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Abstract

Dialogue State Tracking is central to multi-
domain task-oriented dialogue systems, re-
sponsible for extracting information from user
utterances. We present a novel hybrid archi-
tecture that augments GPT-2 with representa-
tions derived from Graph Attention Networks
in such a way to allow causal, sequential pre-
diction of slot values. The model architecture
captures inter-slot relationships and dependen-
cies across domains that otherwise can be lost
in sequential prediction. We report improve-
ments in state tracking performance in Mul-
tiWOZ 2.0 against a strong GPT-2 baseline
and investigate a simplified sparse training sce-
nario in which DST models are trained only
on session-level annotations but evaluated at
the turn level. We further report detailed anal-
yses to demonstrate the effectiveness of graph
models in DST by showing that the proposed
graph modules capture inter-slot dependencies
and improve the predictions of values that are
common to multiple domains.

1 Introduction

This paper investigates two aspects of dialogue
state tracking (DST) for multi-domain task-
oriented dialogue (Budzianowski et al., 2018). We
present a novel hybrid architecture that augments
GPT-2 (Radford et al., 2019) with dialogue act
representations derived from Graph Attention Net-
works (GATs) (Veličković et al., 2018) in such a
way that allows causal, sequential prediction of slot
values while explicitly modelling the relationships
between slots and values across domains. Our ap-
proach uses GATs to improve predictions of values
that are shared across domain-slots and that might
otherwise be treated independently. As a related
line of work, we investigate a form of sparsely
supervised DST training and find that our hybrid
architecture offers improved robustness with weak
supervision.

DST can be improved by modelling the rela-
tionship between slots and values across domains.
This has been explored recently by Zhou and
Small (2019) who suggest three types of relation-
ships between domain-slots pairs that can be mod-
elled explicitly: (1) pairs that share the same can-
didate set, such as <restaurant-bookday>
and <hotel-bookday>; (2) pairs whose can-
didate values are subsets, as could happen with
<restaurant-name> and <taxi-destina
tion> if the candidate set of the first belongs to
that of the second; and (3) correlated values be-
tween domain-slot pairs, such as when the ‘star’
level of a booked hotel correlates with the price
range of a reserved restaurant.

Graph Neural Networks (GNNs) have been pro-
posed to captures the interactions among slots and
values and to improve DST performance (Zhou and
Small, 2019; Chen et al., 2020; Wu et al., 2020).
These relationships can be represented as edges
in graph-based models, where domains, slots, and
values are nodes in the graphs. However previous
work has not explored quantitatively or in depth
how graph models utilize the relationships they
model. Chen et al. (2020) and Wu et al. (2020)
provide example cases where the predictions of
correlated values were potentially enhanced by
their model, while Zhou and Small (2019) and
Zhu et al. (2020) present ablation studies show-
ing marginal improvements brought by their graph
modules. Zhu et al. (2020) and Wu et al. (2020) fur-
ther show joint accuracies over different dialogue
turns, but there is more that can be said about how
GATs can improve DST. One of the aims of this
paper is to more deeply analyze how graph models
can lead to improved DST on top of an already
good GPT-2 baseline system.

Graph models may also compensate for some
potential drawbacks associated with using gener-
ative models for DST. As a well-known genera-
tive model, GPT-2 offers powerful, left-to-right
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generation incorporating a causal attention mecha-
nism. We note that Hosseini-Asl et al. (2020) have
demonstrated that GPT-2 can identify slot values
as a prediction task, with variable length token se-
quences produced sequentially with interspersed
special tokens indicating slot boundaries. The abil-
ity to easily generate token sequences of arbitrary
lengths is a valuable feature of the model, although
it may come at the expense of modelling power
relative to models with non-causal attention mech-
anisms, such as BERT (Devlin et al., 2019; Shan
et al., 2020). In particular, GPT-2’s causality re-
quires that the prediction of later slot values can
depend explicitly on previously predicted slot val-
ues, but that the reverse is not possible. This can
lead to decreased performance in predicting slot
values that occur early on. We find that augment-
ing GPT-2 prediction with representations derived
from GATs allows some sharing of information
between slots prior to prediction to improve this
GPT-2 limitation.

