiWOZ test set, see
Appendix Section E for more details. The signifi-
cant increase in processing time for the ensemble
of models makes this approach inappropriate for
real time interaction with users on a private device.
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Figure 2: Reliability comparison of a selection of neu-
ral belief tracking models.

Calibration The reliability diagram in Figure 2
illustrates the relationship between the joint goal
accuracy and the model confidence. The best cal-
ibrated model is the one that is closest to the di-
agonal, i.e., the one whose confidence for each
dialogue state is closest to the achieved accuracy.
The best reliability is achieved by CE-BST, and
CE-SetSUMBT comes second. Both distillation
models (EnD-SetSUMBT and EnD?-SetSUMBT)
do not deviate greatly from CE-SetSUMBT.

4.2 Policy Training on User Simulator

We incorporate SetSUMBT, EnD-SetSUMBT and
EnD2-SetSUMBT within the Convlab2 (Zhu et al.,
2020) task-oriented dialogue environment and com-
pare their performance by training policies which
take belief states as inputs®*,

To investigate the impact of additional uncer-
tainty measures on the dialogue policy we perform
interactive learning in a more challenging environ-
ment than the original Convlab2 template-based
simulator. We add ambiguity to the simulated user
utterances in the form of value variations that occur
in the MultiWwOZ dataset. For example, instead
of the user simulator asking for a hotel for "one
person", it could also say "It will be just me.". For
more information see Appendix Section D.

When policies are trained for large domains, they
are typically first pretrained on the corpus in a
supervised manner, and then improved using re-
inforcement learning. We first investigate which
states to use for the supervised pretraining (Sec-
tion 3.3): oracle states, i.e., the dialogue state labels
from the MultiWOZ corpus, or estimated belief
states, e.g., those predicted by a EnD-SetSUMBT
model. We then evaluate the pretrained policies
with the simulated user. During the evaluation both

*nttps://gitlab.cs.uni-duesseldorf.de/
general/dsml/setsumbt-public.git

Table 2: Performance of the systems in the simulated
environment. For each setting we have 5 policies initi-
ated with different random seeds, each evaluated with
1000 dialogues and their success rates, reward and num-
ber of turns averaged.

policies use a EnD-SetSUMBT model to provide
belief states. We observe that the policy pretrained
using the oracle state achieves a success rate of
36.50% in the simulated environment compared
to the 46.08% success rate achieved by the policy
pretrained using EnD-SetSUMBT. Thus, all our
following experiments use predicted belief states
of respective tracking models for the pretraining
stage.

For each setting of the belief tracker we have four
possible belief state settings, i.e., the binary state
(no uncertainty), the confidence score state, the con-
fidence score state with additional total uncertainty
features and the confidence score state with addi-
tional knowledge uncertainty features. For each
setting we evaluate the policies through interaction
with the user simulator, results are given in Table 2.

In interaction with the simulator, systems mak-
ing use of confidence outperform the systems with-
out any uncertainty (significance at p < 0.05).
Moreover, the additional total and knowledge un-
certainty features always outperform the systems
which only use a confidence score (significance
at p < 0.05). This indicates that additional mea-
sures of uncertainty improve the robustness of the
downstream dialogue policy in a challenging envi-
ronment.

It is interesting to note that the system which
makes use of total uncertainty appears to outper-
form the system that makes use of knowledge un-
certainty (significance at p < 0.05). We suspect
that this controlled simulated environment has low
data uncertainty, so the total uncertainty is overall
more informative.
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4.3 Human Trial

We conduct a human trial, where we compare
SetSUMBT as the baseline with EnD-SetSUMBT
and EnD2-SetSUMBT. For EnD-SetSUMBT, we
consider the model that includes both confidence
scores and entropy features. For EnD?-SetSUMBT,
we investigate the model that includes confidence
scores and knowledge uncertainty features. For
each model we have two variations: one with a
binary state corresponding to the most likely state
(no uncertainty variation), and one with uncertainty
measures (uncertainty variation). For each varia-
tion we chose the policy whose performance on
the simulated user is closest to the average perfor-
mance of its respective setting, see Section 4.2.

Subjects are recruited through the Amazon Me-
chanical Turk platform to interact with our sys-
tems via the DialCrowd platform (Lee et al., 2018).
Each assignment consists of a dialogue task and
two dialogues to perform. The task comprises a set
of constraints and goals, for example finding the
name and phone number of a guest house in the
downtown area. We encourage the subjects to use
variants of labels by introducing random value vari-
ants in the tasks. The two dialogues are performed
in a random order with two variations of the same
model, namely no-uncertainty and uncertainty vari-
ation, as described above. After each dialogue, the
subject rates the system as successful if they think
they received all the information required and all
constraints were met. The subjects rate each sys-
tem on a 5 point Likert scale. In total we collected
approximately 550 dialogues for each of 6 different
systems, 3300 in total. There was a total of 380
subjects who took part in these experiments.