Capturing the relationships of slot values across
domains also offers the opportunity to make better
use of limited training data, particularly in sparsely
supervised and weakly supervised scenarios (Liang
et al., 2021). In a ‘Last Turn’ annotation scenario,
annotations are available only for the final turn of
a task-oriented dialogue. This is unlike the fully-
annotated MultiWOZ setting, which offers turn-
level annotations throughout the entire dialogue
session. As an annotation option, generating sum-
mary annotations at the completion of a recorded
session is an attractive alternative to creating a de-
tailed, turn-by-turn annotation of the entire dia-
logue (Liang et al., 2021). If it is possible to
use only these session-level annotations to train a
DST system that still achieves acceptable tracking
performance, the chore of creating new annotated
DST datasets could be made much easier. The chal-
lenges in using this summary data are significant,
however. Using only the final-turn annotations in
MultiWOZ 2.0 reduces the training set to 14.3% of
its original size (in annotated turns).

We summarize the contributions of our work as
follows:

(1) We propose a novel hybrid architecture that
integrates GPT-2 with Graph Attention Networks
(GATs) for dialogue state tracking. The model
is shown to be robust when training samples are
significantly reduced under sparse supervision.

(2) We demonstrate that our architecture also mit-

igates a limitation of DSTs based on GPT-2 alone,
associated with generating domain-slot values in a
Left-to-Right manner.

(3) We investigate how knowledge-aware mod-
els capture relationships between domain-slots and
show how using graphs can improve prediction of
inter-dependent slot values.

While we do show DST accuracy improvements
over a strong GPT-2 baseline, we emphasise that
our aim is mainly to investigate and improve pre-
diction of domain-slot values using relationships
that otherwise are left unmodelled by the baseline.

2 Related Work

Statistical DST prioritises general and extensi-
ble systems based on machine-learning architec-
tures (Wu et al., 2019; Zhang et al., 2019; Huang
et al., 2020; Lee et al., 2020). Systems must be
able to predict slot values from domain-specific
lists such as list of hotel names as well as from
more open-ended categories such as days, prices,
and times. Recent trends are to combine several
strategies to deal differently with the two types of
values (Zhang et al., 2019; Zhou and Small, 2019;
Heck et al., 2020). For example, Zhang et al. (2019)
combine a span predictor for non-enumerable slot
values and a cosine similarity matching that ex-
ploits a BERT model to extract representations for
enumerable slot values, with a dual-strategy model
jointly handling both types of slot values; Zhou
and Small (2019) use both a span predictor and a
candidate classifier and combine their predictions
with gating functions. Our work is based on GPT-2
and we note that generative models such as GPT-2
are less widely used in DST tasks, possibly because
they raise additional challenges for information ag-
gregation subject to the causality, as discussed in
Sec. 1. However these recent results show that
these models can yield competitive DST accuracy
(Hosseini-Asl et al., 2020; Yang et al., 2021) .

Previous work has addressed sharing informa-
tion between slots either by explicitly copying val-
ues (Ouyang et al., 2020; Heck et al., 2020) or by
sharing embeddings (Hu et al., 2020; Zhou and
Small, 2019; Chen et al., 2020). Beyond copying
and sharing, as we note in Sec. 1 Zhou and Small
(2019) developed a graph attention network, and
Chen et al., 2020 also developed a schema-guided
multi-domain approach embedding slot relations in
edges of graph neural networks. Zhu et al. (2020)
enhanced a strong base model SOM-DST (Kim
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et al., 2020) with a schema graph to exploit re-
lations among domain-slots. GCDST (Wu et al.,
2020) uses a state graph to transfer domain-slot fea-
tures and hard-copy states directly from historical
states.

3 Graph Neural Networks

In this section we review Graph Attention Net-
works (GATs) (Veličković et al., 2018; Li et al.,
2021) as will be used in this paper.

A weighted undirected graph at each dialogue
turn t is defined as G = (V, E) with a node set
V consisting of N nodes {vi}, and an edge set E
containing all edges between nodes. We define
an N ×N binary symmetric adjacency matrix S,
where [S]ij = 0 if (vi, vj) /∈ E and 1 otherwise.
Associated with each node vi are feature vectors
xi ∈ RF . These are gathered into matrices X of
dimension N × F , where F is the input feature
size.

Note that SX is mathematically equivalent to
passing the features of each graph node to its neigh-
bours. In this way SkX = S(Sk−1X) is equivalent
to k rounds of feature exchanges with neighbours.
As illustrated in Fig. 1, k = 0 is self-connection,
while k > 0 aggregates features from k nodes
away.

A GAT layer transforms an input X ∈ RN×F

to an output G(X) ∈ RN×G as follows. Each
K-hop GAT layer consists of P attention heads
A(p) which incorporate k = 0, ...,K − 1 rounds of
feature aggregation (as shown in Fig. 1) across the
graph as

A(p)(X;S) =
K−1∑
k=0

(E� S)kXA
(p)
k

G(X) =
1

P

P∑
p=1

σ
[
A(p)(X;S)

]
,

(1)

where the {A(p)
k }

K−1
k=0 are RF×G linear feature

transforms and σ(.) is a non-linear activation func-
tion. The values of the N ×N attention matrix E
are computed over X as

[E]ij =
exp (LeakyReLU(eij))∑

k∈Ni
exp (LeakyReLU(eik))

eij = (xi)>Q(p)xj ,

(2)

where Ni are the neighbouring nodes of node vi,
and Q(p) are trainable F × F matrices used in
computing attention. In this way a GAT layer ag-
gregates features selectively by assigning dynamic

Figure 1: Illustration of GATs. k = 0 is self-
connection, and k ≥ 1 passes the features of other
nodes to the node being evaluated. The values on the
links are attention values, which weight the passing fea-
tures.

weights to graph edges based on the input node
features.

GATs are formed as a cascade of L GAT layers
G`, each with its own multi-headed graph attention
mechanisms Ap

` . At time t, the GAT transforms a
set of input features X(0)

t to a set of output features
X

(L)
t as

X
(`)
t = G`(X

(`−1)
t ) for ` = 1, . . . , L (3)

Note that in this paper, we set output dimension
G = F for all GAT layers such that the GAT output
features have the same dimensions as the input.

4 Dialogue State Tracking with GPT-2
and Graph Neural Networks

We take a three-step approach to incorporating
GNNs into GPT-2 for dialogue state tracking (see
Fig 2). At each turn we first present GPT-2 with the
dialogue history to generate features for all possi-
ble domain-slots and values in the ontology. These
features are then fed into a GAT which captures re-
lationships amongst domain-slots and values. The
features produced at the output layer of the GAT
are then incorporated into a second application of
GPT-2 which performs the actual prediction of the
dialogue state values.

4.1 Domain-Slot and Value Embeddings

The first step is to extract features of both domain-
slots and values in the ontology. The dialogue
history Ht at turn t is a concatenation of user ut-
terances and system responses, separated with spe-
cial tokens: Ht = ‘ut <SYS> st−1 <USR> ut−1
... <SYS> s1 <USR> u1’. From the ontology,
we construct a string for all domain-slots as fol-
lows: F = ‘hotel name <hotel-name> taxi de-
parture <taxi-departure>...’ . The string F
contains all domain-slots in the ontology and does
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Figure 2: The workflow of the proposed model: ¬ The model extracts domain-slot embeddings from dialogue
history, without knowing the ground truth; ­ domain-slot embeddings are passed into Graph Attention Networks
for feature aggregation and information exchanges; ­(a)-­(b) two types of graph connectivity used in our experi-
ments; ® the updated domain-slot features are fed into the causal generation process of corresponding slots. Tokens
shaded with red are model inputs, while tokens shaded with blue are generation outputs. For better visualization,
only two domain-slot pairs are presented (<hotel-name> and <taxi-departure>).

not change with samples. The domain-slots appear
in a fixed order and each is preceded by a brief text
description to provide context to GPT-2 in produc-
ing features.

To produce domain-slot features at dialogue turn
t, the string ‘Ht <BOC> F ’ is presented to GPT-
2. Since the domain-slots are fixed and appear in
a prescribed order in F , there is a straightforward
link between the positions of domain-slots in the in-
put and their embeddings in the GPT-2 output layer.
For example, the feature for <taxi-depature>
can be found in the same position of the output
embedding sequence as that domain-slot appears
in the input, as shown by arrows in Fig.2 ¬: Pre-
extraction.