Table 3 shows the performance of the above poli-
cies in the human trial. We confirm that each no
uncertainty system is always worse than its uncer-
tainty counterpart (each significant at p < 0.05). It
is important to emphasise here that in each pairing,
the systems have exactly the same JGA, but their
final performance can be very different in terms of
success and user rating. This empirically demon-
strates the limitations of JGA as a single measure
for dialogue state tracking, urging the modelling
of uncertainty and utilisation of calibration mea-
sures. Finally, we observe that adding additional
uncertainty measures improves the policy (each
significant at p < 0.05) and the best overall per-
formance is achieved by the system that utilises
both knowledge uncertainty and confidence scores

Belief Belief state | Success Rating  Turns
Tracker uncertainty Rate

None 48.99 2.68 7.28
SeSUMBT o nfidence | 67.05 347 6.2
EnD- None 64.09 3.29 6.45
SetSUMBT Total 68.25 3.36 6.45
EnD?- None 66.25 3.35 6.25
SetSUMBT Knowledge 71.61 3.52 6.31

Table 3: Performance of the systems evaluated with
real users. We have 550 dialogues for each system with
success rates, ratings and the number of turns averaged.

(significant at p < 0.05). This suggests that in
human interaction there is more data uncertainty,
necessitating the knowledge uncertainty to be an
explicit part of the model.

It is important to note here that solely a lower
average number of turns is not necessarily an in-
dicator of the desired behaviour of a system. For
example, a system which says goodbye too early
may never be successful, but will have a low aver-
age number of turns.

5 Conclusion

Whilst neural dialogue state trackers may achieve
state-of-the-art performance in the isolated dia-
logue state tracking task, the absence of uncertainty
estimates may lead to less robust performance of
the downstream dialogue policy. In this work we
propose the use of total and knowledge uncertain-
ties along with confidence scores to form a dialogue
belief state. We moreover describe a model, Set-
SUMBT, that can produce such a belief state via
distillation. Experiments with both simulated and
real users confirm that these uncertainty metrics
can lead to more robust dialogue policy models. In
future, we will investigate modifying span-based
dialogue state trackers to incorporate uncertainty.
We will further investigate the expansion of the Set-
SUMBT model to include the correlation between
different domain-slot pairings.
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A Example dialogues

Here we provide two example dialogues from our
human trial, which illustrates the advantage of us-
ing uncertainty. In Figures 3 and 4 we observe that
the system makes a second request to the user to
clarify the intent of the user.

User: I need to book a cheap 4 star hotel.

System: Do you have a area preference?

User: I need the hotel to be eastern.

System: Is there a specific area of town you are
interested in?

User: The east.
Figure 3: Extract from a dialogue with a real user illus-
trating the importance of uncertainty in a dialogue.

User: Find me a hotel in the city centre.

System: Do you have a price range preference?
User: High

System: It is in the centre. What price range
would you like?

User: A highly priced hotel.

System: Everyone seems to enjoy Acorn guest
house. It is an expensive hotel. Is there anything
else I can help you with?

Figure 4: Extract from a dialogue with a real user illus-
trating the importance of uncertainty in a dialogue.

B Loss Functions

Consider the classification problem with input fea-
tures x, oracle class y and training dataset:

Dan = (@), @™, ™)),

consisting of IV labelled examples.

B.1 Label Smoothing Loss Function

The label smoothing loss is a regularised variant of
standard negative log likelihood loss. Here, instead
of considering a 1-hot target y;, some noise is
induced in the target distribution in the form of:

Yis = (1 —eJyr + %
where € is the smoothing parameter, y;; the
noisy/smoothed targets and y; the one hot represen-
tation of the target y. The objective is to minimise
the KL divergence between the predictive distri-
bution, P(y|z), ¢), and the smoothed target ;.
That is

N
Els(d)v Dtrain) = N Z KL [yl(s)HP(y‘x( )7 ¢)]
i=1

7912


https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://papers.nips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://doi.org/10.1109/TASLP.2018.2851664
https://doi.org/10.1109/TASLP.2018.2851664
https://doi.org/10.1109/TASLP.2018.2851664
https://www.aclweb.org/anthology/W12-1812
https://www.aclweb.org/anthology/W12-1812
https://www.sciencedirect.com/science/article/abs/pii/S0885230806000283
https://www.sciencedirect.com/science/article/abs/pii/S0885230806000283
https://www.sciencedirect.com/science/article/abs/pii/S0885230806000283
https://dl.acm.org/doi/abs/10.1145/3442381.3449939
https://dl.acm.org/doi/abs/10.1145/3442381.3449939
https://www.springerprofessional.de/en/evaluation-of-statistical-pomdp-based-dialogue-systems-in-noisy-/10154244
https://www.springerprofessional.de/en/evaluation-of-statistical-pomdp-based-dialogue-systems-in-noisy-/10154244
https://ieeexplore.ieee.org/document/4218059
https://ieeexplore.ieee.org/document/4218059
https://aclanthology.org/2020.starsem-1.17.pdf
https://aclanthology.org/2020.starsem-1.17.pdf
https://aclanthology.org/2020.starsem-1.17.pdf
https://doi.org/10.18653/v1/2020.acl-demos.19
https://doi.org/10.18653/v1/2020.acl-demos.19
https://doi.org/10.18653/v1/2020.acl-demos.19

B.2 Distillation Loss Functions

Here we detail the loss functions used for ensem-
ble distillation (EnD) and ensemble distribution
distillation (EnD?) in this work.