To produce embeddings for all possible values
in the ontology at turn t the embedding layer of
the GPT-2 is used. Therefore, this representation
is fixed from turn to turn until the embedding layer
is updated in back propagation. Some values may
consist of multiple tokens, e.g. ‘Demo Hotel’ for
the domain-slot <hotel-name>. A single vector
for each multi-token value is found by averaging
the features of each token.

At dialogue turn t, the domain-slot features and
the value features are gathered into matrices Xs

t ∈

RNs×h and Xv
t ∈ RNv×h, where there are Nv

values and Ns domain-slots, and h is the size of
the hidden layer of the GPT-2 Transformer.

4.2 Inter-slot Information Exchange
We will use two types of GATs: DSGraph and
DSVGraph. In DSGraph, there are Ns nodes,
each representing a domain-slot pair. All nodes
are connected to each other to allow nodes to
exchange features as shown in Fig.2 ­ (a). In
DSVGraph, there are Ns domain-slot nodes and
Nv value nodes, each of the latter representing
a possible value. If a value is in the candidate
set of a domain-slot pair, then the corresponding
value node and domain-slot node are connected, as
shown in Fig.2 ­ (b). The domain-slot nodes are
not otherwise connected.

With features for domain-slots and values ex-
tracted in Sec. 4.1, we use GATs to transform
the features to capture the relationships between
domain-slots and values. The inputs to the GATs
are

X
(0)
t =

{
Xs

t ∈ RNs×h in DSGraph,
Xs

t ||Xv
t ∈ R(Ns+Nv)×h in DSVGraph

.

We use only the resulting domain-slot embeddings
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after graph operations, and thus we extract the first
Ns items of the output tensor X(L)

t and gather them
into a matrix Gt ∈ RNs×h.
4.3 Dialog State Prediction
Finally, we present the string ‘Ht <BOS>’ to the
GPT-2 model to predict the dialogue state. The
model is required to generate output Yt, a sequence
of tokens of serialized domain-slot pairs and cor-
responding values: Yt = ‘hotel name Demo Hotel
<SEP> taxi departure 18 : 00 <SEP> ... <EOS>’.
The model is trained to generate the name of each
domain-slot, its predicted value, and finally a sepa-
ration token <SEP> before proceeding to the pre-
diction of the next domain-slot. Note that the
value ‘none’ is generated for empty/not mentioned
domain-slot values and thus all slots will be gener-
ated regardless of whether they have values. After
producing values for all domain-slots, the model
generates an <EOS> to end the generation process.
In practice, we find that the model never omits
any of the Ns domain-slot pairs during generation,
further confirming GPT-2’s ability to produce struc-
tured output. An example of input/output is at the
bottom of Fig.2 ®: Generation.

Decoding: In generation the model incorporates
the GAT features Gt[i] ∈ Rh as shown by the pink
arrows in Fig.2 ®: Generation. When predicting
the value of the ith domain-slot (in this example the
domain-slot is hotel-name), the GPT-2 features
used for token decoding are concatenated with the
domain-slot features Gt[i] from the output of the
GATs. The prediction of the value for each domain-
slot will incorporate the domain-slot features pro-
duced by the GATs. When predicting tokens that
are not related to value predictions (black arrows
in the figure), an all-zero tensor is concatenated to
keep consistency. The input dimension of the linear
layer in decoding is extended to accommodate the
GAT features in concatenation.

Fine-tuning: Fine-tuning of GPT-2 for Multi-
WOZ is done in the usual way. Each turn t in
the MultiWOZ training set is transformed into a
sequence ‘Ht <BOS> Yt’ where Yt contains the
sequence of domain-slots and values for dialogue-
turn t, as extracted from the annotated training set.
Training proceeds by optimising P (Yt|Ht; θ) over
the training set.

5 Experiments

We report dialogue state tracking performance on
MultiWOZ 2.0 (Budzianowski et al., 2018) with its

multi-domain goal-oriented dialogue conversations
and annotations. For direct comparison to the pre-
vious literature, we use the same preprocessing as
Wu et al. (2019) and Zhou and Small (2019). Two
metrics are used for evaluating the model perfor-
mance:

Slot Accuracy measures the ratio of successful
slot value predictions among all the slots of each
dialogue turn in ground-truth.