Consider an ensemble {81 ..., 6} con-
sisting of M models, with predictive posterior
P(y|$(z) ) Dtrain)'

Standard ensemble distillation (Hinton et al.,
2015) is accomplished by minimising the KL-
divergence between a student model with parame-
ters ¢ and the ensemble’s predictive posterior:

ﬁEnD (¢7 Dtrain) =

N
1 - :
= D KLP@l", Diin) || Ply]z?, ¢)]

=1

Distribution distillation is accomplished using
the improved loss function proposed by Ryabinin
etal. (2021). Here, we first compute a Proxy Dirich-
let Target with Dirichlet concentration parameters
3 from the ensemble:

M

7ATk(C'?):M P(y = wi|x, ™)
m=1

~ K-1

1

. . mrm  (12)
225:17714(1117%_2%:1 n;f[ )

K
Br(@) =t (@) - Bo(x) + 1, Bo = _ Br-
=1

Given this Proxy Dirichlet Target, distribution dis-
tillation is done by minimising the following loss:

‘CEnD2 (¢7 Dtrain) =

1 N K 0

N;[ Boro) 9 2 A M5
+ —

1
t) KL[P<7rlw<">,¢>||p<7r\1>]}.
By

C SetSUMBT Implementation Details

Here we provide details regarding the SetSUMBT
model configuration and the model training con-
figuration. Table 4 provides details about the con-
figuration of the SetSUMBT model. Tables 5 and
6 provide details regarding the training configu-
rations for both the single model and distillation
(EnD) of SetSUMBT. For all SetSUMBT models
the Set Pooler consists of a single convolutional
layer with padding followed by a mean pooling
layer.

Parameter Value
Roberta pretrained checkpoint roberta-base
Hidden size 768
SUM attention heads 12
Context tracking GRU hidden size 300
Set Pooler CNN filter size 3
Dropout rate 0.3
Maximum turn length 64
Candidate description length 12

Table 4: SetSUMBT model configuration.

Parameter Value
Learning rate (LR) le—5
LR Scheduler warmup proportion 0.1
Batch size 3
Maximum turns per dialogue 12
Epochs 100
Early stopping criteria 25 epochs
Label smoothing € 0.05
Qlgoal 1.0
Olgeneral 0.2
Olrequest 0.2
Qdomain 0.2

Table 5: Single model and EnD? training configura-
tions. EnD? does utilise the Label smoothing e.

D Variations in User Simulator Output

The user simulator used in our experiments consists
of a natural language understanding (NLU) module,
a rule based user agent and template based natural
language generation module, all provided in the
ConvLab 2 environment (Zhu et al., 2020). A pre-
defined set of rules simulates the user behaviour
based on the predicted semantic system actions and
the resulting user actions are mapped to natural
language using a pre-defined set of templates. To
induce variation to the user simulator utterances
and thus make understanding more difficult for
the system, we utilise a set of pre-defined value
variations obtained from the MultiWOZ 2.1 value
map (Heck et al., 2020). For example, we can map
the value, expensive, in the user action:

Inform - Restaurant - Price_range
— expensive

to any of the following options:

[high end, high class, high
high priced,
upscale,

luxury J.

scale,
higher price,
expensively,

high price,
fancy,
nice,

In our experiments 20% of simulated user actions
contain such variations.
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Parameter Value
Learning rate (LR) le—5
LR Scheduler warmup proportion 0.1
Batch size 3
Maximum turns per dialogue 12
Epochs 100
Early stopping criteria 25 epochs
Distribution smoothing le—4
Temperature scaling base temperature 2.5
Temperature scaling annealing cycle 0.1
Olgoal 1.0
Qlgeneral 0.2
Qlrequest 0.2
Qldomain 0.2

Table 6: EnD training configuration.

E System Latencies

In this section we provide the processing times per
turn for our SetSUMBT model as well as the sys-
tems used in this work. These processing times are
averaged across the 7372 turns in the MultiwOZ
2.1 test set. This test is performed on a Google
Cloud virtual machine containing a Nvidia V100
16GB GPU, 8 nl-standard VCPU’s and 30GB
memory. In Table 7 we compare the latencies of a
single instance of SetSUMBT against a 10 model
ensemble. In Table 8 we compare the latencies of
the full dialogue system setups used in this work.

Tracker Latency (ms)
Single instance 77.7680
10 Instance ensemble 768.0256

Table 7: Turn level latency of the SetSUMBT model
and ensemble.

System Latency (ms)
No uncertainty 135.9768
Confidence scores 138.0960
Total uncertainty 147.4574
Knowledge uncertainty 152.5392

Table 8: Turn level latency of the various full dialogue
systems utilised in this work.
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