Joint Goal Accuracy compares the predicted be-
lief state to the ground truth at every dialogue turn,
and the output is considered correct only if all the
predicted slot values exactly match the ground truth
values.

5.1 Baseline Performance

We take the performance of several recently
published systems as points for comparison:
TRADE (Wu et al., 2019), DST-Picklist (Zhang
et al., 2019), and SUMBT+LaRL (Lee et al.,
2020). These models employ transfer learning,
classification with a mixed strategy, and reinforce-
ment learning, respectively. As discussed in Sec. 2,
we also compare our model to Graph-based DSTs:
SOM-DST+SG (Zhu et al., 2020), GCDST (Wu
et al., 2020), and SST (Chen et al., 2020).

In addition, we consider two models as most rele-
vant baselines, and we have attempted to reproduce
their results for inclusion here1:

DSTQA* (Zhou and Small, 2019)2: A bi-
LSTM-based DST model utilizing a graph attention
network to capture inter-slot relationships, which
motivates the architecture introduced in this paper.

SimpleTOD* (Hosseini-Asl et al., 2020)3: A
GPT-2-based dialogue state tracker, which is simi-
lar to our base model, without graph enhancement.

5.2 Training Regimes

We investigate two training scenarios. The first
approach is fully supervised at the level of in-
dividual turns, following the common practice
(e.g. Hosseini-Asl et al.(2020)). The second
approach is Sparsely-Supervised Training, in
which training is at the entire dialogue level, i.e.
including only the dialogue state labels at the final
turn without their intermediate states during the ses-
sion, but with the previous dialogue turns included
as history (shown in Fig. 3). The two components,

1The results shown in this paper might be different from
what they reported. See Appendix A.1.

2https://github.com/alexa/dstqa
3https://github.com/salesforce/simpletod

https://github.com/alexa/dstqa
https://github.com/salesforce/simpletod
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Figure 3: An example of the sparely-supervised training scenario where only the annotations at the last turn
(highlighted in blue) are available.

Joint (%) Slot (%)

TRADE 48.62 96.92
DSTQA* 52.24 97.28
SimpleTOD* 51.37 96.48
SOM-DST+SG 52.53 N/A
GCDST 50.68 N/A
SST 51.17 N/A
SUMBT+LaRL 51.52 97.89
DST-Picklist 54.39 N/A
L0P0K0-NoGraph 53.00 97.34
L4P4K2-DSGraph 54.86 97.47
L4P4K2-DSVGraph 54.62 97.42

(a) Training with all samples.

Joint (%) Slot (%)

1. DSTQA*-LastTurn 22.88 93.53
2. SimpleTOD*-LastTurn 48.16 96.31
3. L0P0K0-NoGraph-LastTurn 48.07 96.88
4. L1P1K2-DSGraph-LastTurn 49.00 96.98
5. L1P1K2-DSVGraph-LastTurn 49.25 96.97
6. L1P1K3-DSVGraph-LastTurn 49.93 97.05
7. L4P4K2-DSGraph-LastTurn 50.43 97.14
8. L4P4K2-DSVGraph-LastTurn 50.26 97.04
9. L4P4K3-DSVGraph-LastTurn 50.05 97.04

(b) Training with only last-turn samples.

Table 1: MultiWOZ 2.0 Dialogue State Tracking performance comparison, and ablation study. The metrics are joint
accuracy (Joint) and slot accuracy (Slot) in %. GAT models are named “L{_}P{_}K{_}-[Graph_Type]”,
for number of layers L, number of heads per layer P , and number of hops K (Sec. 4.2).

GPT-2 and GAT, are jointly trained. More details
are in Appendix A.2. Under sparse supervision,
the training set is reduced from 54, 971 turns to
only last-turn samples 7, 884 (14.3%); validation
utilizes only last-turn samples, as well. Note that
evaluation is performed with the standard, Multi-
WOZ test set (7, 372 samples) for models trained
under either regime. For comparison, we produced
the results of DSTQA* and SimpleTOD* using
the same last-turn samples. These are denoted with
a “-LastTurn” suffix as in Table 1b.

We denote the configurations of GAT with
“L{_}P{_}K{_}-[Graph_Type]” format,
filling in number of layers L, number of heads per
layer P , and number of hops K.

6 DST Performance
We first compare our model with baseline systems.
As shown in Table 1a, L0P0K0-NoGraph, which

has no graph enhancement, achieves higher joint ac-
curacy than most of the baseline models including
the graph-based models such as GCDST and SOM-
DST+SG, setting a strong baseline for further im-
provement to GPT-2-based generation. L4P4K2-*
models, with multiple GAT layers to encourage
inter-slot information exchange, show significantly
better performance. L4P4K2-DSGraph achieves
54.86% in joint accuracy, highest amongst these
systems.

In the sparsely-supervised scenario, the per-
formance of the baseline GPT-2 model drops
to 48.07% joint accuracy (L0P0K0-NoGraph,
Table 1b). Incorporating GAT in the sys-
tem (L4P4K2-DSGraph-LastTurn) achieves
50.43% in joint accuracy, leading to a 3% degra-
dation relative to L0P0K0-NoGraph fine-tuned
with the full set of annotated dialogue turns. By
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contrast, DSTQA*-LastTurn, which utilizes bi-
directional LSTM modules, exhibits a sharp per-
formance decrease to 22.88% joint accuracy; we
hypothesize this that the LSTM-based model can
not annotate short dialogue samples well having
been fine-tuned only with the last-turn samples
which have relatively longer dialogue history and
annotations.

The sparsely supervised scenario further shows
the value of augmenting GPT-2 with represen-
tations derived from GATs (Table 1b). Rela-
tive to the base system (Model 3, Table 1b),
L1P1K2-DSVGraph-LastTurn (Model 5) im-
proves accuracy by incorporating GAT represen-
tations in which slot nodes depend on only value
nodes. When the number of hops is increased, slot
nodes influence each other via intermediate value
nodes, yielding further improvement (Models 6,8).

However, multiple GAT layers (L = 4, P = 4,
Models 7,8,9, Table 1b) do not differ much in
performance, showing that dependencies between
slots nodes and values can be captured with suffi-
cient layers (thus effectively more hops of infor-
mation exchange) and attention heads. In particu-
lar, although the number of hops (K) is relatively
small, feature passing between distant nodes can
occur from layer to layer.

We summarize our findings as below:
(1) Through modelling values nodes, the

DSVGraph is able to capture dependencies be-
tween slots that share values, resulting in a slight
improvement over the DSGraph when the number
of layers/hops are limited (Table 1b Model 5, 6 v.s.
Model 4).

(2) With sufficient layers of GATs, DSGraph
compensates for the lack of explicit value nodes
and matches and sometimes outperforms the per-
formance of DSVGraph, but this is at the cost of
additional modelling complexity (comparing Table
1b Model 8, 9 and Model 7). Understanding these
trade-offs will be helpful in applying these models
in larger, more complex domains.

In the following sections (Sec. 6.1, 6.2, and 6.3),
we investigate how graph modules improve the
performance of the base fine-tuned GPT-2 model.

6.1 GATs capture inter-slot dependencies

The accuracy of each domain-slot of several models
is shown in Fig. 4. The horizontal axis follows the
serialization order of domain-slot pairs in the model
output. As discussed in Sec. 1, when predicting

<restaurant-area> (position 14), the causal
GPT-2 model is able to condition on what has been
predicted for <attraction-area> (position
1), but not the other direction, possibly incurring
decreased performance for earlier slots. After in-
troducing graph modules this effect of causality
is mitigated. For example, as shown in Fig. 4,
the slot accuracy of “attraction” domain is always
boosted by graph-enhanced models (green and yel-
low). We further note that these graph-enhanced
models perform generally better in those intuitively
correlated slots (e.g. <hotel-pricerange>
and <restaurant-pricerange>). We con-
clude that graph-based inter-slot dependencies are
beneficial to such GPT-2-based generation models.

6.2 GATs improve the predictions at
intermediate dialogue turns

It is important to analyze what impact the last-turn
training brings to the predictions at intermediate
turns, and how graph modules improve them. A di-
alogue session might run for 3-4 turns to complete
a single task, or up to 18 turns to complete a com-
plex task (e.g. booking a train, taxi, and hotel in
the same session). Starting from 0% (the first turn)
to 100% (the last turn), we report the prediction
accuracy of all slots as the dialogue progresses. As
shown in Fig. 5, the baseline model trained with
all training samples (L4P4K2-DSGraph) shows
a downward trend in prediction accuracy as the dia-
logue progresses. This agrees with our observation
that as dialogue progresses, the domain-slot predic-
tion task becomes larger and more complex (e.g.
time-related slots such as taxi-arriveBy are
known to be difficult and tend to appear late in a
session).

Comparing L4P4K2-DSGraph (blue) and
L0P0K0-NoGraph-LastTurn (yellow), the
performance throughout the dialogue sessions
lags by around 5% in joint accuracy. When
graph modules are introduced in models such as
L4P4K2-DSGraph-LastTurn and L4P4K2
-DSVGraph-LastTurn, the system perfor-
mance in the latter half of the dialogue degrades
much less. For instance, when towards the end
of dialogues (progress higher than 80%), the dif-
ference in joint accuracy of L4P4K2-DSGraph
(blue) and L4P4K2-DSGraph-LastTurn
(brown) is less than 2%. Graph-enhanced models
significantly improve the performance in the latter
halves of dialogues. A possible reason is that, as
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Figure 4: Slot accuracy relative to baseline (L0P0K0-NoGraph-LastTurn), in the serialization order for GPT-
2 generation. Domain-slot accuracy is improved, particularly for items earlier in the serialisation.

Figure 5: Prediction accuracy against of dialogue
progress. Models trained with only last-turn samples
can utilize GATs to retain much performance in the lat-
ter halves of dialogues (50% to 100%).

the dialogue proceeds, more values are specified
and correlated domain-slots appear together more
frequently, which enables graph modules to exploit
the dependencies between slots.

6.3 GATs improve the predictions of
correlated slots

We investigate these inter-slot dependencies and to
what extent they affect our graph models.

For every pair of value candidates under two
distinct slots (e.g. <hotel-people>:3 and
<restaurant-people>:3 form a value pair),
we measure the correlation of the two values using
Jaccard similarity coefficient (Zhang and Srihari,
2003). Jaccard score of two sets C1 and C2 is
defined as: J(C1, C2) =

|C1∩C2|
|C1∪C2| .

Figure 6: A sample of slot value pairs in the test set
with their Jaccard scores. Each entry shows that val-
ues in two different slots are bridged by their Jaccord
scores. Higher scores indicate stronger dependencies.

For each value pair, we flag their occurrences in
the turn-level test set samples where both of their
corresponding slots have non-empty annotations.
The Jaccard score is then computed from the co-
occurrences of the two values. Further details are
given in Appendix A.3. Intuitively, the score in-
dicates whether the two values in the pair tend to
appear together or not, which is a suitable mea-
surement for value-level dependencies, at the same
time bridging the slots to which they belong. Note
that these scores are objective values derived from
the test set, without the engagement of any model.

Fig. 6 shows value pairs with their Jaccard scores
from the test set annotations. There is clear evi-
dence of dependencies in slots across domains. For
example, <restaurant-pricerange> and
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Figure 7: The joint accuracy (relative to baseline
L0P0K0-NoGraph-LastTurn) changes with the
Jaccard Score of value pairs. A moving window of
size 0.1 is applied to obtain the averaged joint accuracy
around each Jaccard score being evaluated.

<hotel-pricerange> are bridged by their val-
ues (cheap and expensive) with high Jac-
ard scores (highlighted in green). The values
of <restaurant-area> also aligns well with
those of <hotel-area> (in blue).

We run three models (as shown in the legend
of Fig. 7) and for each value pair obtain the
average pair accuracy (the success rate of cor-
rectly generating both values). We then plot the
change in average pair accuracy (relative to base-
line values) with the increasing Jaccard coeffi-
cient in Fig. 7. Compared to the baseline with-
out GATs (blue), the graph-enhanced models (yel-
low and green) perform better when predicting val-
ues that have high Jaccard scores. Specifically,
L4P4K2-DSVGraph-LastTurn has a 0.15%
boost when Jaccard is around 0.2, and it further
improves the performance to 0.6% at the Jaccard
value of 0.88. Therefore, we can conclude that the
graph modules enable the models to exploit the
inter-slot dependencies and learn better in those
highly correlated values.

7 Conclusion

We presented a novel hybrid architecture that aug-
ments GPT-2 with representations derived from
Graph Attention Networks in such a way to allow
causal, sequential prediction of slot values. Our
analysis shows that these graph-enhanced models
mitigate some of the issues that arise in predic-
tion with left-to-right generative models. We also
demonstrate that our model can exploit dependen-
cies among domain-slot values, improving accu-
racy for systems trained with weak supervision.
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A Appendices

A.1 Reproduction Details
Dialogue state tracking performance reported in
this paper are replications of published results for
DSTQA* and SimpleTOD* using source code ac-
companying the papers describing these systems.
The asterisk indicates results found by our replica-
tion.

DSTQA*: We used the software released by
Zhou and Small (2019)5 to retrain and evaluate the
system with hyperparameters set as in the original
code. Training ran for 300 epochs and 2 days. The
best model was found at epoch 174 based on the
validation accuracy of all slots.

DSTQA*-LastTurn: We used the same soft-
ware environment as for DSTQA*, modified such
that only the final turn of training/validation sam-
ples was used in training. The training was run
for 300 epochs and 20 hours, and the best model
was found at epoch 109, after which the model
exhibited overfitting and reduced performance.

5https://github.com/alexa/dstqa
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Sample index 0 1 2 3 4
Labels for <restaurant-pricerange> none expensive moderate expensive moderate
Labels for <hotel-pricerange> none moderate expensive expensive cheap
C1:<restaurant-pricerange>:expensive ignore 1 0 1 0
C2:<hotel-pricerange>:expensive ignore 0 1 1 0
dependent? C1 ∩ C2 ignore False False True True

Table 2: Example of calculating Jaccard Scores for the value pair <restaurant-pricerange>:expensive
and <hotel-pricerange>:expensive. Here shows 5 possible turn-level samples to demonstrate how we
flag the occurrences for the value pair.

Joint(%) Slot(%)

Zhou and Small (2019) 51.44 97.24
DSTQA* 52.24 97.28
DSTQA*-LastTurn 22.88 93.53

Table 3: DSTQA Performance on MultiWOZ 2.0.

Joint(%) Slot(%)

SimpleTOD* 51.37 96.48
SimpleTOD*-LastTurn 48.16 96.31

Table 4: Performance of SimpleTOD (Hosseini-Asl
et al., 2020) in MultiWOZ 2.0 .

SimpleTOD*: Software was downloaded from
the official repository6 of SimpleTOD. After fixing
several bugs according to the discussions in the
repository, we evaluated this model in MultiWOZ
2.0 (Budzianowski et al., 2018) for a fair compar-
ison with our proposed models. The best model
was found by the perplexity of validation set, as
recommended by the paper.

SimpleTOD*-LastTurn: We reduced the train-
ing data set to only final turns of dialogues as in
DSTQA*-LastTurn, and produced the results to
compare with our proposed models.

A.2 Training Details

All experiments were done with a RTX3090 GPU.
Fine-tuning is done with an AdamW optimizer with
a linear decay learning rate for 8 epochs (36 epochs
for sparsely-supervised training). Each epoch costs
around 1 hour to complete on the GPU used. The
GPT-2 component loads the pre-trained parame-
ters of the standard model (12-layer, 768-hidden,
12-heads, 117M parameters, OpenAI GPT-2 En-
glish model) provided by huggingface7. Though

6https://github.com/salesforce/simpletod
7https://huggingface.co/

the GPT-2 and GAT are jointly trained, the initial
learning rates are 6.25×10−5 and 8×10−5 for two
major components respectively. Training details
can be found in our official Github repository.8

A.3 Calculation of Jaccard Scores
Table 2 shows an example of labeling sequences of
C1 andC2 from which Jaccard scores are computed
by J(C1, C2) = |C1∩C2|

|C1∪C2| . With the five samples
shown, the Jaccard score is 2

4 = 0.5. The value is
not high as intuitively the occurrence and absence
of <restaurant-pricerange>:expen-
sive does not pair well with those of
<hotel-pricerange>:expensive. As the
number of samples increases, this score effectively
reflects how a slot value depends on the other, lead-
ing to a good measurement of coreference and de-
pendencies.

8https://github.com/LinWeizheDragon/Knowledge-
Aware-Graph-Enhanced-GPT-2-for-Dialogue-State-Tracking

https://github.com/salesforce/simpletod
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